
EÆcient Progressive Skyline Computation

Kian-Lee Tan Pin-Kwang Eng Beng Chin Ooi

Department of Computer Science
National University of Singapore

Abstract

In this paper, we focus on the retrieval of a set
of interesting answers called the skyline from
a database. Given a set of points, the skyline
comprises the points that are not dominated

by other points. A point dominates another
point if it is as good or better in all dimen-

sions and better in at least one dimension. We
present two novel algorithms, Bitmap and In-
dex, to compute the skyline of a set of points.
Unlike most existing algorithms that require
at least one pass over the dataset to return
the �rst interesting point, our algorithms pro-
gressively return interesting points as they
are identi�ed. Our performance study further
shows that the proposed algorithms provide
quick initial response time with Index being
superior in most cases.

1 Introduction

Database management systems have been increas-
ingly used in decision support applications. Many
of these applications are characterized by several fea-
tures. First, the query is typically based on multi-
ple, and sometimes conicting, goals. For example, a
tourist may be interested in budget hotels with rea-

sonable ratings (say, 3-star) that are close to the city.
Clearly, hotels nearer the city are expected to be more
expensive. Second, unlike conventional applications,
there may be no single optimal answer (or answer set).
In our tourist example, it is unlikely that there exists
a single 3-star hotel that is cheapest among all 3-star
hotels and is within the city. Instead, one can expect
to �nd a list of budget hotels such that those nearer to
the city are slightly more expensive. Third, because

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

of the second point, users are typically looking for sat-
is�cing answers. Fourth, for the same query, di�erent
users, dictated by their personal preferences, may �nd
di�erent answers appealing. A person may be willing
to pay a little more to be closer to the city; another
may be contented with a cheaper hotel as long as it is
convenient to go to the city. As such, it is important
for the DBMS to present all interesting answers that
may ful�ll a user's need.

Traditionally, the DBMS supports these applica-
tions by returning all answers that may meet the user's
requirement. In our tourist example, if the user spec-
i�es \budget" to mean in the range of $120-$200, and
\close to" to mean within 5 km, then the system may
return all hotels that satisfy these predicates. This is
not very helpful because users may be overloaded with
too much information. More importantly, there may
be answers that are completely irrelevant and uninter-
esting. For example, if there are two hotels, h1 and
h2, with the same rating, such that h1 is both cheaper
and nearer to the city than h2. Then, h2 may not need
to be presented to the user.

In this paper, we focus on the set of interesting an-
swers called the skyline [2]. Given a set of points, the
skyline comprises the points that are not dominated

by other points. A point dominates another point if it
is as good or better in all dimensions and better in at

least one dimension. In our example, h1 dominates h2
because it is better in the price and distance dimen-
sions and as good in the rating dimension. We present
two novel algorithms to compute the skyline of a set
of points. Unlike most existing algorithms [2] that re-
quire at least one pass over the dataset to return the
�rst interesting point, our algorithms progressively re-
turn the interesting points as they are identi�ed.

The �rst algorithm, called Bitmap, is completely

non-blocking and exploits a bitmap structure to
quickly identify whether a point is an interesting point
or not. Each record is mapped into a m-bit vec-
tor, where m is the sum of the number of distinct
attribute values over all dimensions. Unlike existing
bitmap structures which are typically a bitmap ver-
sion of the entire database, our bitmap structure is
a precomputed bit structure with more information.
Operations on the bit vectors are performed on the



bit-slices derived from the vectors. Because bitwise
operations are fast, and the precomputed information
bounds the number of bit-slices that need to be exam-
ined, we can eÆciently determine whether a point is
an interesting point or not.

The second method, Index, exploits a transforma-
tion mechanism and a B+-tree index to return sky-
line points in batches. Essentially, each point is trans-
formed into a single dimensional space, and stored in
a B+-tree structure. Moreover, points with some com-
mon features (same mapping value) are clustered to-
gether. The sort order in the transformed space al-
lows us to examine points that are likely candidates
to be skyline points �rst. Moreover, it also allows us
to prune away points that are clearly dominated by
some other points. By processing points with the com-
mon features collectively, we can determine the skyline
points in bursts.

We implemented the proposed algorithms and eval-
uated their performance against three recently pro-
posed algorithms. Our results show that the proposed
schemes provide short initial response time and re-
turn interesting answers very quickly. Moreover, both
schemes can also outperform the existing techniques in
terms of total response time. While Index is superior
in most cases, Bitmap performs well when the number
of distinct values per dimension is small.

The rest of this paper is organized as follows. In
the next section, we review the skyline operator and
existing algorithms that compute the skyline. In Sec-
tion 3, we present the bitmap-based and index-based
approaches to support progressive computation of sky-
line. Section 4 reports a performance study that evalu-
ates the proposed schemes against existing algorithms,
and �nally, we conclude in Section 5.

2 The Skyline Operator

In [2], Borzsonyi et. al. extended SQL's SELECT
statement by an optional SKYLINE OF clause.
The SKYLINE OF clause is evaluated after the
SELECT ... FROM ... WHERE ... GROUP BY ...

