
Mining Multi-Dimensional Constrained Gradients in Data Cubes�

Guozhu Dong Jiawei Han Joyce Lam Jian Pei Ke Wang

Wright State University, OH, USA
gdong@cs.wright.edu

Simon Fraser University, B.C., Canada
fhan, lamd, peijian, wangkg@cs.sfu.ca

Abstract

Constrained gradient analysis (similar to the
“cubegrade” problem posed by Imielinski, et al.
[9]) is to extract pairs of similar cell characteris-
tics associated with big changes in measure in a
data cube. Cells are considered similar if they are
related by roll-up, drill-down, or 1-dimensional
mutation operation. Constrained gradient queries
are expressive, capable of capturing trends in data
and answering “what-if” questions.

To facilitate our discussion, we call one cell in
a gradient pair probe cell and the other gradi-
ent cell. An efficient algorithm is developed,
which pushes constraints deep into the computa-
tion process, finding all gradient-probe cell pairs
in one pass. It explores bi-directional pruning
between probe cells and gradient cells, utilizing
transformed measures and dimensions. Moreover,
it adopts a hyper-tree structure and an H-cubing
method to compress data and maximize sharing of
computation. Our performance study shows that
this algorithm is efficient and scalable.

1 Introduction

In recent years, there have been growing interests in multi-
dimensional analysis of relational databases, transactional
databases, and data warehouses. Most of such analyses in-
volve data cube-based summary or transaction-based asso-
ciation analysis. However, many interesting applications
may need to analyze the changes of sophisticated measures
in multidimensional space. For example, one may want to
ask what are the changes of the average house price in the
Vancouver area in year 2000 compared against 1999, and
the answer could be “the average price for those sold to pro-
fessionals in the West End went down by 20%, while those

� Work supported in part by NSERC and NCE/IRIS-3 of Canada.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

sold to business people in Metrotown went up by 10%, etc.”
Expressions such as “professionals in the West End” cor-
respond to cells in data cubes and describe sectors of the
business modeled by the data cube.

The problem of mining changes of sophisticated mea-
sures in a multidimensional space was first proposed by
Imielinski, et al. [9] as a cubegrade problem, which can
be viewed as a generalization of association rules and data
cubes. It studies how changes in a set of measures (ag-
gregates) of interest are associated with the changes in the
underlying characteristics of sectors, where changes in sec-
tor characteristics are expressed in terms of dimensions of
the cube and are limited to specialization (drill-down), gen-
eralization (roll-up), and mutation (a change in one of the
cube’s dimensions). For example, one may want to ask
“what kind of sector characteristics are associated with ma-
jor changes at average house price in the Vancouver area in
2000,” and the answer will be pairs of sectors, associated
with major changes at average house price, including for
example “the sector of professional buyers in the West End
area of Vancouver” vs. “the sector of all buyers in the entire
area of Vancouver” as a specialization (or generalization).

The cubegrade problem is significantly more expressive
than association rules since it captures the trends in data
and handles arbitrary measures, not just COUNT, as asso-
ciation rules do. The problem is interesting and has broad
applications, such as trend analysis, answering “what-if”
questions, discovering exceptions or outliers, etc. How-
ever, it also poses serious challenges on both understand-
ability of results and on computational efficiency and scal-
ability, as illustrated below.

1. A data cube may have many dimensions. Even though
each dimension may involve only a small number of val-
ues, the total number of cells of the cube may still be
quite huge. In a transactional database, if we consider
each item (such as milk or bread) as one independent
dimension, as in [9], we may need to handle thousands
of dimensions, and the curse of dimensionality will be
even worse than that of classical data cubes which usu-
ally contain only dozens of dimensions. An effective
compromise to this problem is to compute iceberg cubes
instead of the complete cubes [3]. To this end, we need to
introduce a significance constraint for pruning the huge
number of trivial cells in the answer set.

2. The cubegrade problem needs to compare each cell in
the cube with its associated cells generated by special-
ization, generalization, and mutation. Even when con-
sidering only iceberg cubes, it may still generate a very
large number of pairs. Since for each analysis task, a
user is often interested in examining only a small sub-
set of cells in the cube, it is desirable to enforce cer-
tain probe constraints to select a subset of cells (called
probe cells) from all the possible cells as starting points
for examination. By doing so, the study is focused only
on these cells and their relationships with corresponding
siblings, ancestors, and descendants.

3. Furthermore, a user is usually interested in only certain
types of changes between the cells (sectors) under com-
parison. For example, one may be interested in only
those cells whose average profit increases by more than
40% compared to that of the probe cells, etc. Such
changes can be specified as a threshold in the form of
ratio/difference between certain measure values of the
cells under comparison. We will call the cell that cap-
tures the change from the probe cell the gradient cell,
and call such constraints the gradient constraints.

Based on this discussion, one can see that to mine in-
teresting gradients in a multidimensional space, it is often
necessary to have the following three kinds of constraints:
(1) significance constraint ensures that we examine only
the cells which have certain statistical significance in the
data, such as containing at least certain number of base
cells or at least certain total sales; (2) probe constraint,
on dimensional attributes confines the set of probe cells
that our gradient analysis will focus on; and (3) gradient
constraint specifies the user’s range of interest on the gra-
dient (i.e., measure change). Enforcing these constraints
may lead to interesting, clearly understandable answers as
well as possibility to derive efficient methods for gradient
analysis in a multidimensional space. In this context, the
problem of multidimensional gradient analysis with such
constraints represents a confined but interesting version
of the cubegrade problem, which we call the constrained
(multidimensional) gradient analysis.

The remaining of the paper is organized as follows. Sec-
tion 2 defines the constrained gradient analysis problem
and presents an example. Section 3 discusses the rudi-
mentary algorithm and its deficiencies. Section 4 presents
the LiveSet-Driven algorithm, including the techniques for
pruning probe cells and gradient cells. A performance anal-
ysis is presented in Section 5. Section 6 discusses exten-
sions of our method to deal with various kinds of situations
and compares our work with other related works. We con-
clude our study in Section 7.

