
Lineage Tracing for General Data Warehouse Transformations∗

Yingwei Cui and Jennifer Widom
Computer Science Department, Stanford University

{cyw, widom}@db.stanford.edu

Abstract. Data warehousing systems integrate information
from operational data sources into a central repository to enable
analysis and mining of the integrated information. During the
integration process, source data typically undergoes a series of
transformations, which may vary from simple algebraic opera-
tions or aggregations to complex “data cleansing” procedures.
In a warehousing environment, the data lineage problem is that
of tracing warehouse data items back to the original source items
from which they were derived. We formally define the lineage
tracing problem in the presence of general data warehouse trans-
formations, and we present algorithms for lineage tracing in this
environment. Our tracing procedures take advantage of known
structure or properties of transformations when present, but also
work in the absence of such information. Our results can be used
as the basis for a lineage tracing tool in a general warehousing
setting, and also can guide the design of data warehouses that
enable efficient lineage tracing.

1 Introduction
Data warehousing systems integrate information from op-
erational data sources into a central repository to enable
analysis and mining of the integrated information [CD97,
LW95]. Sometimes during data analysis it is useful to
look not only at the information in the warehouse, but
also to investigate how certain warehouse information was
derived from the sources. Tracing warehouse data items
back to the source data items from which they were de-
rived is termed the data lineage problem [CWW00]. En-
abling lineage tracing in a data warehousing environment
has several benefits and applications, including in-depth
data analysis and data mining, authorization management,
view update, efficient warehouse recovery, and others as
outlined in, e.g., [BB99, CWW00, HQGW93, LBM98,
LGMW00, RS98, RS99, WS97].

In previous work [CW00, CWW00], we studied the
warehouse data lineage problem in depth, but we only
considered warehouse data defined as relational materi-
alized views over the sources, i.e., views specified using
SQL or relational algebra. Related work has focused on
even simpler relational views [Sto75] or on multidimen-
sional views [DB2, Pow]. In real production data ware-
houses, however, data imported from the sources is gen-
erally “cleansed”, integrated, and summarized through a
sequence or graph of transformations, and many com-
mercial warehousing systems provide tools for creating

∗*This work was supported by the National Science Foundation un-
der grants IIS-9811947 and IIS-9817799.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Very Large Data Base Endowment. To copy otherwise, or to repub-
lish, requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

and managing such transformations as part of the extract-
transform-load (ETL) process, e.g., [Inf, Mic, PPD, Sag].
The transformations may vary from simple algebraic op-
erations or aggregations to complex procedural code.

In this paper we consider the problem of lineage trac-
ing for data warehouses created by general transforma-
tions. Since we no longer have the luxury of a fixed set of
operators or the algebraic properties offered by relational
views, the problem is considerably more difficult and
open-ended than previous work on lineage tracing. Fur-
thermore, since transformation graphs in real ETL pro-
cesses can often be quite complex—containing as many
as 60 or more transformations—the storage requirements
and runtime overhead associated with lineage tracing are
very important considerations.

We develop an approach to lineage tracing for general
transformations that takes advantage of known structure
or properties of transformations when present, yet pro-
vides tracing facilities in the absence of such information
as well. Our tracing algorithms apply to single transfor-
mations, to linear sequences of transformations, and to
arbitrary acyclic transformation graphs. We present opti-
mizations that effectively reduce the storage and runtime
overhead in the case of large transformation graphs. Our
results can be used as the basis for an in-depth data ware-
house analysis and debugging tool, by which analysts can
browse their warehouse data, then trace back to the source
data that produced warehouse data items of interest. Our
results also can guide the design of data warehouses that
enable efficient lineage tracing.

The main contributions of our work are:

• In Sections 2 and 3 we define data transformations
formally and identify a set of relevant transforma-
tion properties. We define data lineage for general
warehouse transformations exhibiting these proper-
ties, but we also cover “black box” transformations
with no known properties. The transformation prop-
erties we consider can be specified easily by transfor-
mation authors, and they encompass a large majority
of transformations used for real data warehouses.

• In Section 3 we develop lineage tracing algorithms
for single transformations. Our algorithms take ad-
vantage of transformation properties when they are
present, and we also suggest how indexes can be
used to further improve tracing performance.

• In Section 4 and the full version of this paper
[CW01] we develop a general algorithm for lineage
tracing through a sequence or graph of transforma-
tions. Our algorithm includes methods for combin-
ing transformations so that we can reduce overall
tracing cost, including the number of transforma-
tions we must trace through and the number of in-
termediate results that must be stored or recomputed
for the purpose of lineage tracing.

• We have implemented a prototype lineage tracing
system based on our algorithms, and in the full ver-
sion of this paper [CW01] we present a few initial
performance results.

For examples in this paper we use the relational data
model, but our approach and results clearly apply to data
objects in general.

This version of the paper is considerably reduced
from the original full version [CW01]. Readers in-
terested in our complete treatment of the topic are
directed to read the full version instead of this one.
In particular, this version omits details of several al-
gorithms, discussion of nondeterministic transforma-
tions, indexing techniques, lineage tracing for trans-
formations with multiple input and output sets, trac-
ing through arbitrary transformation graphs, perfor-
mance experiments, avenues of future work, some ex-
amples, and proofs for all theorems.

1.1 Related Work

There has been a significant body of work on data
transformations in general, including aspects such as
transforming data formats, models, and schemas, e.g.,
[ACM+99, BDH+95, CR99, HMN+99, LSS96, RH00,
Shu87, Squ95]. Often the focus is on data integration or
warehousing, but none of these papers considers lineage
tracing through transformations, or even addresses the re-
lated problem of transformation inverses.

