
Online Scaling

in a Highly Available Database

Svein Erik Bratsberg and Rune Humborstad
Clustra AS

N-7485 Trondheim, Norway
E-mail: svein.erik.bratsberg@clustra.com

Abstract

An increasing number of database applica-
tions demands high availability combined with
online scalability and soft real-time transac-
tion response. This means that scaling must
be done online and non-blocking. This paper
extends the primary/hot standby approach
to high availability with online scaling oper-
ations. The challenges are to do this without
degrading the response time and throughput
of transactions and to support high availabil-
ity throughout the scaling period. We meas-
ure the impact of online scaling on response
time and throughput using di�erent schedul-
ing schemes. We also show some of the recov-
ery problems that appear in this setting.

1 Introduction

An increasing number of applications demands high
availability, often combined with online scalability and
soft real-time response. The growing �elds of elec-
tronic commerce, world-wide businesses and telecom-
munications all require databases that are highly avail-
able, they must be available for all kinds of operations
anytime. This means that all maintenance must be
done online.

Schema evolution is a necessity in databases due
to changing requirements, design faults and the evol-
utionary nature of various application domains. In a
distributed database there are two main categories of
schema evolution. Model evolution is when the table

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

design changes after the database has been populated.
This includes removal or addition of key or non-key
�elds, change in domain of �elds, splitting and unions
of tables, etc.

The second category, declustering evolution, is due
to changes in data volume, processing power or access
patterns. In this paper we focus on the second cat-
egory of schema evolution. However, many of the con-
cepts are the same for these two types of evolution, but
the implementation may di�er. Model evolution ex-
pressed through general relational algebra operations
requires general algebra operations on the log, where in
the declustering evolution log records are transformed
one-to-one.

To scale up the system, new nodes are added to the
system, and tables are redistributed to the new nodes
while the system is running. This is done by fuzzy
copy of the data in parallel with log shipping and redo.
Scaling down is done in the same way as scaling up,
and spare capacity on nodes may be reused for other
purposes. The scaling is done as a transaction so that
both node failures and undo of scaling is handled by
the system.

The redistribution of data may also be done by
changing the distribution key, i.e. the part of the
primary key which is used to decide the distribution.
Normally, this is the whole primary key, but to cluster
related tuples a subset of the primary key may be used.

This paper is organized as follows. We present re-
lated work in Section 2. Section 3 presents the ar-
chitecture and context for the work. The method for
scaling of data is presented in Section 4. In Section 5
we measure the impact from online scaling on response
time and throughput for concurrent user transactions.
Section 6 concludes the paper.

2 Related Work

Online scaling and schema evolution are special cases
of database reorganization. Sockut and Iyer [SI00]
have made a comprehensive survey and they categor-



ize online database reorganization into the following
classes:

� restoring physical arrangement without changing
the database de�nition

� changing the physical de�nition

� changing the logical de�nition

Our work mainly falls into the �rst de�nition since
we move data around in the system only changing the
declustering information in the distribution dictionary.
However, our work may also be used in the second
category since the physical storage is not visible in the
method. One constraint to the method presented here
is that tuples must be inserted in key order in the copy
process.

The method to be presented is similar to the one
we use in online repair [BGH+96]. The main di�er-
ences are that the copy is limited to mirroring in re-
pair, while online scaling involves running nodes with
existing data and traÆc. Thus, node crash recovery at
repair is done by restarting repair. Recovery at scaling
must be done as a normal transactional rollback.

Zou and Salzberg present a method for online reor-
ganization of B+-trees [ZS96]. This method combines
an in-place reorganization of leaf-level data, with a
copying reorganization of non-leaf data. It is intended
for reorganizations of very large and sparsely popu-
lated trees. The same authors have also done work
on updating hard references from index tables to base
tables during on-line reorganization [ZS98]. This is
done by piggy-backing updates to index tables with
user transactions.

Lakhamaraju et al. present an online reorganization
in object databases [LRSS00]. They focus on high con-
currency during move of objects and update of refer-
ences from parent objects. At one point in time they
lock at most two distinct objects.