2 Problem Definition and Assumptions

Let D be a relational table, called the base table, of a given
cube. The set of all attributes A in D are partitioned into
two subsets, the dimensional attributes DIM and the mea-
sure attributesM (soDIM[M = A andDIM\M = ;).

The measure attributes functionally depend on the dimen-
sional attributes in D and are defined in the context of
data cube using any of these five SQL aggregate functions:
COUNT, SUM, AVG, MAX, and MIN.

A tuple with schema A in a multi-dimensional space
(i.e., in the context of data cube) is called a cell. Given three
distinct cells c1, c2 and c3, c1 is an ancestor of c2, and c2 a
descendant of c1 iff on every dimensional attribute, either
c1 and c2 share the same value, or c1 has value “�” (where
“�” indicates “all”, i.e., aggregated to the highest level on
this dimension); c2 is a sibling of c3, and vice versa, iff c2
and c3 have identical values in all dimensions except one
dimension in which neither has value “�”. A cell which
has k non-* values is called a k-d cell.

A tuple c 2 D is called a base cell. A base cell does not
have any descendant. A cell c is an aggregated cell iff it
is an ancestor of some base cell. For each aggregated cell
c, its values on the measure attributes are derived from the
complete set of descendant base cells of c.

As mentioned in Section 1, the specification of a con-
strained gradient analysis problem requires three con-
straints: a significance constraint Csig , a probe constraint
Cprb, and a gradient constraint Cgrad. Both Csig and Cprb

are unary (defined over cells). A cell c is significant iff
Csig(c) = true, and a cell c is a probe cell iff c is signifi-
cant and Cprb(c) = true. The complete set of probe cells
is denoted asP. The set of significant cells which may have
gradient relationship with a set of probe cells, P , are called
the gradient cells of P.

Significance constraints are usually defined as condi-
tions on measure attributes. These constraints do not have
to be anti-monotonic1, and can be, for example, on a mea-
sure defined by AVG. In [8], methods for deriving weaker
anti-monotonic constraints from non-anti-monotonic con-
straints and for efficiently computing iceberg cubes were
discussed. We will use such weaker anti-monotonic con-
straints for pruning candidate cells.

We assume that a probe constraint is in the form of an
SQL query, which will “select” a set of user-desired cells.

A gradient constraint is binary (defined over pairs of
cells). It has the form Cgrad(cg ; cp) � (g(cg ; cp) � v),
where � is in f<;>;�;�g, v is a constant value, and g is
a gradient function. g(cg; cp) is defined iff cg is either an
ancestor, a descendant, or a sibling of cp. A gradient cell
cg is interesting with respect to a probe cell cp 2 P iff cg
is significant and Cgrad(cg; cp) = true.

In this paper we mainly consider gradient constraints
defined using the ratio of two measure values such as
“m(cg)=m(cp) � v”, where m(c) is a measure value for a
cell c. Most of the results derived for ratio can be easily ex-
tended to difference, “m(cg)�m(cp) � v” (see Section 6).

1Anti-monotonicity is very useful for pruning. It states that if a cell
c does not satisfy an (anti-monotonic) significance constraint Csig , none
of c’s descendants can do so. For example, the constraint “count > 10”
is anti-monotone. Anti-monotonicity-based pruning forms the foundation
for most algorithms for computing iceberg cubes.

Problem definition. Given a base table D, a significance
constraint Csig , a probe constraint Cprb, and a gradient
constraint Cgrad(cg ; cp), the constrained gradient anal-
ysis problem is to find all the interesting gradient-probe
pairs (cg; cp) such that Cgrad(cg ; cp) = true. 2

Example 1 (Constrained average gradient) Let the base
table D be a sales table with the schema

sales(year; city; cust grp; prod grp; cnt; avg price):

Attributes year, city, cust grp, and prod grp are the di-
mensional attributes; and cnt and avg price are the mea-
sure attributes.

c1 (00, Vancouver, Business, PC, 300, $2100)
c2 (�; V ancouver, Business, PC, 2800, $1900)
c3 (�; T oronto; Business; PC; 7900; $2350)
c4 (�; �; Business, PC, 58600, $2250)

Table 1: A set of base and aggregated cells
Table 1 shows a set of base and aggregated cells. Tuple

c1 2 D is a base cell, while tuple c2 is an aggregated cell.
Tuple c3 is a sibling of c2, c4 is an ancestor of c2, and c1 is
a descendent of c2.

Suppose the significance constraint is Csig � (cnt �
100). All cells (including base and aggregated ones)
with cnt no less than 100 are regarded as significant.
Suppose the probe constraint is Cprb � (city =
\V ancouver"; cust grp = \Business"; prod grp = �).
The set of probe cells P contains the set of aggregated tu-
ples about the sales of the Business customer group in Van-
couver, for every product group, provided the cnt in the tu-
ple is greater than or equal to 100. It is easy to see c2 2 P.

Let Cgrad(cg; cp) � (avg price(cg)=avg price(cp) �
1:4). The constrained gradient analysis problem is to find
all pairs (cg ; cp), where cp is a probe cell in P , cg is a sib-
ling, ancestor, or descendant of cp, cg is a significant cell,
and cg’s average price is at least 40% more than cp’s. 2

If a data cube is completely materialized, the query
posed in Ex. 1 becomes a relatively simple retrieval of the
pairs of computed cells that satisfy the constraints. Unfor-
tunately, the number of aggregated cells is often too huge
to be precomputed and stored. Thus we assume only the
base table is available, and it is our task to compute from it
the gradient-probe pairs efficiently.

3 The All-Significant-Pairs Algorithm

In this section, we introduce a rudimentary algorithm: All-
Significant-Pairs, which first computes iceberg cube I
from D using the significance constraint Csig , then ap-
plies the probe constraint Cprb to select the set of signif-
icant probe cells, P , from I , and finally for each probe
cell, cp 2 P , computes the set of gradient cells on I by
enforcing the gradient constraint Cgrad(cg ; cp).