HAVING ... part of the query, but before the
ORDER BY clause (and STOP AFTER if supported).
The SKYLINE OF clause selects all interest-
ing records, i.e., records that are not domi-
nated by other records. Formally, a tuple p =
(p1; : : : ; pk; pk+1; : : : ; pl; pl+1; : : : ; pm; pm+1; : : : ; pn)
dominates another tuple q =
(q1; : : : ; qk; qk+1; : : : ; ql; ql+1; : : : ; qm; qm+1; : : : ; qn)
for a Skyline query

SKYLINE OF d1MIN; : : : ; dkMIN;

dk+1MAX; : : : ; dlMAX;

dl+1DIFF; : : : ; dmDIFF

if the following three conditions hold:

pi � qi for all i = 1; : : : ; k
pi � qi for all i = k + 1; : : : ; l
pi = qi for all i = l + 1; : : : ;m

In the SKYLINE OF clause, the MIN and MAX an-
notations mean that the corresponding dimensions
should be minimized and maximized respectively, and
the DIFF annotation denotes that two records with dif-
ferent values in the dimension may both be part of the
skyline.

In our tourist example where both the price and
distance are to be minimized, the query can be written
in SQL as follows:

SELECT *

FROM hotels

WHERE rating > 2

SKYLINE OF price MIN, distance MIN;

where hotels(hotelid, address, typeOfRoom,
rating, price, distance) is a relation on hotel
information, rating represents the rating of the hotel
(here, we assume its type is integer, and the value
represents the number of stars), price captures the
room rates, and distance indicates the distance
from the hotel to the city. Should the user wants
to maximize the value of an attribute (e.g., one
may want to maximize the rating), then the MAX

annotation can be used. Similarly, the user may use
the DIFF annotation to indicate that two records with
di�erent room types are acceptable.

Computing the skyline of a set of points is also
known as the maximum vector problem [1, 6]. Early
works on solving the maximum vector problem typi-
cally assume that the points �t into the main mem-
ory. Algorithms devised include divide-and-conquer
paradigm [1], parallel algorithms [8, 9] and those that
are speci�cally designed to target at 2 or very large
number of dimensions [4]. For the rest of this section,
we shall review three techniques that were proposed in
the context of database applications in [2]. These are
the three schemes that we shall compare with in our
performance study.

Block Nested Loops Algorithm

The block nested loops algorithm [2] is an iterative
algorithm that repeatedly scans a set of records. In
each iteration, a window of incomparable records are
kept in the main memory. When a record p is read
from the input relation, p is compared with the records
in the window. There are three possible outcomes:

1. If p is dominated by a record in the window, it
means that p cannot be in the skyline. Thus, p is
discarded.



2. If p dominates one or more records in the window,
these records are eliminated (since they cannot be
in the skyline), and p is inserted into the window.

3. If p is incomparable with all records in the window
(i.e., it neither dominates nor being dominated),
it is either inserted into the window if there is suf-
�cient room in the window, or written to a tem-
porary �le on disk.

At the end of each iteration, those records in the win-
dow that have been compared against all records that
have been written out to the temporary �le are cer-
tain to be in the skyline, and hence can be returned
to the user (and removed from the window). In the
next iteration, the algorithm will proceed in the same
manner with the remaining records in the window and
the records in the temporary �le as the input relation.

One of the most expensive process in the algo-
rithm is the time spent to compare a record with the
records in the window. To speed up these compar-
isons, the records in the window are organized as a
self-organizing list. When a record q of the window is
found to dominate another record, then q is moved to
the beginning of the window. In this way, records that
are highly dominant will oat to the top of the win-
dow, and subsequent input records will be compared
against them �rst.

The algorithm clearly is not attractive in terms of
producing fast initial response time as it requires at
least one pass over the input relation before a set of
points can be identi�ed to be part of the skyline.

Divide-and-Conquer Algorithm

In [2], Borzsonyi et. al. also extended the basic two-
way divide-and-conquer algorithm for computing sky-
line [1, 6] to m-way partitioning. The algorithm works
as follows.

� Compute the �-quantiles of a set of input points
along a certain dimension dp. Split the points into
m partitions such that each partition �ts in the
memory. Let these partitions be P1; : : : ; Pm.

� Compute the skyline Si of partition Pi, 1 � i � m,
using any known skyline computation algorithm.

� Compute the overall skyline as the result of merg-
ing the Si pairwise. Within the merge opera-
tion, m-way partitioning is applied so that all
sub-partitions can be merged in main memory.
We note that the recursive applications of the
m-way partitioning pick di�erent dimensions for
splitting. It is also interesting to note that some
pairs of merging can be skipped as points within
these pairs are already incomparable.

Like the nested-loops scheme, the divide-and-
conquer technique cannot produce skyline points pro-
gressively. Moreover, it is not expected to perform well

for small memory systems, as it requires the partitions
to be in-memory.

Using B-trees

The computation of the skyline can also be facilitated
by index structures. In [2], a method based on B-
tree was described. Assuming that each record has d
dimensions and there is an index for every dimension,
the skyline can be computed as follows.

� Scan all the indexes simultaneously to �nd the
�rst match, i.e., the �rst record to be seen by all
the indexes during the scan.

� The �rst match is de�nitely part of the skyline
and can be returned immediately, providing a fast
initial response.