Most previous work on data lineage focuses on coarse-
grained (or schema-level) lineage tracing, and uses an-
notations to provide lineage information such as which
transformations were involved in producing a given ware-
house data item [BB99, LBM98], or which source at-
tributes derive certain warehouse attributes [HQGW93,
RS98]. By contrast, we consider fine-grained (or
instance-level) lineage tracing: we retrieve the actual
set of source data items that derived a given warehouse
data item. As will be seen, in some cases we can
use coarse-grained lineage information (schema map-
pings) in support of our fine-grained lineage tracing tech-
niques. In [Cui01], we extend the work in this paper with
an annotation-based technique for instance-level lineage
tracing, similar in spirit to the schema-level annotation
techniques in [BB99]. It is worth noting that although
an annotation-based approach can improve lineage tracing
performance, it is likely to slow down warehouse loading
and refresh, so an annotation-based approach may only be
desirable for lineage-intensive applications.

In [WS97], a general framework is proposed for com-
puting fine-grained data lineage in a transformational set-
ting. The paper defines and traces data lineage for each
transformation based on a weak inverse, which must be
specified by the transformation definer. Lineage trac-
ing through a transformation graph proceeds by tracing
through each path one transformation at a time. In our
approach, the definition and tracing of data lineage is
based on general transformation properties, and we spec-
ify an algorithm for combining transformations in a se-
quence or graph for improved tracing performance. In
[CWW00, DB2, Sto75], algorithms are provided for gen-

prod-id prod-name category price valid
111 Apple IMAC computer 1200 10/1/1998–
222 Sony VAIO computer 3280 9/1/1998–11/30/1998
222 Sony VAIO computer 2250 12/1/1998–9/30/1999
222 Sony VAIO computer 1950 10/1/1999–
333 Canon A5 electronics 400 4/2/1999–
444 Sony VAIO computer 2750 12/1/1998–

Figure 1: Source data set for Product

order-id cust-id date prod-list
0101 AAA 2/1/1999 333(10), 222(10)
0102 BBB 2/8/1999 111(10)
0379 CCC 4/9/1999 222(5), 333(5)
0524 DDD 6/9/1999 111(20), 333(20)
0761 EEE 8/21/1999 111(10)
0952 CCC 11/8/1999 111(5)
1028 DDD 11/24/1999 222(10)
1250 BBB 12/15/1999 222(10), 333(10)

Figure 2: Source data set for Order

erating lineage tracing procedures automatically for vari-
ous classes of relational and multidimensional views, but
none of these approaches can handle warehouse data cre-
ated through general transformations. In [FJS97], a sta-
tistical approach is used for reconstructing base (lineage)
data from summary data in the presence of certain con-
straints. However, the approach provides only estimated
lineage information and does not ensure accuracy. Fi-
nally, [LGMW00] considers an ETL setting like ours, and
defines the concept of a contributor in order to enable
efficient resumption of interrupted warehouse loads. Al-
though similar in overall spirit, the definition of a contrib-
utor is different from our definition of data lineage, and
does not capture all aspects of lineage we consider in this
paper. In addition, we consider a more general class of
transformations than those considered in [LGMW00].

1.2 Running Example

We present a small running example, designed to il-
lustrate problems and techniques throughout the paper.
Consider a data warehouse with retail store data derived
from two source tables:

Product(prod-id, prod-name, category, price, valid)
Order(order-id, cust-id, date, prod-list)

The Product table is mostly self-explanatory. Attribute
valid specifies the time period during which a price is ef-
fective.1 The Order table also is mostly self-explanatory.
Attribute prod-list specifies the list of ordered products
with product ID and (parenthesized) quantity for each.
Sample contents of small source tables are shown in Fig-
ures 1 and 2.

Suppose an analyst wants to build a warehouse table
listing computer products that had a significant sales jump
in the last quarter: the last quarter sales were more than
twice the average sales for the preceding three quarters.
A table SalesJump is defined in the data warehouse for
this purpose. Figure 4 shows how the contents of table

1We assume that valid is a simple string, which unfortunately is a
typical ad-hoc treatment of time.

Order

order-id cust-id date prod-list
0101 AAA 2/1/1999 333(10), 222(10)
0379 CCC 4/9/1999 222(5), 333(5)
1028 DDD 11/24/1999 222(10)
1250 BBB 12/15/1999 222(10), 333(10)

Product

prod-id prod-name category price valid
222 Sony VAIO computer 2250 12/1/1998–9/30/1999
222 Sony VAIO computer 1980 10/1/1999–

Figure 3: Lineage of 〈Sony VAIO, 11250, 39600〉

SalesJump can be specified using a transformation graph
G with inputs Order and Product. G is a directed acyclic
graph composed of the following seven transformations:

• T1 splits each input order according to its prod-
uct list into multiple orders, each with a single or-
dered product and quantity. The output has schema
〈order-id, cust-id, date, prod-id, quantity〉.

• T2 filters out products not in the computer category.

• T3 effectively performs a relational join on the
outputs from T1 and T2, with T1.prod-id =
T2.prod-id and T1.date occurring in the pe-
riod of T2.valid. T3 also drops attributes cust-id
and category, so the output has schema 〈order-id,
date, prod-id, quantity, prod-name, price, valid〉.

• T4 computes the quarterly sales for each product. It
groups the output from T3 by prod-name, computes
the total sales for each product for the four previ-
ous quarters, and pivots the results to output a ta-
ble with schema 〈prod-name, q1, q2, q3, q4〉, where
q1–q4 are the quarterly sales.

• T5 computes from the output of T4 the average sales
of each product in the first three quarters. The output
schema is 〈prod-name, q1, q2, q3, avg3, q4〉, where
avg3 is the average sales (q1+ q2+ q3)/3.

• T6 selects those products whose last quarter’s sales
were greater than twice the average of the preceding
three quarters.

• T7 performs a final projection to output SalesJump
with schema 〈prod-name, avg3, q4〉.

Note that some of these transformations (T2, T5, T6, and
T7) could be expressed as standard relational operations,
while others (T1, T3, and T4) could not.