Common to the two last approaches is they are not
intended to solve problems for fast growing volumes of
data and transactions. Lee et al. shows an approach
for self-tuning placement of data in a shared-nothing
system [LKO+00], where the data is partitioned into
ranges. It is a two-tier index approach, where the top
tier is small and is cached in main-memory and rep-
licated to all nodes. Data at the leaf tier is stored in
B+-trees. Data is migrated in bulks between nodes in
the leaf tier. The top tier is updated lazily, and during
the move requests may be forwarded from the old to
the new location of the data. Since data is moved by
bulk loading, it is unclear how recovery and undo of
the reorganization is handled.

IBM has done work in online data copy that is
similar to our work [SI96]. They permit both reads
and writes while the data is reorganized into a shadow
copy. This is done by applying the log to the shadow
copy in multiple rounds. Writes are prohibited a short

period while the last changes are applied to the shadow
copy. The main problem in this approach is to main-
tain the mapping between record identi�ers in the two
versions. Our approach is designed to decluster data
onto many nodes and to move data around as the
volume grows. Hence, we do not have the problem
of mapping record identi�ers since both data and log
records are identi�ed by primary key.

3 An Architecture for High Availabil-
ity

3.1 Shared-nothing architecture

The architecture assumes a shared nothing approach,
where the nodes of the system are grouped into sites.
A site is a collection of nodes which share environment
characteristics, like power supply, maintenance per-
sonnel, location, etc. The architecture assumes high
bandwidth, low latency networks. It may utilize du-
plicate networks for fault tolerance purposes. A node
is a standard workstation equipped with memory and
local disks. There are no shared disks.

3.2 Data declustering

Data is both fragmented and replicated. The frag-
mentation lets the system be scalable, the replication
is done for high availability purposes.

Fragmentation may be done according to hashing
or ranges of keys. This is transparent to operations
except for the creation of tables, where the number
of fragments and fragmentation method are given to-
gether with a node group. There are no concept of
table spaces, only groups of nodes which store tables.
Typically, small tables are stored on few nodes, while
large tables are stored on all active nodes. A table
may have multiple fragments at each node.

Replication is done for high availability. Analysis
has shown that two replicas is ideal [Tor95], which
means that one system consists of two sites. More
replicas complicate the system and increases the prob-
ability for software failures. Multiple replicas are of-
ten used in systems with asynchronous replication and
looser requirements with respect to transaction con-
sistency.

We use mirrored declustering, where each node at
one site has a mirror node at the other site. Typically,
each node stores two fragment replicas of a table. The
mirror nodes divide the primary responsibility between
each other, so that one is primary for one fragment
and hot standby for the other fragment. Figure 1 il-
lustrates this. In the left part of the �gure, node 0 has
two fragment replicas, which are mirrored at node 1.
Node 0, 2 and 4 belong to the same site, while node 1,
3 and 5 belong to the other site.



0 1

3

5

2

4

Legend:

Node

Log stream

Primary
fragment replica

Hot standby
fragment replica

Figure 1: Declustering of data.

3.3 Location and replication independence

Location transparency for data and log records is im-
portant. When the volume of transactions or data
is changing, we must be able to move data around
without taking the system down. To be able to do
this, log records must be logical. I.e., the reference
to data from the log record must be by primary key.
The second important concept to use is tuple state
identi�ers, i.e., the status identi�er of the log is at-
tached to tuples instead of blocks. This concept may
be seen as an alternative to compensation-based log-
ging to support �ne-granularity locking, but is very
powerful for log-based replication because it allows for
tuple-granularity replication [Hva96]. The combina-
tion of these two concepts allows the system to move
tuples and their associated log around in the system
while the system is running.

The logical logging is implemented by a two-level
logging scheme, where logical operations are logged
in the tuple log and are replicated between mirror
nodes. Node-internal transactions are physical \con-
sequences" of logical operations, like block splitting
and creation of �les. The node-internal log is writ-
ten to disk and is not replicated. These two logs are
recovered in sequence [BHT97].

3.4 Fault tolerance by recovery and online re-
pair

When a node fails, its mirror node takes over the re-
sponsibility for the data residing on the failed node.
The failed node recovers and gets updated by receiving
new log from its mirror node. This is called catchup,
which terminates when the catchup log shipping has
caught up with the log production.

If a node has been down too long, or it is not able
to recover, online repair is used. This includes copying
data and log from the node which did the takeover to
either a spare node or to the node which failed. This
copy is done online and non-blocking.

Online repair is important for multiple purposes:
as an escalated recovery mechanism, for use by spare
nodes, for upgrade of hardware and software, and as a
general cleanup mechanism.