� Scan the rest of the index entries of the �rst di-
mension's index. If the record has not been seen
before (i.e., the index entries of this record in the
other indexes have not been examined prior to the
�rst match), it is de�nitely not in the skyline and
can thus be eliminated. If any of the other in-
dexes contain an index entry to this record prior
to the �rst match, then the record may or may
not be in the skyline. To determine whether it
is in the skyline, an existing skyline computation
algorithm can be applied.

A critical factor that will a�ect the performance of this
algorithm is how fast the �rst match can be found. If
a match is found late (which is likely to be the case
for large number of dimensions), it will result in a high
initial response time. Nevertheless, we can expect this
algorithm to perform well in general, when the skyline
is small and the �rst match can be found quickly.

3 Progressive Skyline Computation

In this section, we shall present the two proposed
methods to compute skyline progressively. For ped-
agogical reasons, we shall assume that the database,
D, contains jDj d-dimensional points. Moreover, we
assume that the skyline operation involves all the d di-
mensions, and that dimension i has ki distinct values,
1 � i � d. Let pij denote the jth distinct value of the
ith dimension. Without loss of generality, we assume
that pi1 > pi2 > : : : > piki . In addition, we assume
that the domain for all dimensions are the same and is
in the range [0,1]. In presenting the proposed schemes,
we shall also restrict our discussion to the MAX annota-
tions only. In [10], we discuss how the schemes can be
easily generalized to handle skyline queries involving
fewer than d dimensions and other annotations (i.e.,
MIN and DIFF), as well as involving databases whose
dimensions' domains are di�erent.



3.1 Bitmap: A Bitmap-based Algorithm

To support progressive skyline computation, for each
point examined, the Bitmap scheme asks the ques-
tion: \Is this point dominated by another point?".
The point is an interesting point if the answer is neg-
ative, and we can return it immediately. As such, the
method is completely non-blocking, and the initial re-
sponse time is short compared to existing schemes. In-
tuitively, to realize this, we need to examine all points
in the database. We avoid this by exploiting a bitmap
structure. Since bitwise operations are fast, we can
eÆciently determine whether a point is an interesting
point or not.

A point x = (x1; : : : ; xd) in the database is repre-
sented as a m-bit vector as follows:

� xi is represented by ki bits. Hence m =
Pd

j=1 kj .

� Let the jth bit correspond to pij . Note that since
we are considering the MAX annotation, the �rst
bit corresponds to pi1 (which corresponds to the
largest value in the dimension), the second bit cor-
responds to pi2 (which corresponds to the second
largest value), and so on. If xi is the piqth distinct
value of dimension i, then the ki bits representing
xi are set as follows: bits 1 to q � 1 are set to 0,
and bits q to ki are set to 1.

Figure 1 shows an example. Here, we have a table
containing four 3 dimensional data points (Figure 1a).
The �rst dimension has 4 distinct values (4, 3, 2, 1),
the second dimension has 3 distinct values (3, 2, 1)
and the third dimension has 2 distinct values (2, 1).
Consider the second tuple (3 2 1). The value in its
�rst dimension is 3, which is the second largest value.
So, only the bit corresponding to 4 is set to 0, while the
other bits are set to 1, resulting in the sequence 0111.
Similarly, for the second dimension, its value is 2, and
so only the bits corresponding to values larger than
2 (in this case, only one of them which has value 3)
will be set to 0, while the rest are set to 1. This leads
to the sequence 011 in the second dimension for this
tuple. Finally, using the same logic, the bit sequence
corresponding to the third dimension of the tuple is
01. We note that the key property of this bitmap is
that by looking at a bit of a vector, it tells us the
values that a tuple is as good as or better than. For
example, by looking at the bit sequence of tuple 2's
�rst dimension (i.e., 0111), bit 3 tells us that tuple 2's
�rst dimension is as good as or better than 2.

For eÆcient computation, the array of vectors ob-
tained from all points are transposed into an array of
bit-slices, and the �le is stored as slices.

Let BSij denote the bit-slice for the jth distinct
value of the ith dimension. Now, we discuss how we
determine whether a point x = (x1; x2; : : : ; xd) is in
the skyline:

d1    d2    d3

1       1       2
3       2       1
4       1       1
2       3       2

0     0     0     1
0     1     1     1
1     1     1     1
0     0     1     1

4     3     2     1

0     0     1
0     1     1
0     0     1
1     1     1

3     2     1

1     1
0     1
0     1
1     1

2     1

(b) The corresponding bitmap structure(a) Data points

d1 d2 d3

Figure 1: An example to illustrate the bitmap-based
method.

1. Let A = BS1q1 & BS2q2 & : : :& BSdqd

where & represents the bitwise and operation, and
xi is the qith distinct value at dimension i. The
result of this operation, bit-slice A, has the prop-
erty that the nth bit is set to 1 if and only if the
nth point has value in each dimension greater or
equal to the value of the corresponding dimension
in x.

2. Let B = BS1q1�1 j BS2q2�1 j : : : j BSdqd�1
where j represents the bitwise or operation. In
this step, we take the preceding bit-slice of BSiqi
(which is corresponds to the smallest value that
is larger than xi) and or them. If there is no
preceding bit-slice for dimension i (i.e., when qi

corresponds to the �rst bit-slice), then the bit-
slice BSi0 is set to 0. The result of this operation,
bit-slice B, has the property that the nth bit is
set to 1 if and only if the nth point has some of
its dimension's value greater than the value of the
corresponding dimension in x.