As a simple lineage example, for the data in Figures 1
and 2 the warehouse table SalesJump contains tuple
t = 〈Sony VAIO, 11250, 39600〉, indicating that the sales
of VAIO computers jumped from an average of 11250 in
the first three quarters to 39600 in the last quarter. An
analyst may want to see the relevant detailed information
by tracing the lineage of tuple t, that is, by inspecting the
original input data items that produced t. Using the tech-
niques to be developed in this paper, from the source data
in Figures 1 and 2 the analyst will be presented with the
lineage result in Figure 3.

2 Transformations and Data Lineage

In this section, we formalize general data transformations
and data lineage, then we briefly motivate why transfor-
mation properties can help us with lineage tracing.

Product

SalesJump

Order

2

3 54 6 7

1

Figure 4: Transformations to derive SalesJump

2.1 Transformations

Let a data set be any set of data items—tuples, values,
complex objects—with no duplicates in the set. (The ef-
fect duplicates have on lineage tracing has been addressed
in some detail in [CWW00].) A transformation T is any
procedure that takes data sets as input and produces data
sets as output. Here we will consider only transforma-
tions that take a single data set as input and produce a
single output set. We extend our results to transforma-
tions with multiple input sets and output sets in [CW01].
For any input data set I , we say that the application of T
to I resulting in an output set O, denoted T (I) = O, is an
instance of T .

Given transformations T1 and T2, their composition
T = T1 ◦T2 is the transformation that first applies T1 to I
to obtain I ′, then applies T2 to I ′ to obtain O. T1 and T2
are called T ’s component transformations. The composi-
tion operation is associative: (T1◦T2)◦T3 = T1◦(T2◦T3).
Thus, given transformations T1, T2, . . . , Tn, we represent
the composition ((T1 ◦T2)◦ . . .)◦Tn as a transformation
sequence T1◦· · ·◦Tn. A transformation that is not defined
as a composition of other transformations is atomic.

For now we will assume that all of our transforma-
tions are stable and deterministic. A transformation T
is stable if it never produces spurious output items, i.e.,
T (∅) = ∅. A transformation is deterministic if it always
produces the same output set given the same input set. All
of the example transformations we have seen are stable
and deterministic. An example of an unstable transforma-
tion is one that appends a fixed data item or set of items to
every output set, regardless of the input. An example of
a nondeterminstic transformation is one that transforms a
random sample of the input set. In practice we usually re-
quire transformations to be stable but often do not require
them to be deterministic. See [CW01] for a discussion of
when the deterministic assumption can be dropped.

2.2 Data Lineage

In the general case a transformation may inspect the en-
tire input data set to produce each item in the output data
set, but in most cases there is a much more fine-grained
relationship between the input and output data items: a
data item o in the output set may have been derived from
a small subset of the input data items (maybe only one),
as opposed to the entire input data set. Given a transfor-

I)I(= O

X

a
a
b

Y

2
0

−1

I

X

a

Y

2

0b

Figure 5: A transformation instance

mation instance T (I) = O and an output item o ∈ O,
we call the actual set I∗ ⊆ I of input data items that con-
tributed to o’s derivation the lineage of o, and we denote
it as I∗ = T ∗(o, I). The lineage of a set of output data
items O∗ ⊆ O is the union of the lineage of each item in
the set: T ∗(O∗, I) =

⋃

o∈O∗
T ∗(o, I). A detailed definition

of data lineage for different types of transformations will
be given in Section 3.

Knowing something about the workings of a transfor-
mation is important for tracing data lineage—if we know
nothing, any input data item may have participated in the
derivation of an output item. Let us consider an exam-
ple. Given a transformation T and its instance T (I) = O
in Figure 5, the lineage of the output item 〈a, 2〉 depends
on T ’s definition, as we will illustrate. Suppose T is a
transformation that filters out input items with a negative
Y value (i.e., T = σY≥0 in relational algebra). Then
the lineage of output item o = 〈a, 2〉 should include only
input item 〈a, 2〉. Now, suppose instead that T groups
the input data items based on their X values and com-
putes the sum of their Y values multiplied by 2 (i.e.,
T = αX,2∗sum(Y) as Y in relational algebra, where α
performs grouping and aggregation). Then the lineage of
output item o = 〈a, 2〉 should include input items 〈a,−1〉
and 〈a, 2〉, because o is computed from both of them. We
will refer back to these two transformations later (along
with our earlier examples from Section 1.2), so let us call
the first one T8 and the second one T9.

Given a transformation specified as a standard rela-
tional operator or view, we can define and retrieve the
exact data lineage for any output data item using the tech-
niques introduced in [CWW00]. On the other hand, if
we know nothing at all about a transformation, then the
lineage of an output item must be defined as the entire in-
put set. In reality transformations often lie between these
two extremes—they are not standard relational operators,
but they have some known structure or properties that can
help us identify and trace data lineage.

The transformation properties we will consider often
can be specified easily by the transformation author, or
they can be inferred from the transformation definition
(as relational operators, for example), or possibly even
“learned” from the transformation’s behavior. In this pa-
per, we do not focus on how properties are specified or
discovered, but rather on how they are exploited for lin-
eage tracing.

3 Tracing Using Transformation Properties

We consider three overall kinds of properties and provide
algorithms that trace data lineage using these properties.
First, each transformation is in a certain transformation
class based on how it maps input data items to output

I O

(b) aggregator

1

2

3

2

3
4
5
6

1

I O

(c) black−box

1 1

2

3

4
5 5

2

3
4

OI

(a) dispatcher

1

2

3

1
2

3
4
5
6

Figure 6: Transformation classes

items (Section 3.1). Second, we may have one or more
schema mappings for a transformation, specifying how
certain output attributes relate to input attributes (Sec-
tion 3.2). Third, a transformation may be accompanied
by a tracing procedure or inverse transformation, which
is the best case for lineage tracing (Section 3.3). When
a transformation exhibits many properties, we determine
the best one for lineage tracing based on a property hier-
archy (Section 3.4).