3.5 Main software components and their in-

terrelationship

The main software components involved with online
scaling are the transaction controller, the kernel, the
log channel, and the dictionary cache. The transac-
tion controller coordinates the execution of transac-
tions through a two-phase commit protocol. It con-
sults the dictionary cache to locate the fragment rep-
licas of a given tuple. Due to its frequency of use,
dictionary information is cached in main-memory at
each node.

For simple operations based on primary keys the
transaction controller forwards the user requests dir-
ectly to the kernels for execution. When a kernel par-
ticipates in a transaction, it is called a slave. Di�erent
tuple operations may be forwarded to di�erent kernels
and executed in parallel. More advanced queries may
be sent to all kernels which involve the SQL executor
to do algebra operations. Tuples are stored at the leaf
level in Blink-trees.

Updates to data are replicated through the log
channel, which eagerly reads log records and ships
them to the hot standby kernels. In this way the
hot standby replicas are kept updated. The trans-
action controller lets the transactions be executed at
the primary fragment replicas and the log records be
stored at the hot standby replicas before the slaves
are declared to be ready. This is the neighbor write-
ahead logging strategy, the log must be stored at a hot
standby node before the e�ected data item is allowed
written to disk at the primary side. In this way rep-
lication is cheap, it is a simple redo of the log that is
already there for undo purposes.

Hot standby operations may be executed (redone)
after the transaction is decided to commit. Before
starting the second phase of the commit, the trans-
action controller consults its hot standby transaction
controller residing at the other site to know whether
to commit or not. This is done to register the outcome
of the transaction in case the primary transaction con-
troller dies.

Figure 2 illustrates the threads involved in execu-
tion of a simple, one-tuple update transaction. The
transaction controller at node 4 receives a request to
execute a single-tuple update operation. The Trol-
Thread looks up in the dictionary cache to �nd the
primary fragment replica for this tuple. It forwards an



TrolThread

SlaveThreadRedoThread

4

0

2

5

1

3

ReadLog

Figure 2: Threads involved in a simple transaction.

update operation to a SlaveThread at node 1, which
logs the operation and executes the update. It replies
to TrolThread as soon as it is ready with the execution.
ReadLog at node 1 ships the log record for redo exe-
cution at node 0. When the RedoThread has received
the log record, it replies ready to the TrolThread. The
redo of the update will happen after the reply.

Due to mirrored declustering and the delayed redo
execution at the hot standbys, primary and hot
standby kernels should be equal with respect to pro-
cessing capacity and storage volume.

4 Method for Online Scaling

4.1 The �rst phase

The transaction controller receives a command to scale
a table onto a given node group from an SQL compiler,
a management program, or from an api program.

The transaction controller performs the scaling in
two phases. The �rst phase includes a number of steps.
It grabs an exclusive lock for the dictionary. This is ne-
cessary to serialize the changes to the dictionary cache
replicated to all nodes in the system. In the instruction
a target node group is given. The standard decluster-
ing used by the transaction controller is to have two
fragments per node, one primary fragment replica and
one hot standby. The command may override this by
specifying the number of fragments and replicas. The
node group is read from the dictionary tables in the
database.

The target fragment replicas are created at the
nodes in the node group. At every target fragment
replica, both primary and hot standby, there will be
one pseudo replica for each primary source fragment
replica. A pseudo replica is an entrance for log re-
cords to be redone at a target replica. A pseudo rep-
lica is bound to a target fragment replica, meaning
that it is a pseudonym for the target fragment replica.
The pseudo replicas are needed to distinguish di�er-
ent log streams into the same target replica, since each

0 1

3

5

2

4

Figure 3: Declustering after scaling.

primary fragment replica assigns log sequence numbers
individually. During the scaling log records are gener-
ated at the di�erent source fragment replicas, and they
are entered into the targets through a pseudo replica.

Figure 3 illustrates the declustering after the scal-
ing. Now, the table is declustered onto all six nodes.
Note that the two extra nodes may be acquired and
installed when the scaling is necessary.