3. Let C = A & B

The result of the operation, C, has the property
that the nth bit is set to 1 if and only if the nth
point has each dimension's value greater or equal
to the corresponding dimension's value in x and
some of its dimension's value is strictly greater
than the corresponding dimension's value in x.
Hence, we can conclude that the nth point dom-
inates x. Conversely, if the resultant bit-slice has
a value of zero, it tells us that there is NO such
point in the database that dominates x and we
can conclude that x is a skyline point.

Referring to our example, we now illustrate how to
determine whether the second point (3, 2, 1) is in the
skyline or not. First, we carry out the bitwise and

operation:

A = 0110 & 0101 & 1111 = 0100

Next, we carry out the bitwise or operation:

B = 0010 j 0001 j 1001 = 1011

Finally, we carry out the bitwise and operation:

C = 0100 & 1011 = 0000



Since the answer is zero, no points in the database
dominates (3, 2, 1). Thus, (3, 2, 1) is a skyline point.
This example clearly shows that as each point is exam-
ined, we can determine easily whether it is a skyline
point!

Figure 2 gives an algorithmic description of the pro-
posed Bitmap technique. Routine BitSlice(qi, i) re-
trieves the bit-slice for the qith distinct value of the
ith dimension. If the bit-slice does not exist, then
BitSlice(qi, i) returns 0. The algorithm starts by
looping through each point x in the database. For
each point in the database, the bit-slices for each di-
mension's value of x are �rst retrieved and bitwise and
together (lines 3-5). Next, the preceding bit-slices for
each dimension's value of x are retrieved if they ex-
ist. Subsequently, they are bitwise or (lines 6-8) to-
gether. Finally, a bitwise and operation is applied on
the two resultant bit-slices and the results are checked
(lines 9-11). If the result is zero, we can conclude that
no points in the database dominates x, i.e., x is an
interesting point and we output x.

Algorithm Bitmap

1. for each point x = (x1; x2; : : : ; xd) in the database
2. let xi be the qith distinct value in dimension i

3. A BitSlice(q1; 1)
4. for i = 2 to d
5. A A & BitSlice(qi; i)
6. B  BitSlice(q1 � 1; 1)
7. for i = 2 to d
8. B  B j BitSlice(qi � 1; i)
9. C  A & B

10. if C == 0
11. output x

Figure 2: Bitmap-based algorithm.

3.2 Index: A B+-tree-based Algorithm

The Index scheme exploits a transformation mecha-
nism that maps high dimensional points into single di-
mensional space and a B+-tree structure to index the
transformed points. The scheme works as follows. Let
(x1; x2; : : : ; xd) be an arbitrary point. Recall that we
have assumed that 0 � xj � 1, 1 � j � d. Let
xmax be largest values among all the d dimensions of
the data point. Let the corresponding dimension for
xmax be dmax. The data point is mapped to y over a
single dimensional space as follows

y = dmax + xmax (1)

We note that the transformation actually organized
the data space into di�erent partitions based on the di-
mension which has the largest value, and provides an
ordering within each partition. After the transforma-
tion, any single dimensional indexing structure can be

used to index the transformed values. In this paper, we
adopt the B+-tree structure [3]. However, we assume
that the B+-tree leaf nodes are linked to both the left
and right siblings [7]. Moreover, we assume that the
high dimensional point is kept at the leaf nodes of the
tree.

We note that the transformation in Equation 1 is a
special case of the more general transformation func-
tion used in iMinMax(�) [5]. This makes the proposed
approach more attractive. First, B+-tree is readily
available in all existing commercial database systems.
Second, we are not advocating a transformation func-
tion that is specially tailored to skyline queries. In-
stead, as shown in [5, 11], similar transformation func-
tion can be used to support range and nearest neigh-
bour queries. This means that we only need one index
structure to support all three types of queries! Before
we present the algorithm for progressive skyline com-
putation, we shall illustrate the idea with an example.

Example 1 Consider the example shown in Figure 3.

Here, we only show the content of the partitions af-

ter the transformation (without showing the tree struc-

ture). Note that in the �gure, each partition is sorted

in non-ascending order of the maximum value in that

dimension. This can be interpreted as scanning the

partition from the last leaf node (and backward) within

each partition. We note that we will need an additional

pointer to the data record if there are other dimensions

that are not indexed (i.e., not used in any skyline op-

eration).

2

(0.9, 0.8, 0.6)
(0.9, 0.5, 0.7)
(0.9, 0.2, 0.1)
(0.8, 0.7, 0.7)

(0.2, 0.2, 0.2)
(0.2, 0.1, 0.1)
(0.1, 1.1, 0.1)

(0.3, 0.4, 0.5)
(0.2, 0.1, 0.3)
(0.2, 0.2, 0.3)

(0.3, 0.4, 0.2)
(0.2, 0.4, 0.1)
(0.1, 0.3, 0.2)

(0.1, 0.5, 0.9)
(0.8, 0.8, 0.9)
(0.7, 0.6, 0.9)
(0.2, 0.1, 0.9)

dimension 1 dimension 2 dimension 3

(0.7, 0.8, 0.5)

(0.6, 0.6, 0.6)
(0.5, 0.6, 0.6)

(0.5, 0.8, 0.6)

Figure 3: An example for the index-based method.