3.1 Transformation Classes

In this section, we define three transformation classes:
dispatchers, aggregators, and black-boxes. For each
class, we give a formal definition of data lineage and spec-
ify a lineage tracing procedure. We also consider sev-
eral subclasses for which we specify more efficient tracing
procedures. Our informal studies have shown that about
95% of the transformations used in real data warehouses
are dispatchers, aggregators, or their compositions (cov-
ered in Section 4), and a large majority fall into the more
efficient subclasses.

3.1.1 Dispatchers

A transformation T is a dispatcher if each input data
item produces zero or more output data items indepen-
dently: ∀I , T (I) =

⋃

i∈I

T ({i}). Figure 6(a) illustrates a

dispatcher, in which input item 1 produces output items
1–4, input item 3 produces output items 3–6, and in-
put item 2 produces no output items. The lineage of an
output item o according to a dispatcher T is defined as
T ∗(o, I) = {i ∈ I | o ∈ T ({i})}.

A simple procedure TraceDS(T , O∗, I) can be used
to trace the lineage of a set of output items O∗ ⊆ O ac-
cording to a dispatcher T . The procedure applies T to
the input data items one at a time and returns those items
that produce one or more items in O∗.2 Note that all of
our tracing procedures are specified to take a set of output
items as a parameter instead of a single output item, for
generality and also for tracing lineage through transfor-
mation sequences and graphs.

Example 3.1 (Lineage Tracing for Dispatchers)
Transformation T1 in Section 1.2 is a dispatcher, because
each input order produces one or more output orders via
T1. Given an output item o = 〈0101, AAA, 2/1/1999,
222, 10〉 based on the sample data of Figure 2, we

2For now we are assuming that the input set is readily available.
Cases where the input set is unavailable or unnecessary will be con-
sidered later.

can trace o’s lineage according to T1 using procedure
TraceDS(T1, {o}, Order) to obtain T ∗1 (o, Order) =
{〈0101, AAA, 2/1/1999, “333(10), 222(10)”〉}. Trans-
formations T2, T5, T6, and T7 in Section 1.2 and T8 in
Section 2.2 all are dispatchers, and we can similarly trace
data lineage for them.

�

TraceDS requires a complete scan of the input data
set, and for each input item i it calls transformation T
over {i} which can be very expensive if T has signifi-
cant overhead (e.g., startup time). In [CW01] we discuss
how indexes can be used to improve the performance of
TraceDS. Next we introduce a common subclass of dis-
patchers, filters, for which lineage tracing is trivial.

Filters. A dispatcher T is a filter if each input item pro-
duces either itself or nothing: ∀i ∈ I , T ({i}) = {i} or
T ({i}) = ∅. Thus, the lineage of any output data item is
the same item in the input set: ∀o ∈ O, T ∗(o) = {o}. The
tracing procedure for a filter T simply returns the traced
item set O∗ as its own lineage. It does not need to call
the transformation T or scan the input data set, which can
be a significant advantage in many cases (see Section 4).
Transformation T8 in Section 2.2 is a filter, and the lin-
eage of output item o = 〈a, 2〉 is the same item 〈a, 2〉 in
the input set. Other examples of filters are T2 and T6 in
Section 1.2.

3.1.2 Aggregators

A transformation T is an aggregator if T is complete
(defined momentarily), and for all I and T (I) = O =
{o1, . . . , on}, there exists a unique disjoint partition
I1, . . . , In of I such that T (Ik) = {ok} for k = 1..n.
I1, . . . , In is called the input partition, and Ik is ok’s lin-
eage according to T : T ∗(ok , I) = Ik. A transformation
T is complete if each input data item always contributes to
some output data item: ∀I 6= ∅, T (I) 6= ∅. Figure 6(b)
illustrates an aggregator, where the lineage of output item
1 is input items {1, 2}, the lineage of output item 2 is {3},
and the lineage of output item 3 is {4, 5, 6}.

Transformation T9 in Section 2 is an aggregator. The
input partition is I1 = {〈a,−1〉, 〈a, 2〉}, I2 = {〈b, 0〉},
and the lineage of output item o = 〈a, 2〉 is I1. Among the
transformations in Section 1.2, T4, T5, and T7 are aggre-
gators. Note that transformations can be both aggregators
and dispatchers (e.g., T5 and T7 in Section 1.2). We will
address how overlapping properties affect lineage tracing
in Section 3.4.

To trace the lineage of an output subset O∗

according to an aggregator T , we use procedure
TraceAG(T , O∗, I), which enumerates subsets of in-
put I . It returns the unique subset I∗ such that I∗ pro-
duces exactly O∗, i.e., T (I∗) = O∗, and the rest of
the input set produces the rest of the output set, i.e.,
T (I − I∗) = O − O∗. During the enumeration, we ex-
amine the subsets in increasing size. If we find a subset I ′

such that T (I ′) = O∗ but T (I − I ′) 6= O − O∗, we then
need to examine only supersets of I ′, which can reduce
the work significantly.

TraceAG may call T as many as 2|I| times in the
worst case, which can be prohibitive. We introduce two

procedure TraceCF(T , O∗, I)
I∗ ← ∅;
pnum← 0;
for each i ∈ I do

if pnum = 0 then I1 ← {i}; pnum← 1; continue;
for (k← 1; k ≤ pnum; k ++) do

if |T (Ik ∪ {i})| = 1 then Ik ← Ik ∪ {i}; break;
if k > pnum then pnum← pnum+ 1; Ipnum ← {i};

for k← 1..pnum do
if T (Ik) ⊆ O∗ then I∗ ← I∗ ∪ Ik;

return I∗;

Figure 7: Tracing proc. for context-free aggregators

common subclasses of aggregators, context-free aggrega-
tors and key-preserving aggregators, which allow us to
apply much more efficient tracing procedures.