4.2 Data and log replication

The data and log shipping is started by sending in-
structions to the primary fragments replicas of the
table. All log records of a node reside in a shared
log bu�er, before they eventually are ushed to disk.
Log shipping starts at the oldest alive log record, so
that transactions may be rolled back in the new copies
after takeover, when the scaling transaction commits.
The log shipping is done by a separate log shipping
thread which reads the log bu�er and does a partition-
ing lookup according to the new declustering. The log
shipping from one node to another is done in two sep-
arate channels: the realtime channel and the slowlog
channel. This means that the scaling may be run on
low priority to prevent slowdown of parallel realtime
transactions. Two mirror nodes have a bidirectional
realtime log channel, while during scaling there will
be a slowlog channel from all nodes storing primary
fragment replicas of the table, to all node storing frag-
ment replicas in the new declustering.

When the log shipping has started, data copying
may start. This enforces the existence of old enough
log records at the targets for redo purposes. The copy-
ing is done online and non-blocking, allowing parallel
updates and inserts to happen. The fragment rep-
licas are read sequentially in primary key order. Only
low-level latches are needed during copy of the tuples
within a block. Thus, updates may happen while data
is read. This is why it is called fuzzy copy, it somehow
resembles fuzzy checkpointing.



One reader puts tuples into multiple data packages
according to the partitioning lookup. Each tuple will
exist in two data packages, one for the primary and
one for hot standby.

A data package includes the following �elds:

Pseudo ReplId the identi�er of the pseudo replica.

RedoLSN the lowest non-executed log sequence
number for this fragment replica. This number
is registered when starting to �ll the data pack-
age.

Highkey the highest key read when sending the pack-
age. This is not necessarily the highest key of a
tuple in the package, as the tuple with the highest
key read may have gone to another pseudo replica.

When tuples in a package are inserted at a pseudo
replica, a special redo thread is started to execute log
records with higher LSNs than the redo-LSN for re-
cords with keys lower than highkey. In order to avoid
disturbing realtime redo processing, this is done by a
separate redo thread for each pseudo replica. Realtime
redo happens eagerly at the front of the log. Thus, re-
sources, like locks, bu�ers and transaction table slots
may be released eagerly.

The tuple status identi�er (log sequence number)
within each tuple is transferred directly in fuzzy copy.
In this way, the redo thread knows whether redo is ne-
cessary or not. Normal hot standby redo will always
be done, while in fuzzy copy the redo test is neces-
sary since operations may have been performed at the
source replica.

The di�erent pseudo replicas are merged at a target
replica, i.e., the inserter waits for input on all connec-
ted pseudo replicas before starting. This is done to
have sequential inserts, which is favorable with respect
to �ll degree and disk utilization. The reader sends to
all pseudo replicas at the same time, even if some of
the data packages are not �lled. It is important to let
the inserter have tuples to merge, and to let the redo
thread advance while the log records are in the bu�er.

The slaves execute fuzzy copy for a number of frag-
ments in parallel by a parastart/parawait construc-
tion. Thus, they wait for completion of a number of
parallel fuzzy inserter threads. Fuzzy copy for one tar-
get is ready when all tuples have arrived, the redo
thread has caught up with the realtime redo thread,
and handed over the redo responsibility. When the
slaves are through with the fuzzy copy, they reply to
the transaction controller.

Figure 4 illustrates the threads involved in the pro-
duction of one target fragment replica. There is one
FuzzyReader at each source primary fragment replica,
and one FuzzyInserter at each target fragment replica.
Thus, in this example there will be 4 FuzzyReaders and
12 FuzzyInserters. Only 4 of the 48 data streams are
shown in the �gure. In addition to the fuzzy copy

0

FuzzyReader FuzzyReader

1

FuzzyReader

3

4

FuzzyReader

2

5

FuzzyInserter

Additional legend:

Target fragment replica

Data stream

Figure 4: Threads involved in fuzzy copy.



threads, as previously explained, there are threads for
log shipping and redo which are present during the
scaling. For each node having source fragment rep-
licas, there is one RefragLog thread which ship log
records to pseudo replicas. For each pseudo replica,
there is one RecoverWindow thread which handles redo.
This thread is activated by the receipt of a data pack-
age, and is terminated when it has caught up with
the corresponding RedoThread after receipt of the last
data package.

4.3 The last phase

The second phase is executed when prepare-to-commit
in the scaling transaction is encountered at the trans-
action controller.

The pseudo replicas are unbound from the target
replicas. They will not be needed anymore since the
log production from now on will happen at the new
primary fragment replicas. The old fragments are de-
leted, and a takeover is issued. Takeover is sent to
the old fragment replicas which become locked. When
the takeover log records are received at the new frag-
ment replicas, the slaves will be ready and the scaling
transaction may commit. After commit, the new frag-
ment replicas are used as primary. Thus, there is a
short period at takeover where the fragment replicas
are unavailable. This period is usually less than a mil-
lisecond.