We made the following interesting (and important)
observations. First, we note that the interesting (and
potentially dominant) points are largely at the top. In
fact, we can identify some interesting points by sim-
ply looking at tuples with the largest values in each
dimension. In our example, there are 7 tuples (3 from
dimension 1, and 4 from dimension 3) that have the
maximum value of 0.9 in some dimensions. Among
them, it is clear that (0.8,0.8,0.9) in dimension 3 is in
the skyline. This means that we can provide very fast
initial response time to the user!



Second, we can prune away some of the points eas-
ily without examining them. This follows from the
fact that if the minimum value among all dimensions
in a tuple is larger than the maximum value among all
dimensions in another tuple, then the �rst tuple dom-
inates the second. Clearly, the larger the minimum
value is, the more records we can prune. In our ex-
ample, clearly (0.8,0.8,0.9) dominates all tuples whose
maximum value is smaller than 0.8. So, all such tu-
ples need not be examined. Since the structure is or-
ganized in sorted order based on the maximum value,
this means that we do not need to examine the records
to remove them. This translates to saving in I/O cost,
and is in contrast with existing algorithms that require
the entire relation to be scanned at least once.

Third, in the worst case, we can apply existing tech-
niques by scanning the leaf nodes. Even with this
strategy, we can expect a gain over existing scheme,
since only the dimensions are involved. Fourth, we
can clearly optimize the internal structure by order-
ing the points with the same maximum value by the
minimum values. Fifth, unlike sort-based algorithm
which may require large main memory (as dominat-
ing points can be far apart), the proposed scheme (as
noted in the �rst point) will not su�er the same prob-
lem. As such, we expect the scheme to perform well
even with a small amount of memory.

Some of the above observations can be summarized
in the following results (Readers are referred to [10]
for the proofs of these results). Theorem 1 says that
some records can be pruned. Theorem 2 says that
skyline points can be obtained from points with the
largest value. Theorem 3 further shows that if we were
to examine records in descending order of the largest
values, then we can �nd skyline points (from these
records) without considering those with smaller val-
ues. Note that it is possible to have multiple records
with the same transformed value, and so, the collec-
tion of records should be considered collectively when
determining the skyline points.

Theorem 1 Consider two points x = (x1; x2; : : : ; xd)
and y = (y1; y2; : : : ; yd). Let xmax = maxdi=1(xi),

xmin = mindi=1(xi), and ymax = maxdi=1(yi). Let xmin

occurs at dimension dmin, and ymax occurs at dimen-

sion dmax. Then, if xmin > ymax, x dominates y.

Theorem 2 Let D be a database containing jDj d-

dimensional points. We de�ne m as

m =
jDj

max
i=1

(
d

max
j=1

xij)

where xij corresponds to the value of the jth dimension

of the ith point. We de�ne M as follows

M = f(x1; x2; : : : ; xd)j

(x1; x2; : : : ; xd) 2 D ^max
d
i=1 xi = mg

Let SD be the skyline of D, and SM be the skyline of

M . Then, SM � SD.

Theorem 3 Let D be a database containing jDj d-

dimensional points. Let there be k distinct values in

the dimensions of the points in D. Let m1 denote the

maximum value, m2 denote the second largest value,

and so on, and �nally, mk denote the minimum value.

Moreover, let us split the database D into k partitions,

P1; : : : ; Pk, such that

Pi = f(x1; x2; : : : ; xd)j

(x1; x2; : : : ; xd) 2 D ^max
d
j=1 xj = mig

Let SD be the skyline of D, and Si be the skyline of

Pi. Let us compute SD by examining partitions in the

order P1, P2 : : : ; Pk. Then, when we are examining

Pj, we can determine whether points in Sj are in SD

without having to look at Pj+1; : : : ; Pk.

We are now ready to look at the algorithm. Fig-
ure 4 shows the algorithmic description of the pro-
posed index-based scheme. The algorithm is highly

Algorithm Index

1. for i = 1 to d
2. fi  True
3. ti  traverseTreeMax(root, i)
4. maxi  maxValue(ti)
5. mini  minValue(ti)

6. mn maxdi=1mini

7. mx maxdi=1maxi

8. for i = 1 to d
9. if mn > maxi

10. fi  False
11. j  1
12. S  ;
13. while there are some partitions to be searched
14. for i = 1 to d
15. if maxi == mx

16. Pj  ti

17. Sj  ;

18. ti  getNextLeftElement(ti)
19. while (maxV alue(ti) == mx)
20. mn max(mn; minValue(ti))
21. Pj  Pj [ ti
22. ti  getNextLeftElement(ti)
23. maxi  maxValue(ti)
24. Sj  computePartitionSkyline(Pj)
25. S  S[ computeNewSkyline(Sj , S)
26. j  j + 1

27. mx maxdi=1maxi

28. for i = 1 to d
29. if mn > maxi

30. fi  False

Figure 4: Index-based skyline computation algorithm.