Context-Free Aggregators. An aggregator T is context-
free if any two input data items either always belong to
the same input partition, or they always do not, regard-
less of the other items in the input set. In other words,
a context-free aggregator determines the partition that an
input item belongs to based on its own value, and not on
the values of any other input items. All example aggre-
gators we have seen are context-free. As an example of a
non-context-free aggregator, consider a transformation T
that clusters input data points based on their x-y coordi-
nates and outputs some aggregate value of items in each
cluster. Suppose T specifies that any two points within
distance d from each other must belong to the same clus-
ter. T is an aggregator, but it is not context-free, since
whether two items belong to the same cluster or not may
depend on the existence of a third item near to both.

We specify tracing procedure TraceCF(T , O∗, I) in
Figure 7 for context-free aggregators. This procedure first
scans the input data set to create the partitions (which we
could not do linearly if the aggregator were not context-
free), then it checks each partition to find those that pro-
duce items inO∗. TraceCF reduces the number of trans-
formation calls to |I2| + |I | in the worst case, which is a
significant improvement.

Key-Preserving Aggregators. Suppose each input item
and output item contains a unique key value in the re-
lational sense, denoted i.key for item i. An aggregator
T is key-preserving if given any input set I and its in-
put partition I1, . . . , In for output T (I) = {o1, . . . , on},
all subsets of Ik produce a single output item with the
same key value as ok, for k = 1..n. That is, ∀I ′ ⊆ Ik:
T (I ′) = {o′k} and o′k.key = ok.key.

Theorem 3.2 Key-preserving aggregators are context-
free.

�

All example aggregators we have seen are key-preserving.
As an example of a context-free but non-key-preserving
aggregator, consider a relational groupby-aggregation that
does not retain the grouping attribute.

To trace the lineage of O∗ according to a
key-preserving aggregator T , we use procedure
TraceKP(T , O∗, I), which scans the input data
set once and returns all input items that produce output

items with the same key as items in O∗. TraceKP
reduces the number of transformation calls to |I |, with
each call operating on a single input data item. We can
further improve performance of TraceKP using an
index, as discussed in [CW01].

3.1.3 Black-box Transformations

An atomic transformation is called a black-box transfor-
mation if it is neither a dispatcher nor an aggregator, and it
does not have a provided lineage tracing procedure (Sec-
tion 3.3). In general, any subset of the input items may
have been used to produce a given output item through a
black-box transformation, as illustrated in Figure 6(c), so
all we can say is that the entire input data set is the lin-
eage of each output item: ∀o ∈ O, T ∗(o, I) = I . Thus,
the tracing procedure for a black-box transformation sim-
ply returns the entire input I .

As an example of a true black-box, consider a trans-
formation T that sorts the input data items and attaches
a serial number to each output item according to its
sorted position. For instance, given input data set I =
{〈f, 10〉, 〈b, 20〉, 〈c, 5〉} and sorting by the first attribute,
the output is T (I) = {〈1, b, 20〉, 〈2, c, 5〉, 〈3, f, 10〉}, and
the lineage of each output data item is the entire input set
I . Note that in this case each output item, in particular its
serial number, is indeed derived from all input data items.

3.2 Schema Mappings

Schema information can be very useful in the ETL pro-
cess, and many data warehousing systems require trans-
formation programmers to provide some schema informa-
tion. In this section, we discuss how we can use schema
information to improve lineage tracing for dispatchers and
aggregators. Sometimes schema information also can im-
prove lineage tracing for a black-box transformation T ,
specifically when T can be combined with another non-
black-box transformation based on T ’s schema informa-
tion (Section 4). A schema specification may include:

input schemaA = 〈A1..Ap〉 and input key Akey ⊆ A
output schemaB = 〈B1..Bq〉 and output key Bkey ⊆ B

The specification also may include schema mappings, de-
fined as follows.

Definition 3.3 (Schema Mappings) Consider a transfor-
mation T with input schema A and output schema B.
Let A ⊆ A and B ⊆ B be lists of input and output at-
tributes. Let i.A denote the A attribute values of i, and
similarly for o.B. Let f and g be functions from tuples of
attribute values to tuples of attribute values. We say that

T has a forward schema mapping f(A)
T
→ B if we can

partition any input set I into I1, . . . , Im based on equality
of f(A) values,3 and partition the output set O = T (I)
into O1, . . . , On based on equality of B values, such that
m ≥ n and:

1. for k = 1..n, T (Ik) = Ok and Ik = {i ∈ I | f(i.A) =
o.B for any o ∈ Ok}.

3That is, two input items i1 ∈ I and i2 ∈ I are in the same partition
Ik iff f(i1.A) = f(i2 .A).

2. for k = (n+ 1)..m, T (Ik) = ∅.

Similarly, we say that T has a backward schema map-

ping A
T
← g(B) if we can partition any input set I into

I1, . . . , Im based on equality of A values, and partition
the output set O = T (I) intoO1, . . . , On based on equal-
ity of g(B) values, such thatm ≥ n and:

1. for k = 1..n, T (Ik) = Ok and Ik = {i ∈ I |i.A =
g(o.B) for any o ∈ Ok}.

2. for k = (n+ 1)..m, T (Ik) = ∅.

When f (or g) is the identity function, we simply write

A
T
→ B (or A

T
← B). If A

T
→ B and A

T
← B we write

A
T
↔ B.

�

Although Definition 3.3 may seem cumbersome, it for-
mally and accurately captures the intuitive notion of
schema mappings (certain input attributes producing cer-
tain output attributes) that transformations often exhibit.