For takeover to be fast, we use tuple-level locks in-
stead of coarse-granularity locks at the target replicas.
When takeover happens, there may be hot standby
tuple locks present at the new primary fragment rep-
licas. Hot standby tuple locks are shipped together
with log records, thus, becoming e�ective when log
records arrive in pseudo replicas. These locks are re-
leased at commit or abort of user transactions, just
like ordinary tuple locks.

4.4 Two version dictionary

Parts of the dictionary tables are in frequent use by
the transaction controllers. Since we use a peer-to-
peer architecture, where transaction controllers may
run on all nodes, the distribution dictionary is cached
at all nodes. The distribution dictionary describes how
tables are fragmented and replicated. Hence, to know
where to send tuple operations, the transaction con-
troller does a lookup in the dictionary cache. This
means that all transaction controllers can access the
distribution dictionary in main memory in parallel.

Transactions updating the distribution dictionary
need to be grab the dictionary lock, which blocks the
distribution dictionary for other updates. An update
to the distribution dictionary is replicated to the dic-
tionary caches at all nodes. During an update of the
distribution dictionary, the dictionary cache will ex-
ist in two versions. One version is the current ver-
sion of the dictionary, the other is the one being up-

dated. Only the dictionary change transaction sees
the new version during the update. When the dic-
tionary change transactions commits, the new version
becomes the current one. However, old transactions
which started prior to the commit of the dictionary
change transaction, will still use the old dictionary.
If an old transaction access the table which just was
scaled and committed, they will hit a delete lock at
the old fragment replicas and they may abort. If a
new dictionary change transaction tries to start when
there still are transactions using the oldest dictionary
version, the old transactions will be aborted by the
transaction controller when accessing the dictionary
cache.

4.5 Involving new nodes

When executing transactions the transaction control-
ler informs the involved slaves about the outcome of
the two-phase commit. Nodes not in use in a table
in the current version of the dictionary will not be
informed. During node crash recovery, the recovering
node is informed about the outcome of transactions by
use of the log channel, i.e. the recovering node receives
commit/abort log records for already committed or
aborted transactions during catchup. New nodes in-
troduced through the scaling will not be involved in
ongoing parallel user transaction, and will not be in-
volved through the log channel. Since commit is logged
once for each transaction, using the log channel would
require all nodes to ship commit/abort log records to
all other nodes. For short transactions this would be
a considerable overhead in the system.

To solve this problem, the dictionary cache is in-
formed about the introduction of new nodes as a part
of the scaling transaction. The transaction control-
lers will during the scaling involve new nodes during
the second phase of their commit, and the new nodes
will receive commit and abort decisions. Note that
they will not take part in the �rst phase of the com-
mit. At commit or abort of the scaling, this \involve
new nodes" information is removed from the diction-
ary caches. This happens when the last transaction
using the old version of the dictionary is committed or
aborted.

4.6 Distributed resource control

There are a number of �xed-sized resources which
are con�gured at startup of the system, like lock
table slots, transaction table slots, fragment replica
descriptors, etc. In a distributed system it is not easy
to tell in advance that there will be enough resources
to execute a given transaction. To distribute local re-
source information among all nodes is not a scalable
approach. Therefore, we exploit the fact that update
transactions acquire approximately an equal amount
of resources at mirror nodes.



When a transaction is executed at a primary ker-
nel, it is checked whether there are enough resources
to execute it. Since hot standby resources may be ac-
quired after the transaction is ready, we reserve some
resources for hot standby execution.

If the system is overloaded it is not very wise to
abort transactions at the kernel, because rollback cre-
ates extra work. A better solution is to reject new
transactions at the transaction controller. This may
be done based on observed timeouts of recent transac-
tions, on information acquired by the local scheduler
or on speci�c alarms given by the system.

4.7 Recovery issues

Fuzzy copy operations are not logged, but the scaling
transaction logs its creation and bind operations. At
abort of the scaling the new fragment replicas are un-
done by rolling back the bind and creation operations.
This includes removing the half-populated B-trees.

At abort of user transactions, undo of log records
referring to pseudo replicas will after takeover be
mapped to the target fragment replicas. The garbage
collection of pseudo replica descriptors ensures that
they live long enough to cater for this mapping.