abstracted. We shall briey discuss the routine and
variables. fi is a ag that indicates whether dimension



i still needs to be searched. When fi is set to False,
it means that all subsequent records are dominated by
some point, and so, partition i need not be searched
any further. Routine maxValue(t) returns the maxi-
mum value among all dimensions of the tuple t. Simi-
larly,minValue(t) returns the minimum value among
all dimensions of t. traverseTreeMax(root,i) is a
routine that traverses the B+-tree to obtain the tu-
ple with the largest value in dimension i. Routine
getNextLeftElement(t) returns the left element of
t (if the element is in the left sibling node, then the
sibling node will have to be accessed �rst). Routine
computePartitionSkyline(P ) computes the skyline
for a set of points P . Any existing algorithms [2]
can be used for the computation. In our implemen-
tation, we use the block nested loop algorithm. Rou-
tine computeNewSkyline(Sj, S) computes the new
skyline points to be obtained from Sj and the current
skyline points S. Note that the routine also returns
these points to the user. It may also involve accessing
the data records if not all dimensions are stored at the
leaf nodes of the tree.

Steps 1-5 basically begins the search at the last ele-
ment of each partition. In step 6, we essentially iden-
tify the threshold whereby records are guaranteed to
be dominated. This is given by mn, the maximum
value among all the minimum values in the dimen-
sions of all seen records. Step 7 provides the value
(stored in mx) to identify the group of points whose
maximum value among all dimensions must take on.
Steps 8-10 do the �rst pruning to eliminate any parti-
tions that need not be searched. Steps 11-30 proceed
on to locate any skyline points as follows. Essentially,
while there are more partitions to be searched (i.e.,
some partitions' fi value is True), the search contin-
ues by picking the points that have the current max-
imum value equals to mx and storing them in a sep-
arate partition Pj (steps 14-23). At the same time,
mn is updated to reect the maximum value among
all the minimum values of the points examined so far.
A higher value will result in fewer partitions that need
to be searched subsequently. Next, the skyline of the
points in the new partition, Pj is determined (step 24).
This new set of skyline points are then compared with
the skyline points found so far because some of these
new skyline points may be dominated by the current
list of skyline points (step 25). Finally, the threshold
is updated and more dimensions may be eliminated as
a result (steps 26-30). The process repeats itself by
looking for the next group of points to examine.

4 A Performance Study

To evaluate the e�ectiveness of our proposed skyline
algorithms, we conducted an extensive set of exper-
iments. This section reports the experimental setup
and some representative results. For a more complete
set of experiments and results, please see [10].

4.1 Experimental Setup

All the experiments are carried out on a Pentium III
PC with a 866 MHz processor and 128 MB of main
memory running the Linux operating system. All al-
gorithms are implemented in C or C++.

Generating the databases

The databases used in all our experiments are gener-
ated in a similar way as described in [2]. Each database
contains 100000 tuples, each of size 100 bytes. Each
tuple has d dimensions and one \bulk" attribute that
is packed with garbage characters to ensure the tuple is
100 bytes long. However, we di�er from [2] in that we
use integers instead of doubles. We modi�ed the gen-
erator used in [2] to generate integers in the range of
[1, 100] for our experiments. Three types of databases
are generated: (1) Independent where the attribute
values of the tuples are generated using an uniform dis-
tribution; (2) Correlated which contain tuples whose
attribute values are good in one dimension and are
also good in other dimensions; (3) Anti-correlated
which contain tuples whose attribute values are good
in one dimension but are bad in one or all of the other
dimensions.

Figure 5 shows the sizes of the skylines for dif-
ferent types of databases using di�erent dimensions.
From the �gure, we observe that the number of skyline
points increases as the number of dimensions increases.
It is interesting to note that these values are similar
to [2] despite the fact that we are using only distinct
integer values for the dimensions. An exception is for
a 2 dimensional correlated database where a higher
number of equivalent skyline points happened to be
generated. Furthermore, we can also see that the size
of the skyline for correlated databases is fairly small
while it is fairly large for anti-correlated databases,
with independent databases somewhere in between.
For simplicity, all the skyline queries used in our ex-

Dimension Correlated Independ- Anti-
ent Correlated

2 17 9 35

3 3 15 397

4 6 127 2790

5 9 347 10240

6 36 1328 22716

7 61 2831 38117

8 101 7918 51719

9 185 13223 63782

10 215 22367 73200

Figure 5: Skyline sizes

periments look for tuples that have high values in all
d dimensions i.e., the MAX annotation.



0

1

2

3

4

5

6

7

8

9

10

11

12

2 5 8 10

tim
e 

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(a) Correlated

0

270

540

810

1080

1350

1620

1890

2160

2430

2700

2 5 8 10

tim
e 

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(b) Anti-correlated

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

2 5 8 10

tim
e 

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(c) Independent

Figure 6: Actual runtime.

4.2 Experimental Results

We describe the results of our experiments in this sub-
section. We implemented the proposed Bitmap scheme
(denoted Bitmap) and the Index scheme (denoted In-
dex). In the current implementation, we enhanced
both the schemes by keeping as many of the skyline
points found during processing in memory as possi-
ble. Hence, before the bitmap or index is used, the
input tuple is checked against the current list of sky-
line tuples and will be eliminated if any of these skyline
tuples dominates it. As comparisons, we also imple-
mented the three algorithms proposed in [2]: the block
nested loop algorithm where the window is organized
as a self-organizing list (denoted BNL), the M-way di-
vide and conquer algorithm (denoted DC), and the
B-tree-based scheme (denoted BTree). For BTree, we
employ the block nested loop algorithm for cases where
it is not possible to determine a skyline point solely
through the index.