Further optimization can be explored to prune the search
for ancestors and/or descendants of a probe cell cp based

on the anti-monotonic relationships between them. If the
gradient measure is an anti-monotonic function, one can
explore the following property: if the measure m of a cell
c is no greater than � , none of c’s descendants can have
the measure m greater than � ; and if the measure m of a
cell c is no less than � , none of c’s ancestor can have the
measure m less than � . If the gradient measure is not an
anti-monotonic function, such as average and sum of pos-
itive or negative elements, one can explore a weaker but
anti-monotonic constraint to prune its ancestors and/or de-
scendants. For example, for average, one can explore the
property of top-k average [8]: if the top-k average of the
base cells in a cell c is no greater than � , where k is the sig-
nificance constraint threshold value, then none of c’s signif-
icant descendants can have the average value greater than
� . Similarly, one can derive many other interesting prop-
erties to facilitate pruning for constraints involving some
complex measures.

Example 2 (All-Significant-Pairs) Let’s examine how to
perform constrained gradient analysis for the problem
specified in Ex. 1, using the All-Significant-Pairs method.

First, compute all the significant aggregate cells
in the data cube by enforcing the significance con-
straint Csig � (cnt � 100) and applying an ef-
ficient iceberg cube computation algorithm, such as
H-Cubing [8]. This will yield a set of cells, e.g. c1 =
(00; V ancouver;Business; PC; 300; $200), c2 = (�;
V ancouver, Business, PC, 800, $150), c3 = (�,
Toronto, Business, PC, 900, $250), c4 = (�, �,
Business, PC, 8600, $225), and so on. Let this com-
puted iceberg cube fromD be I. The gradient computation
will then be performed on I only.

Second, apply the probe constraint Cprb to select the set
of significant probe cells, P, from I. For each probe cell,
cp 2 P, compute the set of gradient cells on I by enforcing
the gradient constraint Cgrad(cg ; cp), and performing pos-
sible pruning of ancestors and/or descendants of the gra-
dient cell currently under examination. For example, sup-
pose our search is from top-level down (i.e., first computing
high-level cells and then their descendants). If a cell cg’s
top-k average value2 (where k = 100, the minimum sup-
port threshold, i.e., significance constraint) is no more than
cp � 1:4, then cg and all of its descendants can be pruned
since none of them can satisfy the gradient constraint. 2

The algorithm All-Significant-Pairs is not presented
here due to lack of space. The method computes the
complete set of significant cells in the iceberg cube using
Csig . However, when the probe constraint is sharp, only
a small portion of such iceberg cube cells will be useful
in the derivation of constrained gradients. For example, if
the probe set contains only one cell cp, the constrained gra-
dient analysis will need to analyze only cp’s siblings, de-
scendents, and ancestors. Moreover, the search for gradient
cells is done in a one-search-loop-per-probe-cell fashion. A

2The efficient computation of top-k average has been discussed in [8].

huge amount of repeated work is performed for probe cells
which are similar. It may involve computing the set of gra-
dient cells jPj times, where jPj is the number of probe cells
in P , which is costly.

4 The LiveSet-Driven Algorithm

In this section we present a better algorithm, LiveSet-
Driven, which overcomes the deficiencies of the All-
Significant-Pairs algorithm. Its main spirit is to use a set
of relevant probe cells, called LiveSet, to prune potential
gradient cells. The technical issues include how to derive
“tighter” LiveSet and how to use it for pruning.

Here we present an overview of the method. To avoid
the waste of resource for computing cells unrelated to probe
cells, we first compute the set of iceberg probe cells P from
D, using both the significance and probe constraints. The
second step utilizes the set of derived iceberg probe cells P
to efficiently constrain the search for interesting gradient-
probe cell pairs. This is similar to the golden rule of push-
ing selection deeply in relational query processing. To
make the computation of the second step efficient, several
techniques are developed as outlined below.

1. Using sets of probe cells to constrain the process-
ing: To avoid the costly repetition of computation in the
All-Significant-Pairs algorithm, set-oriented processing
is explored. Roughly speaking, we associate with each
gradient cell the set of all possible probe cells that might
co-occur in interesting gradient-probe pairs with some
descendants of the gradient cell, and use that set to prune
future gradient cell search space.

2. Iceberg growth from low to high dimensions: The
multi-dimensional space should be explored in a pro-
gressive and confined manner, using an “iceberg growth
approach”: Start at lower dimensional cells and pro-
ceed to higher ones. There are usually a smaller num-
ber of lower dimensional cells than that of the higher di-
mensional ones. The anti-monotonicity property of sig-
nificance constraints (or their weaker versions) and the
(transformed) gradient cell constraints can be used to
prune the remaining search space: if a k-d cell fails to
satisfy a constraint, so will all of its descendants (higher
dimensional cells). All three types of constraints, i.e.,
the probe, significance and gradient constraints, are used
in this iceberg growth process.

3. Dynamic pruning of probe cells during the growth:
During dimension growth, increasingly more probe cells
fail to be associated with the higher dimensional gradient
cells due to dimension value mismatch or the relevant
measure value being out of the gradient range. Thus,
one can prune the set of probe cells associated with the
gradient cells in the growth. The search terminates when
either no significant gradient cells can be generated or
none of the probe cells can proceed further. The pruning
of probe cells increases the power to prune gradient cells.

4. Incorporation of compressed data structure, H-tree,
and efficient iceberg growth algorithm, H-cubing:
For efficient computation of iceberg cubes, we also in-
corporate a compressed data structure, H-tree, and ex-
tend an efficient iceberg growth algorithm, H-cubing.
This data structure and algorithm were shown to be
highly efficient for computing iceberg cubes with com-
plex measures [8]; they allow us to do maximal sharing
between cells in the computation. This further enhances
the efficiency of constrained gradient analysis.

4.1 Pruning gradient cells and probe cells using gra-
dient constraints

Suppose P , the set of probe cells, has been computed. The
next step in the computation is to determine which cell
should be associated with which probe cell to produce valid
gradient-probe pairs. The computation will start from low
dimensions and proceed to higher dimensions, in a depth-
first manner. Information on low dimension gradient cells
will be used to prune higher dimension cells.