To have little impact on the response time of par-
allel user transactions, log receipt for pseudo replicas
is not included in the ready-to-commit criteria. This
lets the log shipping needed for scaling be done lazily
or at bursts when the system has little to do. This
means that log records for pseudo replicas may still
arrive when the transaction is committing.

Slaves involved only through scaling, will not par-
ticipate in the �rst phase of the commit. Thus, if the
scaling transaction aborts, these \pure pseudo touch"
transactions will be removed, they do not commit or
abort.

When the scaling transaction has committed, par-
allel user transaction may have log records referring
to (pseudo) fragment replicas which are removed. The
replica log descriptors are garbage collected according
to use in transactions.

Since fuzzy copy does not use logging, we either
have to force fuzzily copied to disk as a part of the
�rst phase of commit, or to detect that disk recovery
is not possible due to missing data, and therefore es-
calate to repair. During a checkpoint the status of a
fragment replica is logged. If there is any fragment
replicas \under repair" in the penultimate or ultimate
checkpoint, recovery is not allowed, and the node re-
starts with repair.

5 Measurements

A central requirement is to let online scaling have little
impact on ongoing transactions, with respect to re-
sponse time and throughput. Since data is not locked
during fuzzy copy, the impact is from resource conten-

tion on memory, CPU, network, etc. In these meas-
urements we try to capture the e�ect of scaling on the
response times and throughput in a main-memory set-
ting. All data in these measurements reside in main-
memory during the copy, both the new and the old
copy of the table.

Our main measurement is the response time in-
crease factor, i.e., the average response time during
scaling divided by the average before scaling. We do
the same for throughput { the throughput decrease
factor. We have also measured the increase factor
for the maximum and minimum response time where
the maximum and minimum is sampled every second.
These measures are the average of the samples during
scaling divided by the average before the scaling.

5.1 Parameterization

As shown in Figure 2 a user transaction is executed
at the slaves by three threads. Of these three, only
SlaveThread and ReadLog have direct e�ect on the re-
sponse time, since the hot standby redo execution is
only required for the second phase of the commit to
terminate.

The runs are done with three di�erent priorities and
execution schemes for the seven relevant threads. The
scheduler uses three di�erent priorities: high, poll and
low. Threads at high priority are executed until there
is no more to execute. Messages are polled if there
are no active threads at high priority. Threads at low
priority are run when there are no active threads at
high priority and no messages to poll.

Each thread is non-preemptive, thus, they must
relinquish the control themselves. The seven thread
types in question execute a number of tuples or log
records before giving up the control. The test is run
with three di�erent numbers of operations before pree-
mpting themselves. We have summarized these two
parameters in this table:

Thread type eager medium lazy
SlaveThread high 20 high 20 high 20
ReadLog high 20 high 5 high 1
RedoThread high 10 low 4 low 1
FuzzyReader high 53 low 25 low 1
FuzzyInserter high 20 low 5 low 1
RefragLog high 20 low 5 low 1
RecoverWindow high 20 low 4 low 1

The idea with these three priority schemes is that eager
tries to give much priority to fuzzy copy, lazy gives
priority to user transactions and medium is in between
these two.

5.2 Numbers

We have used simple clients which either read 1 tuple,
update 1 or 4 tuples during the scaling. Each client
sends transactions back-to-back, possibly with a wait



time. We have run clients with 0 or 50 milliseconds
wait time. There is one client connected to each node
in the system (six in all).

The table in question consists of 900000 tuples, a
total of 115 MB at each site. The clients do random
updates or reads to the table, but with separate key
ranges, so that conicts are avoided in these measure-
ments. Each node is single-CPU at 1.1 GHz running
Linux, connected through a 100 Mbit switched net-
work. Most results are relative, so that we do not
emphasize individual results like response time and
throughput. The software used is Clustra Database 4.0
with Clustra C++ API.

The time (seconds) to scale from four to six frag-
ments (and from four to six nodes) is given in the
following table:

client wait time eager medium lazy
no 10.6 23.6 27.4
1-read 0 19.7 58.7 68.5
1-upd 0 53.1 58.2 31.8
4-upd 0 76.4 57.5 34.5
1-read 50 10.6 20.9 24.5
1-upd 50 13.9 23.2 24.6
4-upd 50 17.1 25.0 31.9

Eager scheduling lets parallel user transactions have
little impact on the time to scale, except at high up-
date loads. For high update loads, lazy scheduling has
least impact on the time to scale. This is explained
by the decrease in throughput which hits lazy harder
than the others.