4.2.1 Experiment 1: Comparing the overall
runtime performance

In this experiment, we examine the total amount of
time needed by each algorithm to �nd the skyline. We
compare the time taken for each type of database using
tuples of dimensions 2, 5, 8 and 10 while maintaining
1 MB of main memory throughout the experiments.
Figure 6 shows the results of the experiment.

Figure 6a shows the runtime performance for cor-
related databases. We observed that both BNL and
Index perform better than the rest of the algorithms.
This is because the number of skyline points in cor-
related databases is small. As a result, most of the
skyline points can �t into the window in BNL, help-
ing to eliminate many subsequent tuples. For Index, a
small skyline results in fewer leaf nodes to be scanned,
reducing the time taken signi�cantly. On the other
hand, DC and Bitmap are not favorable because the
overheads arising from doing the merging in DC and
loading the bitmaps in Bitmap are signi�cant com-

pared to the processing time. For BTree, it is only
good when the number of dimensions is small because
the �rst match can be determined quickly in low di-
mensions.

A di�erent scenario arises for anti-correlated
databases (Figure 6b). BNL now performs badly for
high dimensions (> 5). This result is consistent with
the study done in [2]. On the other hand, our Index
scheme not only performs well throughout, but is able
to outperform BNL by a wide margin when the sky-
line size is large. This is because most of the time, the
indexes are suÆcient to eliminate a large number of
tuples without retrieving the actual tuples, thereby re-
ducing a substantial amount of runtime. As for BTree,
its results is bad throughout. This is inevitable as the
attribute values of all dimensions in an anti-correlated
database are fairly far apart, thus incurring a high
search cost for the �rst match.

Figure 6c shows the runtime performance for in-
dependent databases of various dimensions. From
the �gure, we can see that Index remains the best
while Bitmap's performance decreases because it has
to access the bitmaps more frequently as fewer sky-
line points are found and kept in memory. The per-
formance of the rest of the algorithms remain rela-
tively unchanged compared to using anti-correlated
databases except that they took shorter time due to a
smaller number of skyline points.

From the results, we can draw the following conclu-
sions. First, our Index scheme is superior than the rest
of the algorithms in terms of overall runtime. Second,
the Bitmap scheme performs well when the number of
dimensions is small.

4.2.2 Experiment 2: Comparing percentage of
answers returned at intervals

In this experiment, we examine the performance of the
algorithms in terms of how fast answers are returned
progressively. Like the previous experiment, we tested
the algorithms using di�erent types of databases and



varying the number of dimensions used while main-
taining a bu�er size of 1 MB. However, besides keeping
track of the overall runtime, we also recorded the time
taken for each algorithm to output 20%, 40%, 60%,
80% and 100% of the answers. For brevity, we only
show the results for the di�erent types of databases at
dimension 5 (Figure 7).

Figure 7a shows the results for anti-correlated
databases. From the results, several observations can
be made. First, both Bitmap and Index can produce
tuples much faster than the other algorithms. In fact,
the �rst tuple from Bitmap and Index is almost instan-
taneous! This clearly illustrates that both our schemes
can progressively compute skyline points much faster
than the other algorithms. In particular, our Index
scheme is the most eÆcient compared to the rest. Sec-
ond, DC remains constant for all dimensions because
it can only start producing tuples when it completes
its execution. BNL, on the other hand, can start pro-
ducing tuples after the �rst iteration when all tuples
in the database have been examined. Third, although
BTree can produce the �rst tuple much faster than
BNL for high dimensions, it is still slow compared
to Bitmap and Index. Furthermore, its performance
degrades rapidly, making it an undesirable option for
progressive computation.

For correlated databases (Figure 7b), BNL, BTree
and Index perform better that DC and Bitmap. Re-
call that correlated databases have fewer skyline points
and this is advantageous to BNL, Index and BTree.
Bitmap and DC, however, are much slower due to the
overheads involved.

Figure 7c shows the results for independent
databases. The relative performance of the various
schemes is similar to the results on anti-correlated
databases. The main di�erence is that BNL and
DC have improved due to smaller number of skyline
points. However, we note that both Bitmap and In-
dex are still able to produce the �rst few tuples fairly
quickly. Other experiments reported in [10] showed
that Bitmap and Index perform even better for larger
number of dimensions.

In summary, we believe that both Bitmap and In-
dex are useful for progressive skyline computation. In
particular, the performance of Index and its robustness
to di�erent types of databases of varying dimensions
makes it an even more attractive option.