Definition 1 The live set of a gradient cell cg , denoted as
LiveSet(cg), is the set of probe cells cp such that it is pos-
sible that (cg0 ; cp) is an interesting gradient-probe pair, for
some descendant cell cg0 of cg .

From this definition it is clear that the smaller LiveSet
is, the more gradient cells can be pruned. The determi-
nation of LiveSet involves the gradient constraint and the
matches between dimensions of gradient and probe cells.
This section only deals with the former, and the next sec-
tion deals with the latter.

Interestingly, pruning can be done in both directions be-
tween LiveSet(cg) and cg: (1) LiveSet(cg) can be used
to determine if cg and its descendants have the poten-
tial to be interesting gradient cells w.r.t. (any probe cell
in) LiveSet(cg); if not, cg can be pruned. (2) Informa-
tion about cg can also be used to prune probe cells cp in
LiveSet(cg). This involves checking whether cg and its
descendants have the potential to be interesting gradient
cells w.r.t. cp. If the answer is no, cp can be pruned from
the LiveSet(cg).

Definition 2 Let cg be a gradient cell, Cp a set of probe
cells, and Cgrad the gradient constraint. We say cg and its
descendants have potential to be interesting gradient cells
w.r.t. Cp if the following is true:

(1) If the gradient constraint is anti-monotone (such as
sum), then Cgrad(cg ; cp) is satisfied for some cp 2 Cp.

(2) If the gradient constraint is not anti-monotone, such
as (avg price(cg)=avg price(cf) � v), then a trans-
formed, weaker constraint can be potentially satisfied
for some cp 2 Cp, such
as (avgk price(cg)=avg price(cp) � v), where avgk

represents top-k average and k is the minimum support
threshold (i.e., significance constraint). Observe that the

avgk constraint is a weaker anti-monotonic constraint
constructed for the non-anti-monotonic avg constraint.

We say a gradient cell cg is a potential cell, or has po-
tential to grow, if (i) cg is significant and (ii) cg and/or its
descendants have potential to be interesting gradient cells
w.r.t. LiveSet(cg).

Observation. Some non-antimonotonic constraint can be
transformed into a weaker, anti-monotonic constraint for
pruning. For (2) above, we use avgk price(cg) as an up-
per estimate of avg price(cg0) for all significant descen-
dant cells cg0 of cg .

Example 3 Using the schema of Ex. 1, suppose
Cgrad(cg ; cp) � (avg price(cg)=avg price(cp) � 1:4).
Assume the set of probe cells P has been derived using
the two constraints Csig and Cprb. Let cg be the 1-d cell
(00; �; �; �), which is assumed to be significant.

Suppose that initially3 LiveSet(cg) is the follow-
ing subset fcp1 ; cp2 ; cp3g of P , where cp1 = (00,
\V ancouver", \Business", �, 2800, $1500), cp2 =
(99, \Toronto", �, PC, 7900, $3000), and cp3 = (00,
\Toronto", \Education", PC, 450, $2000).

We examine two scenarios: (i) avgk price(cg) =
$2500. Since avgk price(cg)=avg price(cp1) =
2500=1500 > 1:4, cg has potential to grow. However, be-
cause 2500=3000 < 2500=2000 < 1:4, cp2 and cp3 can
both be pruned from LiveSet(cg). (ii) avgk price(cg) =
$2000. Since avgk price(cg)=avg price(cp) < 1:4 for
each cp 2 LiveSet(cg), cg does not have potential to grow,
and can thus be pruned. 2

Let’s consider how to use a set Cp of probe cells to prune
gradient cells, where avg price(cp) is known for every cp
in Cp. Given a gradient cell cg , clearly it is not efficient
to check against all individual probe cells cp in LiveSet
whether the condition avgk price(cg)=avg price(cp) �
1:4 holds. Fortunately, one can derive an overall gradi-
ent cell constraint for set Cp, Cgcell(Cp), which specifies
a range of measure values (such as average prices) for c g
and which must be satisfied by a gradient cell cg if cg might
co-occur in interesting gradient-probe pairs with any probe
cell in Cp. In general, we have the following:

Property 4.1 (gradient cell constraint for a set of probe
cells) If Cgrad � (m(cg)=m(cp) � v), where � is in f<
;>;�;�g, v is a constant value, and m(cp) > 0, then the
gradient cell constraint corresponding to a set of probe cells
Cp is Cgcell(Cp), where

Cgcell(Cp) �

8>>><
>>>:

m(cg) � v �minfm(cp)jcp 2 Cpg

if � 2 f>;�g

m(cg) � v �maxfm(cp)jcp 2 Cp)

if � 2 f<;�g
(1)
2

3The next section will discuss how LiveSet is derived.

This property can be used to derive a gradient cell con-
straint from a set of probe cells.

4.2 Pruning probe cells by dimension matching anal-
ysis

In this subsection, we describe what probe cells should be
associated with a gradient cell, and how to prune the associ-
ated probe cells when the processing goes from a gradient
cell to a descendant one; both will be from a dimension-
matching perspective.

The dimension matching analysis is made possible un-
der the assumption that we are only interested in gradient-
probe pairs involving ancestor-descendant, descendant-
ancestor, and sibling-sibling pairs.

Let cg be a gradient cell. Recall that LiveSet(cg) de-
notes the set of probe cells cp such that it is possible that
(cg0 ; cp) is an interesting gradient-probe pair for some de-
scendant cell cg0 of cg . Hence, from a dimensional per-
spective, a probe cell cp can be in LiveSet(cg) if (i) cp is
an ancestor or descendant of cg , or cg itself; or (ii) cp is
a sibling of some descendant of cg or a sibling of cg. It
turns out that these conditions can be captured by a notion
of “matchable,” defined next.