When there are no load we observe the scaling time
more than doubles at medium or lazy scheduling. This
is explained by the fuzzy copy algorithm which is very
sensitive to workload at all nodes. Data is merged
at each FuzzyInserter, thus insert does not happen be-
fore all readers have sent their data packages. Each
FuzzyReader does not continue before all inserters have
replied. The rationale behind this is to insert sequen-
tially and thus �ll blocks. The consequence is that
the system at medium and lazy scheduling does a lot
of waiting, and there is spare capacity for processing
parallel user transactions.

The increase factor for the average response time is
given in the following table:

client wait time eager medium lazy
1-read 0 5.26 2.51 1.98
1-upd 0 4.35 1.52 1.32
4-upd 0 3.39 1.08 0.85
1-read 50 8.02 3.43 3.12
1-upd 50 5.46 2.63 2.47
4-upd 50 4.57 2.26 1.91

Medium scheduling has an increase factor less than
3.5 for all loads, while lazy scheduling has a factor
less than 2.5 for updates and less than 3.2 for reads.
However, if we measure the increase as a di�erence

instead of as a factor, reads do better than updates.
The factor below 1 is due to low throughput, which is
caused by the distributed resource control.

The increase factor for the minimum response time
is given in the following table:

client wait time eager medium lazy
1-read 0 1.57 1.48 1.48
1-upd 0 1.56 1.33 1.28
4-upd 0 1.76 1.07 0.89
1-read 50 2.42 2.38 2.29
1-upd 50 1.76 1.76 1.57
4-upd 50 1.73 1.51 1.45

The increase factor for the maximum response time
is given in the following table:

client wait time eager medium lazy
1-read 0 2.54 1.64 1.52
1-upd 0 1.72 1.19 1.04
4-upd 0 1.51 0.94 0.84
1-read 50 11.94 5.96 6.14
1-upd 50 4.00 2.95 3.05
4-upd 50 3.00 2.66 2.20

The decrease factor for the throughput is given in
the following table:

client wait time eager medium lazy
1-read 0 0.40 0.59 0.59
1-upd 0 0.25 0.37 0.16
4-upd 0 0.34 0.36 0.17
1-read 50 1.00 0.99 1.00
1-upd 50 0.95 1.00 1.00
4-upd 50 0.96 1.00 0.98

When transactions are run back-to-back with zero wait
time, the throughput is highly a�ected. At worst the
system is able to cope with only 16% of the through-
put compared with prior to the scaling. At low loads
the scaling hardly is noticeable on the throughput.
The conclusion is that online scaling highly a�ects the
throughput if the database is already loaded. Do the
scaling before this happens.

For eager scheduling the decrease in throughput is
explained by the characteristics of the scheduler. The
scheduler polls for messages only when it has no high
priority jobs to do. The throughput is reduced be-
cause the transaction controller polls for messages less
frequently, so that it acquires new work less frequently
as well.

For the other scheduling schemes, when the
throughput is seriously damaged, the response time is
not. This is explained by the scheduler-based resource
control which hits high update loads. This lets trans-
actions within the system have priority over new trans-
actions arriving when the scheduler is busy. When the
transaction controller rejects a client request due to
resource control, the load is somewhat controlled by



the retry interval of the client. In our measurement
we used 50 milliseconds as the retry interval.

Figure 5 shows plots of the average response time
for user transactions from one transaction controller
during the scaling. The plots show this for eager, me-
dium and lazy scheduling for one-tuple reads with no
wait time. The raised parts of the plots are when the
scaling is done, starting at 40 seconds.

Figure 6 shows the same for 1 tuple update transac-
tions. In this situation the checkpointing may be seen
on the average response time by regular bumps.

6 Conclusions

Online scaling degrades the response time and
throughput of transactions during the reorganization.
We have measured this impact on simple user transac-
tions for di�erent scheduling schemes. Lazy scheduling
gives the best overall performance with respect to re-
sponse time. For throughput the impact is seen only
at high loads.

It is important that the scaling goes through and
does not abort due to too few resources. Distributed
resource control is important to let the system handle
both user transactions and the scaling. A highly avail-
able system must be designed to have spare processing
capacity, and online scaling is probably not performed
at peak load periods, and should be done before the
system is saturated with respect to processing power.