4.2.3 Experiment 3: E�ect of bu�er size

This experiment analyzes the e�ect of bu�er space
on the various algorithms using an anti-correlated 5-
dimensional database. We varied the size of the main-
memory bu�ers from 100 KB to 10 MB. We omit the
results for BTree because prior results have already
shown that it performs badly for this situation. Fig-
ure 8 shows the results when the bu�er size is varied.
From Figure 8, we can see that as the bu�er increases

0

20

40

60

80

100

120

140

160

180

200

0.1 0.3 1.0 3.0 10.0

tim
e (

s)

Buffer size (MB)

BNL
Bitmap

Index
DC

Figure 8: Varying the size of the bu�er (anti-correlated
database, 5 dimensions)

from 0.1 MB to 10 MB, DC's performance improves
while BNL's performance degrades. Both results are
consistent with [2]. On the other hand, the perfor-
mance of Bitmap and Index remain fairly consistent.
Although Bitmap can load more bitmaps into memory
with a larger bu�er, the overheads from loading and
processing the bitmaps remain signi�cant (due to the
size of each bitmap). Hence, Bitmap only improves
marginally. For Index, although the increase in mem-
ory results in more processing time (because more sky-
line points are now held in memory), we note that
this e�ect is minimal, making Index a feasible option
whether the memory is scarce or not.

4.2.4 Experiment 4: E�ect of number of dis-
tinct values per dimension

In this experiment, we varied the number of distinct
values each dimension of a tuple can take using an
anti-correlated database of dimension 5 and 1 MB of
main memory. We do not consider BTree since it is
expected to perform badly. For completeness, we in-
cluded the results where the number of distinct values
is 100000 for BNL, Index and DC (we omit Bitmap
for this case as it is expected to perform badly in this
situation). Figure 9 shows the results of this experi-
ment. From the results, we can see that as the number
of distinct values increases, the performance of BNL
and Bitmap become worse while the response times of
DC and Index just increase slightly. First, when the
number of distinct values is small, the number of sky-
line points decreases. This enables BNL to perform
better than the rest. On the other hand, Index now
has to process larger partitions, thereby incurring a
runtime penalty. DC remains fairly consistent as it
is independent of the number of distinct values in the
datasets. Finally, Bitmap does not perform as well as
we have expected although the runtime has reduced
signi�cantly. However, we can expect the performance
of Bitmap to improve for even smaller sets of distinct
values.



0

80

160

240

320

400

480

560

640

720

800

0 20 40 60 80 100

tim
e 

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(a) Anti-Correlated

0

1

2

3

4

5

0 20 40 60 80 100

tim
e 

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) Correlated

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 20 40 60 80 100

tim
e 

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) Independent

Figure 7: Interval timings for dimension 5

0

20

40

60

80

100

120

140

160

180

200

5 10 20 40 60 80 100 100000

tim
e (

s)

Number of distinct values

BNL
Bitmap

Index
DC

Figure 9: Varying the number of distinct values (anti-
correlated database, 5 dimensions, 1 MB bu�er)

5 Conclusion

In this paper, we have presented two novel algorithms
to compute the skyline of a set of points. The main
feature of the algorithms is that they can provide
the skyline points progressively. The �rst algorithm,
Bitmap, is completely non-blocking and exploits a
bitmap structure to quickly identify whether a point
is an interesting point or not. The second method, In-
dex, exploits a transformation mechanism and a B+-
tree index to return skyline points in batches. Our ex-
tensive performance study showed that the proposed
algorithms provide quick initial response time as com-
pared to existing algorithms. Moreover, both schemes
can also outperform the existing techniques in terms
of total response time. While Index is superior in most
cases, Bitmap performs well when the number of dis-
tinct values per dimension is small.

Acknowledgement

This work is partially supported by the University Re-
search Grant RP982694. We would also like to thank
the authors of [2] for providing us with the source of
the data generator, which we adapted in our exper-

imental study. Special thanks to the anonymous re-
viewers who provided very good insights that helped
improve the technical quality and literary style of the
paper.

References

[1] H. T. Kung an dF. Luccio and F. P. Preparata. On
�nding the maxima of a set of vectors. Journal of the
ACM, 22(4):469{476, 1975.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The
skyline operator. In Proceedings of the 17th Interna-

tional Conference on Data Engineering, Heidelberg,
Germany, April 2001.

[3] D. Comer. The ubiquitous b-tree. ACM Computing

Surveys, 11(2):121{137, June 1979.

[4] J. Matousek. Computing dominances in En. Informa-

tion Processing Letters, 38(5):277{278, June 1991.

[5] B. C. Ooi, K. L. Tan, C. Yu, and S. Bressan. In-
dexing the edge: a simple and yet eÆcient approach
to high-dimensional indexing. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems, pages 166{174, 2000.

[6] F. P. Preparata and M. I. Shamos. Computational

Geometry: An Introduction. Springer-Verlag, 1985.

[7] R. Ramakrishnan and J. Gehrke. Database Manage-

ment Systems. McGraw-Hill, 1999.

[8] C. Rhee, S. K. Dhall, and S. Lakshmivarahan. The
minimum weight dominating set problem for permu-
tation graphs is in nc. Journal of Parallel and Dis-

tributed Computing, 28(2):109{112, August 1995.

[9] I. Stojmenovic and M. Miyakawa. An optimal parallel
algorithm for solving the maximal elements problem
in the plane. Parallel Computing, 7(2):249{251, June
1988.

[10] K. L. Tan, P. K. Eng, and B. C. Ooi.
EÆcient progressive skyline computation.
http://www.comp.nus.edu.sg/~engpk/pub/skyline.ps.

[11] C. Yu, B. C. Ooi, and K. L. Tan. Progressive knn
search using b+-tree. In submitted for publication,
2001.