Let cp = (dt1; dt2; : : : ; dtm) be a probe cell and cg =
(dg1; dg2; : : : ; dgm) be a gradient cell. The number of
solid-mismatches between the two cells cp and cg is the
number of dimensions in which both values are not � but
are not matched (i.e., of different values). The number of
�-mismatches between cp and cg is the number of dimen-
sions in which cp is � but cg is not. (Observe that the notion
of �-mismatches is not symmetric and the cells are playing
certain roles.) A probe cell cp is matchable with a gradient
cell cg if either cg and cp have no solid-mismatch, or they
have exact one solid-mismatch but no �-mismatch.

Example 4 Consider the 4-d probe cell cp = (a; b; �; d).
cp is matchable with its ancestor gradient cell cg1 =
(�; �; �; d) since cg1 contains neither �-mismatch nor solid-
mismatch; cp is matchable with its sibling cg2 = (f; b; �; d)
since cg2 contains only one solid-mismatch but no *-
mismatch; cp is matchable with cg3 = (�; g; �; d) since
cg3 contains one solid-mismatch but no �-mismatch; cp
is matchable with cg4 = (a; �; c; d) since cg4 contains
no solid-mismatch; and also cp is matchable with its de-
scendant cg5 = (a; b; c; d) since cg5 contains only one
�-mismatch. However, it is not matchable with cg6 =
(�; c; e; d) since cg6 contains one solid-mismatch and one
�-mismatch. As illustrated above, cp is the sibling of a de-
scendant of the gradient cell (cg3 or cg4). 2

Property 4.2 (correctness of dimension analysis) cp is
matchable with cg iff cp is cg , an ancestor/descendant of
cg , or it is a sibling of cg or of some descendant of cg .

Rationale. For the “only if”: Suppose cp is matchable with
cg . Two cases arise: (a) cg and cp have no solid-mismatch.
Let c0 be obtained by taking the more specific value, for

each dimension, from cg and cp. (Non-* values are not
comparable, and each non-* value is more specific than the
* value.) Then c0 is a descendant of cg and c0 is a descen-
dant of cp. Hence cp is an ancestor of some descendant of
cg . There are special cases here: if c0 = cg , then cp is an
ancestor of cg; if c0 = cp = cg, then cp is cg . (b) cg and cp
have exactly one solid-mismatch but no �-mismatch. Let
c0 be obtained by taking the more specific value, for each
dimension, from cg and cp, except that c0 takes the value
of cg for the dimension of the solid-mismatch. So c 0 is a
descendant of cg. Since there is no *-mismatch between cp
and cg, each of the specific value also occurs in cp. Clearly
cp and c0 have exactly one solid-mismatch, and so cp is a
sibling of c0. Observe that c0 can be cg ; in that case cp is a
sibling of cg.

We omit the details of the “if.” The non-trivial cases are
illustrated in Ex. 4. 2

We now discuss how dimension analysis is used for
pruningLiveSetwhen the processing goes from a gradient
cell to a descendant one.

Property 4.3 (relationship between livesets of ancestor-
descendant cells) Let cg1 and cg2 be two gradient cells
such that cg2 is a descendant of cg1. Then LiveSet(cg2) �
LiveSet(cg1).

Rationale. Let cp be a probe cell such that (cg3; cp) might
exist as an interesting gradient-probe cell pair for some de-
scendant cell cg3 of cg2. Since cg3 is a descendant of cg1 as
well, the fact in the last statement implies that cp is also in
LiveSet(cg1). 2

This property ensures that we can produce the LiveSet
of a descendant cell from that of the ancestor cell. The way
to do that is simply to do a dimension matching analysis,
plus a gradient-based pruning. We illustrate the dimension-
matching based pruning using the following example.

Example 5 Let cg1 = (�; �; c; �) be a gradient cell and
let cg2 = (�; b; c; �), which is a descendant of cg1. Sup-
pose LiveSet(cg1) = f(�; �; �; �), (a; b; c; �), (�; b1; c; �),
(a; b1; c; �), (�; b1; c1; �)g. Then LiveSet(cg2) =
f(�; �; �; �), (a; b; c; �), (�; b1; c; �), (a; b1; c; �)g, i.e., it is
the result of pruning (�; b1; c1; �) from LiveSet(cg1). 2

Notice that if we consider the expansion of gradient cells
following a particular order, more pruning of the probe
cells can be done. For example, if the dimensions are ex-
panded from left to right, some descendants of cg will be
processed before cg is processed (observe that the ancestor-
descendant relationship is many-to-many). A technical
definition capturing such traversal-order dependent prun-
ing was obtained in our own study, but is omitted here.

In this study, we assume that the set of probe cells, and
hence the LiveSet, is usually a small set, which can be
sorted in value ascending order according to certain mea-
sure values (see the next subsection) to facilitate pruning

using gradient constraint. In case there is a large set, tree
structure or hash table can be adopted for fast accessing.

4.3 The LiveSet-Driven Algorithm

Based on the above discussion, the LiveSet-driven algo-
rithm is worked out for computing all the gradient-probe
pairs which satisfy all the constraints. Our method starts
with the 0-d cell of the cube, carrying the initial set of probe
cells, P, as its LiveSet, and proceeds to higher dimen-
sional gradient cells. Along the way, it uses the given con-
straints to prune the gradient cells which cannot satisfy the
LiveSet, and to prune the cells in the LiveSet which can-
not pass either gradient constraints or dimensional match-
ing analysis. The processing along any branch terminates
when the LiveSet becomes empty, or when the gradient
cell has no potential to generate any interesting pairs.

Let’s examine an example in more detail.

Example 6 (LiveSet-Driven) For the same base table
schema D in Ex. 1, we examine how to perform con-
strained gradient analysis by the LiveSet-Driven algo-
rithm. Let the gradient constraint be Cgrad(cg ; cp) �
(ave price(cg)=avg price(cp) � 1:2), and the signifi-
cance constraint be Csig � (cnt � 100).

Let the set P of probe cells be given in Table 2, sorted in
avg price ascending order. Notice this order is important
since once a probe cell in the table cannot satisfy the gra-
dient constraints, all the cells following it cannot satisfy it
either (since they carry an even larger measure value) and
thus can all be pruned immediately.