Through our measurements we have seen that the
copying of data is very load sensitive. To improve this
we could limit the declustering used in the scaling, so
that we do not get all-to-all dependencies. E.g., by
splitting existing fragments into two new fragments,
the number of dependent nodes for each reader is lim-
ited to two. We expect this to become more important
with an increased number of nodes.

An idea to reduce the impact is to reduce the fault
tolerance level during the scaling by discarding one of
the old replicas while producing a new modi�ed rep-
lica. Alternatively, one could produce a single new
copy and after the takeover start producing a new,
second copy. However, this reduces the fault tolerance
level during a vulnerable period. Lazy scheduling of
fuzzy copy also reduces the impact, but retains the
fault tolerance level.

References

[BGH+96] Svein Erik Bratsberg, �ystein Gr�vlen,
Svein-Olaf Hvasshovd, Bj�rn P. Munch,
and �ystein Torbj�rnsen. Providing
a highly available database by replic-
ation and online self-repair. Interna-
tional Journal of Engineering Intelligent
Systems for Electrical Engineering and
Communications, Special issue on Data-

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160 180

re
sp

.ti
m

e 
(m

ic
ro

se
co

nd
s)

seconds

"eager"

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

re
sp

.ti
m

e 
(m

ic
ro

se
co

nd
s)

seconds

"medium"

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

re
sp

.ti
m

e 
(m

ic
ro

se
co

nd
s)

seconds

"lazy"

Figure 5: Eager, medium and lazy 1read, 0 wait time.



0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

re
sp

.ti
m

e 
(m

ic
ro

se
co

nd
s)

seconds

"eager"

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

re
sp

.ti
m

e 
(m

ic
ro

se
co

nd
s)

seconds

"medium"

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160 180 200

re
sp

.ti
m

e 
(m

ic
ro

se
co

nd
s)

seconds

"lazy"

Figure 6: Eager, medium and lazy 1upd, 0 wait time.

bases and Telecommunications, 4(3):131{
139, September 1996.

[BHT97] Svein Erik Bratsberg, Svein-Olaf
Hvasshovd, and �ystein Torbj�rnsen.
Location and replication independent
recovery in a highly available database.
In Advances in Databases, 15th British
National Conference on Databases, pages
23{37. Springer-Verlag LNCS 1271, July
1997.

[Hva96] Svein-Olaf Hvasshovd. Recovery in Parallel
Database Systems. Verlag Vieweg, Wies-
baden, Germany, 1996.

[LKO+00] Mong Li Lee, Masaru Kitsuregawa,
Beng Chin Ooi, Kian-Lee Tan, and
Anirban Mondal. Towards self-tuning
data placement in parallel database sys-
tems. In Proceedings of ACM/SIGMOD
(Management of Data), pages 225{236,
May 2000.

[LRSS00] Mohana H. Lakhamraju, Rajeev Rastogi,
S. Seshadri, and S. Sudarshan. On-line re-
organization in object databases. In Pro-
ceedings of ACM/SIGMOD (Management
of Data), pages 58{69, May 2000.

[SI96] Gary H. Sockut and Balakrishna R. Iyer.
A survey of online reorganization in IBM
products and research. IEEE Data Engin-
eering Bulletin, 19(2):4{11, 1996.

[SI00] Gary H. Sockut and Balakrishna R. Iyer.
Online reorganization of databases, June
2000. Available from authors: IBM Sil-
icon Valley Laboratory, 555 Bailey Ave,
San Jose, CA 95141, USA.

[Tor95] �ystein Torbj�rnsen. Multi-Site Decluster-
ing Strategies for Very High Database Ser-
vice Availability. PhD thesis, The Norwe-
gian Institute of Technology, University of
Trondheim, January 1995. 186 p., ISBN
82-7119-759-2.

[ZS96] Chendong Zou and Betty Salzberg. On-line
reorganization of sparsely-populated b+-
trees. In Proceedings of ACM/SIGMOD
(Management of Data), pages 115{124,
June 1996.

[ZS98] Chendong Zou and Betty Salzberg. Safely
and eÆciently updating references during
on-line reorganization. In Proceedings of
the 24th International Conference on Very
Large Databases, New York City, New
York (VLDB '98), pages 512{522, Septem-
ber 1998.