Example 3.4 Schema information for transformation T5
in Section 1.2 can be specified as:

Input schema and key:
A = 〈prod-name, q1, q2, q3, q4〉, Akey = 〈prod-name〉

Output schema and key:
B = 〈prod-name, q1..q4, avg3〉. Bkey = 〈prod-name〉

Schema mappings:

〈prod-name, q1..q4〉
T5↔ 〈prod-name, q1..q4〉

f(〈q1..q3〉)
T5→ 〈avg3〉, where f(〈a, b, c〉) = (a+b+c)

3

�

Theorem 3.5 Consider a transformation T that is a dis-
patcher or an aggregator, and consider any instance
T (I) = O. Given any output item o ∈ O, let I∗ be o’s
lineage according to the lineage definition for T ’s trans-
formation class in Section 3.1. If T has a forward schema
mapping f(A)

T
→ B, then I∗ ⊆ {i ∈ I | f(i.A) = o.B}.

If T has a backward schema mapping A
T
← g(B), then

I∗ ⊆ {i ∈ I | i.A = g(o.B)}.
�

Based on Theorem 3.5, when tracing lineage for a dis-
patcher or aggregator, we can narrow down the lineage
of any output data item to a (possibly very small) sub-
set of the input data set based on a schema mapping.
We can then retrieve the exact lineage within that subset
using the algorithms in Section 3.1. For example, con-
sider an aggregator T with a backward schema mapping

A
T
← g(B). When tracing the lineage of an output item

o ∈ O according to T , we can first find the input subset
I ′ = {i ∈ I | i.A = g(o.B)}, then enumerate subsets of
I ′ using TraceAG(T , o, I ′) to find o’s lineage I∗ ⊆ I ′.
If we have multiple schema mappings for T , we can use
their intersection for improved tracing efficiency.

Although the narrowing technique of the previous
paragraph is effective, when schema mappings satisfy cer-
tain additional conditions, we obtain transformation prop-
erties that permit very efficient tracing procedures.

Definition 3.6 (Schema Mapping Properties) Consider
a transformation T with input schemaA, input keyAkey ,
output schemaB, and output key Bkey .

1. T is a forward key-map (fkmap) if it is complete
(∀I 6= ∅, T (I) 6= ∅) and it has a forward schema

mapping to the output key: f(A)
T
→ Bkey .

2. T is a backward key-map (bkmap) if it has
a backward schema mapping to the input key:

Akey
T
← g(B).

3. T is a backward total-map (btmap) if it has a
backward schema mapping to all input attributes:

A
T
← g(B).

�

Suppose that schema information and mappings are given
for all transformations in Section 1.2. Then all of the
transformations except T4 are backward key-maps; T2,
T5, and T6 are backward total-maps; T4, T5, and T7 are
forward key-maps.

Theorem 3.7 (1) All filters are backward total-maps. (2)
All backward total-maps are backward key-maps. (3) All
backward key-maps are dispatchers. (4) All forward key-
maps are key-preserving aggregators.

�

Theorem 3.8 Consider a transformation instance
T (I) = O. Given an output item o ∈ O, let I∗ be o’s
lineage based on T ’s transformation class as defined in
Section 3.1.

1. If T is a forward key-map with schema mapping

f(A)
T
→ Bkey , then I∗ = {i ∈ I |f(i.A) = o.Bkey}.

2. If T is a backward key-map with schema mapping

Akey
T
← g(B), then I∗ = {i ∈ I |i.Akey = g(o.B)}.

3. If T is a backward total-map with schema mapping

A
T
← g(B), then I∗ = {g(o.B)}.

�

According to Theorem 3.8, we can use simple trac-
ing procedures for transformations with the schema map-
ping properties specified in Definition 3.6. Procedure
TraceFM(T , O∗, I) performs lineage tracing for a for-
ward key-map T , which by Theorem 3.7 also could be
traced using procedure TraceKP from Section 3.1.2.
Both algorithms scan each input item once, however
TraceKP applies transformation T to each item, while
TraceFM applies function f to some attributes of each
item. Certainly f is very unlikely to be more expen-
sive than T , since T effectively computes f and may
do other work as well; f may in fact be quite a bit
cheaper. TraceBM(T , O∗, I) uses a similar approach
for a backward key-map, and is usually more efficient
than TraceDS(T , O∗, I) from Section 3.1.1 for the
same reasons. TraceTM(T , O∗) performs lineage trac-
ing for a backward total-map, which is very efficient since
it does not need to scan the input data set and makes no
transformation calls. In [CW01], we discuss how indexes
can be used to further speed up procedures TraceFM and
TraceBM.

3.3 Provided Tracing Procedure or Inverse

If we are very lucky, a lineage tracing procedure may be
provided along with the specification of a transformation
T . The tracing procedure TP may require access to the

Property Tracing # Transformation # Input
Procedure Calls Accesses

dispatcher TraceDS |I| |I|
filter return o 0 0

aggregator TraceAG O(2|I|) O(2|I|)
context-free aggr. TraceCF O(|I|2) O(|I|2)
key-preserving aggr. TraceKP |I| |I|

black-box return I 0 0

forward key-map TraceFM 0 |I|
backward key-map TraceBM 0 |I|
backward total-map TraceTM 0 0

tracing-proc. w/ input TP ? ?
tracing-proc. w/o input TP ? 0

Figure 8: Summary of transformation properties

input data set, i.e., TP(O∗, I) returnsO∗’s lineage accord-
ing to T , or the tracing procedure may not require access
to the input, i.e., TP(O∗) returns O∗’s lineage. A related
but not identical situation is when we are provided with
the inverse for a transformation T . Sometimes, but not
always, T ’s inverse can be used as T ’s tracing procedure.

Definition 3.9 (Inverse Transformation) A transforma-
tion T is invertible if there exists a transformation T −1

such that ∀I , T −1(T (I)) = I , and ∀O, T (T −1(O)) =
O. T −1 is called T ’s inverse.

�

Theorem 3.10 If a transformation T is an aggregator
with inverse T −1, then for all instances T (I) = O and
all o ∈ O, o’s lineage according to T is T −1({o}).

�

According to Theorem 3.10, we can use a transforma-
tion’s inverse for lineage tracing if the invertible transfor-
mation is an aggregator. However, if the invertible trans-
formation is a dispatcher or black-box, we cannot always
use its inverse for lineage tracing, as illustrated by an ex-
ample in [CW01].