(00; V ancouver; Education; PC; 100; 1500)
(99; T oronto; �; PC; 4000; 1800)

(�;Montreal; Business; PC; 1500; 8000)
(�; Edmonton; �; Ski; 2000; 10000)
(�;Whisler; �; Ski; 1000; 10050)

Table 2: The set of probe cells, P .
The set of all probe cells P is the initial LiveSet

for the 0-d gradient cell c0 = (�; �; �; �). Since 1500
is the lowest avg price value among all current probe
cells, it is taken as the global gradient lower bound. Sup-
pose the top-100 average of the 0-d cell c0 is 4000 and
its count is 50000. Then c0 has potential to grow, be-
cause 4000 � 1:2 � 1500 = 1800 and 50000 � 100.
Now, the top-100 average of c0 is used to prune the
probe cells to generate a tighter LiveSet for c0: Since
the fourth cell (�; Edmonton; �; Ski; 2000; 10000) cannot
satisfy the gradient constraint due to 4000 < 1:2� 10000,
this cell and all the remaining in the LiveSet will be
pruned. The actual average value of c0 will decide which
probe cell will be paired with this cell to become an inter-
esting gradient-probe pair.

The computation then proceeds to process 1-d cells, 2-d
cells, and so on, in a depth first manner. To avoid repetition
and for the sake of clarity, we now show how the processing
is done for a typical 3-d cell.

Suppose the first three probe cells are all alive after pro-
cessing the 2-d gradient cell c2 = (00, Toronto, �, �),
and the processing goes from this 2-d cell to the 3-d cell
c3 = (00; T oronto; �; PC).

Probe cell # of mismatches

(00; V ancouver; Edcationu; PC; 100; 1500) 1
(99; T oronto; �; PC; 4000; 1800) 1

(�;Montreal; Business; PC; 1500; 8000) 1; 1�

Table 3: Number of mismatches in probe cells.
We first prune the LiveSet of c2 using dimensional-

ity matching with c3. The number of mismatches of each
probe cell w.r.t. c3 is presented in Table 3, where 1 indi-
cates that there is one solid mismatch, and 1� indicates that
there is one *-mismatch. Table 3 indicates that the first two
probe cells remain alive w.r.t. the 3-d gradient cell c3.

The actual average value of c3 decides which probe cell
should be paired with this cell to become an interesting
gradient-probe pair. If avg price(c3) = 1850, then c3 and
the first probe cell form an interesting gradient-probe cell
pair, but not c3 and the second.

The minimum average of the cells in LiveSet, 1500,
and the top-100 average of c3, will decide if the process-
ing should continue with c3’s descendants. If the top-100
average of c3 is less than 1800 = 1:2 � 1500, computa-
tion stops for this branch. Otherwise, it continues. Sup-
pose the top-100 average of c3 is 1900. Then we go back
to prune the current LiveSet of c3. Because 1900 <
1800 � 1:2, we can indeed prune the second probe cell,
(99; T oronto; �; PC; 4000; 1800), from the LiveSet.

In summary, the processing of a gradient cell c involves:
(1) derive an initial LiveSet from the LiveSet of the an-
cestor of the cell c by dimension matching, (2) compute the
necessary measures and top-k average measures of c, check
them against the LiveSet for answers, and decide if the de-
scendants of c may require processing. (3) if processing of
descendants is needed, prune LiveSet using the gradient
constraint and the top-k average values. 2

We now present the LiveSet-Driven algorithm.

Algorithm 1 (LiveSet-Driven)

Input: A base relational table D, a significance constraint
Csig , a probe constraint Cprb, and a gradient constraint
Cgrad.

Output: The complete set of gradient-probe pairs in the
data cube derived from D that satisfy the three con-
straints.

Method:

1. Apply an iceberg cube computation algorithm to com-
pute the set of iceberg probe cells P from D using sig-
nificance constraint Csig and probe constraint Cprb;

2. Derive gradient cell constraint Cgcell for P ;

3. Initialize the potential gradient cell to c = (�; :::; �). Ini-
tialize LiveSet(c) = P .

4. Use a bottom-up, depth-first iceberg cubing method (we
use H-cubing but other methods can be employed, e.g.
BUC) to find all interesting gradient-probe pairs. In
depth-first processing, values in each dimension are or-
dered, and the dimensions are also ordered.

for every value in each dimension do f

1 If c is significant, for each live probe cell cp in
LiveSet(c), output the gradient-probe pair (c; cp)
if the pair passes the gradient cell constraint.

2 Use the measure (or transformed measure such as
top-k) value of c to prune LiveSet(c).

3 If LiveSet(c) is empty or c has no potential to
grow, terminate this branch and backtrack to pro-
cess the next cell according to the depth-first order.

4 If c has potential to grow, expand it to the next
level, according to the depth-first order.
If a descendant cell c0 of c is processed from this
expansion, derive LiveSet(c0) from LiveSet(c)
using the matchability test.

g 2

5 Performance Analysis

In this section, we report our experimental results on com-
puting gradients in data cubes.

All experiments were conducted on a PC with an Intel
Pentium III 700MHz CPU and 256M main memory, run-
ning Microsoft Windows/NT. All programs were coded in
Microsoft Visual C++ 6.0. The experiments were con-
ducted on synthetic data sets generated using the data gen-
erator described in [8]. The results are similar. Limited
by space, except for performance with respect to the num-
ber of tuples, we report here only results on some typical
data sets, with 10 dimensions and between 10; 000-20; 000
tuples. The cardinality for every dimension is set to 104.
The measures are in range of [100; 1000]. The noise factor
is set to 20% and repeat factor is 200.

The first data set we use has 10; 000 tuples. We test
the scalability of the algorithms with respect to number of
probes in Figure 1, significance threshold in Figure 2, and
gradient threshold in Figure 3.