Although we can guarantee very little about the accu-
racy or efficiency of provided tracing procedures or trans-
formation inverses in the general case, it is our experience
that, when provided, they are usually the most effective
way to perform lineage tracing. We will make this as-
sumption in the remainder of the paper.

3.4 Property Summary and Hierarchy

Figure 8 summarizes the transformation properties cov-
ered in the previous three sections. The table specifies
which tracing procedure is applicable for each property,
along with the number of transformation calls and num-
ber of input data item accesses for each procedure. We
omit transformation inverses from the table, since when
applicable they are equivalent to a provided tracing pro-
cedure not requiring input.

As discussed earlier, a transformation may satisfy
more than one property. Some properties are better than
others: tracing procedures may be more efficient, they
may return a more accurate lineage result, or they may not
require access to input data. Figure 9 specifies a hierarchy
for determining which property is best to use for a specific
transformation. In the hierarchy, a solid arrow from prop-
erty p1 to p2 means that p2 is more restrictive than p1,

black−box

aggregator

context−free aggr.

all

dispatcher

key−preserving aggr.

filter

tracing proc. w/ input

tracing proc. w/o input

11

10

9

7

6

8

1

4

2

forward key−map
backward key−map

backward total−map

5

3

Figure 9: Transformation property hierarchy

Best Property Additional Properties
T1 backward key-map
T2 filter
T3 see [CW01]
T4 forward key-map
T5 backward total-map forward key-map
T6 filter
T7 backward key-map forward key-map
T8 filter
T9 forward key-map

Figure 10: Properties of T1–T9

i.e., all transformations that satisfy property p2 also sat-
isfy property p1. Further, according to Sections 3.1–3.3,
whenever p2 is more restrictive than p1, the tracing proce-
dure for p2 is no less efficient (and usually more efficient)
by any measure: number of transformation calls, number
of input accesses, and whether the input data is required at
all. (Black-box transformations, which are the only type
with less accurate lineage results, are placed in a separate
branch of the hierarchy.) A dashed arrow from property
p1 to p2 in the hierarchy means that even though p2 is not
strictly more restrictive than p1, p2 does yield a tracing
procedure that again is no less efficient (and usually more
efficient) by any measure.4

Let us make the reasonable assumption that a provided
tracing procedure requiring input is more efficient than
TraceBM, and that a tracing procedure not requiring in-
put is more efficient than TraceTM. Then we can derive
a total order of the properties as shown by the numbers
in Figure 9: the lower the number, the better the prop-
erty is for lineage tracing. Given a set of properties for
a transformation T , we always use the best one, i.e., the
one with the lowest number, to trace data lineage for T .
Figure 10 lists the best property for example transforma-
tions T1–T7 from Section 1.2 and T8–T9 from Section 2.2,
along with other properties satisfied by these transforma-
tions. Note that we list only the most restrictive property
on each branch of the hierarchy.

4In some cases the tracing efficiency difference represented by a solid
or dashed arrow is significant, while in other cases it is less so. This issue
is discussed further in Section 4.

OII

2

3

1

1

2

3

1 2
2

1
2

3

5

6

4

Figure 11: T1 ◦ T2

4 Lineage Tracing through a Sequence

Having specified how to trace lineage for a single trans-
formation with one input set and one output set, we now
consider lineage tracing for sequences of such transforma-
tions. Multiple input and output sets and arbitrary acyclic
transformation graphs are covered in [CW01].

4.1 Data Lineage for a Transformation Sequence

Consider a simple sequence of two transformations, such
as T1 ◦ T2 in Figure 11 composed from Figures 6(a)
and 6(b). For an input data set I , let I2 = T1(I) and
O = T2(I2). Given an output data item o ∈ O, if I∗2 ⊆ I2
is the lineage of o according to T2, and I∗ ⊆ I is the
lineage of I∗2 according to T1, then I∗ is the lineage of o
according to T1 ◦ T2. For example, in Figure 11 if o ∈ O
is item 3, then I∗2 is items {4, 5, 6} in I2, and I∗ is items
{1, 3} in I . This lineage definition generalizes to arbitrar-
ily long transformation sequences using the associativity
of composition.

Given a transformation sequence T1 ◦ · · · ◦ Tn, where
each Ik is the intermediate result output from Tk−1 and in-
put to Tk, a correct but brute-force approach is to store all
intermediate results I2, . . . , In (in addition to initial input
I) at loading time, then trace lineage backward through
one transformation at a time. This approach is ineffi-
cient both due to the large number of tracing procedure
calls when iterating through all transformations in the se-
quence, and due to the high storage cost for all intermedi-
ate results. The longer the sequence, the less efficient the
overall tracing process, and for realistic transformation se-
quences (in practice sometimes as many as 60 transfor-
mations) the cost can be prohibitive. Furthermore, if any
transformation T in the sequence is a black-box, we will
end up tracing the lineage of the entire input to T regard-
less of what transformations follow T in the sequence.
Fortunately, it is often possible to relieve these problems
by combining adjacent transformations in a sequence for
the purpose of lineage tracing. Also since we do not al-
ways need input sets for lineage tracing as discussed in
Section 3, some intermediate results can be discarded.

We will use the following overall strategy.

• When a transformation sequence S = T1 ◦ · · ·◦Tn is
defined, we first normalize the sequence, to be spec-
ified in Section 4.2, by combining transformations
in S when it is beneficial to do so. We then deter-
mine which intermediate results need to be saved for
lineage tracing, based on the best properties for the
remaining transformations.

• When data is loaded through the transformation se-
quence, the necessary intermediate results are saved.

• We can then trace the lineage of any output data item
o in the warehouse through the normalized transfor-
mation sequence using the iterative tracing proce-
dure described at the beginning of this section.