Figure 1 shows the scalability of the two algorithms,
All-Significant-Pairs and LiveSet-Driven, with respect to
the number of probe cells. We set the significance thresh-
old to 10, the number of bins to 3 for top-k average, and
the gradient threshold is 1:2. The number of probes varies
from 1 to 1; 000. When the number of probes is small,
both algorithms have similar performance. However, as the
number of probes grows, the pruning power of LiveSet-
Driven algorithm takes effect. It prunes unfruitful searches
and keeps the runtime low. In contrast, the All-Significant-
Pairs algorithm does not scale well under large number of
probes.

4The smaller the cardinality, the denser the data cube, and thus the
larger number of cells satisfy the constraints.

1

10

100

1000

1 10 100 1000

R
un

tim
e

(s
ec

on
ds

)

Number of probes

All-Pairs
LiveSet-Driven

Figure 1: Scalability over number of probe
cells

0.1

1

10

100

1000

0 50 100 150 200

R
un

tim
e

(s
ec

on
ds

)

Significance threshold

All-Pairs
LiveSet-Driven

Figure 2: Scalability w.r.t. significance thresh-
old

Figure 2 shows the scalability of both algorithms with
respect to the significance threshold. The gradient thresh-
old is set to 1:2, the number of bins to 3 and the number of
probes to 50. LiveSet-Driven achieves good scalability by
pruning many cells in the search whereas All-Significant-
Pairs checks a huge number of pairs of cells, thus requires
exponential runtime.

Figure 3 shows the scalability of All-Significant-Pairs
and LiveSet-Driven with respect to various gradient thresh-
olds. We fix the significance threshold to 10, number
of bins to 3 and number of targets to 50. As the gra-
dient threshold goes down, the number of cells that All-
Significant-Pairs has to check increases dramatically, and
thus its runtime increases dramatically as well.

Figure 4 shows a scaling-up experiment with respect to
various number of tuples, varying up to 20; 000. We set
the significance threshold to 1% of the number of tuples,
the gradient threshold to 2, the number of bins to 3 and
the number of probes to 100. While both algorithms are
scalable, LiveSet-Driven naturally is more efficient.

We also analyzed the number of cells explored by each
algorithm during the mining process on a 10; 000-tuple

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
ec

on
ds

)

Gradient threshold

All-Pairs
LiveSet-Driven

Figure 3: Scalability w.r.t. gradient threshold

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

R
un

tim
e

(s
ec

on
ds

)

Number of tuples (thousands)

All-Pairs
LiveSet-Driven

Figure 4: Scalability w.r.t. number of tuples

dataset with 50 probe cells. Figure 5 presents the number of
cells that the two algorithms explored with respect to var-
ious gradient thresholds. It confirms that LiveSet-Driven
achieves better pruning than All-Pairs. As shown in the
figure, LiveSet-Driven on average explores only about one
tenth of the cells All-Significant-Pairs does. That explains
the difference of efficiency and scalability between the two
algorithms.

Similar statements can be made about Figure 6, where
the significance threshold varies from 10 to 1; 000.
LiveSet-Driven explores a substantially smaller subset of
cells that All-Significant-Pairs examines.

6 Discussion

Here we examine some possible extensions or refinements
of the method and compare our study with related works.

6.1 Possible extensions of the method

1. Mining constrained gradients for more restricted
relationship or under a subset of dimensions.

Our method searches for ancestors, descendants, and
siblings at the same time. In some applications, people

10000

100000

1e+06

1e+07

0 2 4 6 8 10

N
um

be
r

of
 c

el
ls

 e
xp

lo
re

d

Gradient threshold

All-Pairs
LiveSet-Driven

Figure 5: Using gradient in pruning

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 200 400 600 800 1000

N
um

be
r

of
 c

el
ls

 e
xp

lo
re

d

Significance threshold

All-Pairs
LiveSet-Driven

Figure 6: Significance threshold and pruning

may be interested in only one or two kinds but not all kinds.
This can be easily addressed by modifying the definition of
LiveSet for potential gradient cells. For each special case,
more probe cells will be removed (and thus more efficient)
than the general case, and there is no need to change other
parts of the algorithm.

Similar extensions can be worked out if a user would
like to find the constrained gradients only in relevance
to a small subset of dimension combinations, such as
fDi; : : : ; Djg in a data cube. In this case, starting with
the 0-d cell, (�; : : : ; �), the set of (non-*) gradient cells to
be considered and tested will be confined to only those in a
subset of dimensions fDi; : : : ; Djg.
2. Finding multi-dimensional gradients constrained by
an “interval”.

Our algorithm searches for multi-dimensional gradi-
ents by checking a single gradient constraint, such as
Cgrad(cg ; cp) � (g(cg ; cp) � v), where � is in f<;>;�
;�g, v is a constant value, and g is a gradient function.
In many cases, the desired constraint could be an interval,
such as 1:4 � g(cg; cp) � 2:5. In such cases, one can mod-
ify the gradient testing part of the algorithm by testing not
only the lower bound on the top-k average of the measure

(i.e., no less than 1:4 � avg(cp)) but also the upper bound
on the bottom-k average of the measure (i.e., no more than
2:5 � avg(cp)). Whether it is more efficient to prune the
search space using both upper and lower bounds or using
only one of them and postponing the evaluation of the other
after the constraint evaluation will depend on the gradient
constraint values and the data set.
3. Replacing ratio-based gradients by differences as
“gradient” constraint.

Although ratio-based gradients are handled in our algo-
rithm, with slight modifications, we can handle gradients
defined with differences, such as,

C
dif

grad
(cg ; cp) � (avg price(cg)� avg price(cp) � 400):

Similarly, our algorithm can easily be extended to find sim-
ilar patterns (i.e., measures which are similar when some
dimension values change).
4. What will happen if avg is replaced by sum or
count?

The measure “average” has been used in our gradient
analysis since it is natural to define interesting gradients
as substantial changes on “average”. However, if avg is
replaced by sum or count, an ancestor cell should naturally
have much bigger sum or count values than its descendants.
The simple gradient definition, such as g(cg; cp) � v, may
not be so interesting, and some “normalized” definition of
gradients, will make more sense. Our algorithm can also
be made to work with corresponding modifications.
5. Extension of our model from cube to transaction-
based association rules.

Our model, though studied in the context of data cubes,
can be extended to mining transaction-based association
rules with complex measures. A simple method is to con-
sider each distinct item in a transaction as one dimension
and consider the average sales or price as a complex mea-
sure. Our model and algorithm are still applicable. How-
ever, the “curse of dimensionality” poses challenges on ef-
ficiency, and further studies are needed to improve perfor-
mance.

6.2 Related work

The closest work related to our study is that on the cube-
grade problem by Imielinski, et al. [9]. A cubegrade
query asks for association-type rules that describe changes
in measure values associated with changes in dimension
descriptions of cuboids. It deals with questions such as
“what cube changes are associated with significant mea-
sure changes.” Cubegrade queries can also have constraints
that restrict the attributes in the gradient cells, other than
those allowed by roll-up, drill-down, and mutation. Our
constrained gradient analysis does not have user-defined
constraints on gradient cells. However, they can be easily
dealt with by adding more power to prune LiveSet. Thus
adding user-defined constraints will actually lead to more
efficient processing.

The main contributions of [9] are the cubegrade frame-
work and the proposed language. It considered a relativized
notion of monotonicity (w.r.t. a cube or a constrained cube),
the so-called structural monotonicity, which can be tested
quite efficiently. Similar to our all-significant-pairs ap-
proach, the evaluation strategy proposed in [9] uses mul-
tiple loops: for each probe cell, search through the entire
space for potential gradient cells. It will have a serious ef-
ficiency problem if we generalize the notion of “compara-
ble” cells as we discussed above, because the search space
per probe cell will be large, and this search will be repeated
once per probe cell.

There are also a few other studies on efficient explo-
ration of interesting cells in data cubes or interesting rules
in multi-dimensional space.

[12] considers discovery-driven exploration of OLAP
data cubes. It computes anticipated value for a cell using
the neighborhood values, and a cell is considered an excep-
tion if its value is significantly different from its anticipated
value. This is rather different from the “interestingness”
defined here based on a user-specified gradient ratio in rel-
evance to a cell’s ancestors, descendants, and siblings. For
computation, the former ([12]) is on interactive exploration
of computed cube cells; whereas the latter (our study) is on
computing (nonmaterialized) cells (more exactly, pairs of
cells) satisfying certain constraints. It is an interesting is-
sue to see whether our computation can be used as a filter-
ing process and feed the results into the statistical analysis
of neighborhood cells to reduce the overall processing cost
of discovery-driven exploration of OLAP data cubes.

[2] considers how statistics (a measure) of one group of
tuples differs from the same measure of a supergroup. It
shows that, by adopting such difference or ratio measure,
the number of association rules can be reduced substan-
tially and only the interesting rules are preserved. This
shares a similar motivation as our study here. However,
our study provides a general mechanism to specify con-
straints and any kind of measures and/or gradients in rel-
evance to ancestors, descendants and siblings. Therefore,
it provides a more general model, as well as an efficient
constraint-pushing and computation method. We believe
that our method can serve as an efficient preprocessing step
for subsequent statistical studies on mined interesting gra-
dients or rules.

Our study is also closely related to (1) data cube and
iceberg cube computation methods proposed in previous
studies, such as [1, 4, 6, 3, 8], as well as (2) constraint-
based data mining methods, such as [13, 10, 5, 7, 11]. This
study can be considered as an extension and integration
of both mechanisms towards efficient, multi-dimensional,
constrained gradient analysis.

7 Conclusions

In this paper, we have studied issues and methods on effi-
cient mining of multi-dimensional, constrained gradients in
data cubes. Constrained gradients are substantial changes

in a set of measures (aggregates) of interest associated with
the changes in the underlying characteristics of cube cells,
where changes in characteristics are expressed in terms
of the dimensions and are limited to specialization, gen-
eralization, and 1-d mutation. To ensure only interesting
changes of relevant cells are studied, we show that it is nec-
essary to introduce three kinds of constraints: significant
constraints, probe constraints, and gradient constraints.

An efficient algorithm, LiveSet-driven, has been devel-
oped which explores set-oriented processing and the maxi-
mal pushing of the constraints as deeply as possible in the
early stage of the mining process to prune the search space.
Moreover, we also adopt a compressed hyper-tree structure
to represent the base table of a data cube, and to achieve
“maximal” sharing of computation among different cells.
Our performance study shows that this method is efficient
and scalable. It outperforms another method which relies
on the iceberg cube computation of all-significant-pairs.

There are also many interesting issues which call for fur-
ther studies, including the efficient mining of association
rules with complex measures, and the analysis of obtained
gradient-probe pairs to extract truly interesting rules.

References
[1] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F.

Naughton, R. Ramakrishnan, and S. Sarawagi. On the com-
putation of multidimensional aggregates. VLDB’96.

[2] Y. Aumann and Y. Lindell. A statistical theory for quantita-
tive association rules. KDD’99.

[3] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. SIGMOD’99.

[4] S. Chaudhuri and U. Dayal. An overview of data warehous-
ing and OLAP technology. ACM SIGMOD Record, 26:65–
74, 1997.

[5] G. Dong and J. Li. Efficient mining of emerging patterns:
Discovering trends and differences. KDD’99.

[6] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani,
and J. D. Ullman. Computing iceberg queries efficiently.
VLDB’98.

[7] G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining
of constrained correlated sets. ICDE’99.

[8] J. Han, J. Pei, G. Dong, and K. Wang. Efficient com-
putation of iceberg cubes with complex measures. ACM-
SIGMOD’01.

[9] T. Imielinski, L. Khachiyan, and A. Abdul-
ghani. Cubegrades: Generalizing association rules. Tech.
Rep., Dept. Computer Science, Rutgers Univ., Aug. 2000.

[10] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Ex-
ploratory mining and pruning optimizations of constrained
associations rules. ACM-SIGMOD’98.

[11] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent
itemsets with convertible constraints. ICDE’01.

[12] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-
driven exploration of OLAP data cubes. EDBT’98.

[13] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules
with item constraints. KDD’97.