4.2 Transformation Sequence Normalization

As discussed in Section 4.1, we want to combine trans-
formations in a sequence for the purpose of lineage trac-
ing when it is beneficial to do so. Specifically, we can
combine transformations Tk−1 and Tk by replacing the
two transformations with the single transformation T ′ =
Tk−1 ◦Tk, eliminating the intermediate result Ik and trac-
ing through the combined transformation in one step.

To decide whether combining a pair of transforma-
tions is beneficial, and to use combined transformations
for lineage tracing, as a first step we need to determine
the properties of a combined transformation based on the
properties of its component transformations. Function
Combine(T1, T2), specified in [CW01], returns com-
bined transformation T = T1 ◦ T2 and sets T ’s properties
based on those of T1 and T2.

Theoretically we can combine any adjacent transfor-
mations in a sequence, in fact we can collapse the en-
tire sequence into one large transformation, but com-
bined transformations may have less desirable properties
than their component transformations, leading to less ef-
ficient or less accurate lineage tracing. Thus, we want
to combine transformations only if it is beneficial to do
so. Given a transformation sequence, determining the
best way to combine transformations in the sequence is
a difficult combinatorial problem—solving it accurately,
or even just determining accurately when it is beneficial
to combine two transformations, would require a detailed
cost model that takes into account transformation prop-
erties, the cost of applying a transformation, the cost of
storing intermediate results, and an estimated workload
(including, e.g., data size and tracing frequency). Devel-
oping such a cost model is beyond the scope of this paper.

Instead, we suggest a greedy algorithm Normalize
shown in Figure 12. The algorithm repeatedly finds ben-
eficial combinations of transformation pairs in the se-
quence, combines the “best” pair, and continues until no
more beneficial combinations are found. In general, a
combination should be considered beneficial only if it re-
duces the overall tracing cost while improving or retain-
ing tracing accuracy. We determine whether it is benefi-
cial to combine two transformations based solely on their
properties using the following two heuristics. First, we
do not combine transformations into black-boxes, unless
we are certain that the combination will not degrade the
accuracy of the lineage result, which can only be deter-
mined as a last step of the Normalize procedure. Sec-
ond, we do not combine transformations if their com-
position is significantly worse for lineage tracing, i.e.,
it has much higher tracing cost or leads to a less accu-
rate result. We divide the properties in Figure 9 into five
groups: group 1 contains properties 1–3, group 2 con-
tains properties 4–8, group 3 contains property 9, group
4 contains property 10, and group 5 contains property
11. Within each group, the efficiency and accuracy of

the tracing procedures are fairly similar, while they dif-
fer significantly across groups. The group of a transfor-
mation T , denoted group(T), is the group that T ’s best
property belongs to. The lower the group number, the
better T is for lineage tracing, and we consider it bene-
ficial to combine two transformations T1 and T2 only if
group(T1 ◦ T2) ≤ max(group(T1), group(T2)).5

Based on the above approach, procedure BestCombo
in Figure 12, called by Normalize, finds the best pair of
adjacent transformations to combine in sequence S, and
returns its index. The procedure returns 0 if no combi-
nation is beneficial. We consider a beneficial combina-
tion to be the best if the combination leaves the fewest
“bad” transformations in the sequence, compared with
other candidates. Formally, we associate with S a vec-
tor N [1..5], where N [j] is the number of transformations
in S that belong to group j. (So

∑

j=1..5

N [j] equals the

length of S.) Given two sequences S1 and S2 with vec-
tors N1 and N2 respectively, let k be the highest index
in which N1[k] differs from N2[k]. We say N1 < N2 if
N1[k] < N2[k], which implies that S1 has fewer “bad”
transformations than S2. Then we say that the best com-
bination is the one that leads to the lowest vector N for
the resulting sequence.

After we finish combining transformations as de-
scribed above, suppose the sequence still contains one or
more black-box transformations. During lineage tracing,
we will end up tracing the lineage of the entire input to
the earliest (left-most) black-box T in S, regardless of
what transformations follow T . Therefore, as a final step
we combine T with all transformations that follow T to
eliminate unnecessary tracing and storage costs.

Our Normalize procedure has complexityO(n2) for
a transformation sequence of length n. Although we use a
greedy algorithm and heuristics for estimating the benefit
of combining transformations, our approach is quite ef-
fective in improving tracing performance for sequences,
as shown in [CW01].

Example 4.1 Consider the sequence of transformations
S = T4 ◦ T5 ◦ T6 ◦ T7 from Section 1.2. Figure 13 shows
the sequence and the best property of each transforma-
tion. The initial vector of S is N = [2, 2, 0, 0, 0]. Us-
ing our greedy normalization algorithm, we first consider
combining T4 ◦T5 into T ′4 with best property fkmap, com-
bining T5 ◦ T6 into T ′5 with best property btmap, or com-
bining T6 ◦ T7 into T ′6 with best property bkmap. It turns
out that all these combinations reduce S’s vector N to
[1, 2, 0, 0, 0]. So let us combine T4 ◦ T5 obtaining T ′4 , T6,
and T7. In the new sequence, combining T ′4 ◦T6 results in
a black-box, which is disallowed, while combining T6◦T7
results in a transformation T ′6 with best property bkmap,
which reducesN to [0, 2, 0, 0, 0]. Therefore, we choose to
combine T6 ◦ T7 obtaining T ′4 and T ′6 . Combining these
two transformations would result in a black-box, so we
stop at this point. The final normalized sequence is shown

5Note that the presence of non-key-map schema mappings (Section
3.2) or indexes [CW01] for a transformation T does not improve T ’s
tracing efficiency to the point of moving it to a different group. Thus,
we do not take these factors into account in our decision process.

procedure Normalize(S = T1 ◦ · · · ◦ Tn)
while (k ← BestCombo(S)) 6= 0

replace Tk and Tk+1 with T ← Combine(Tk, Tk+1);
if S contains black-box transformations then
j ← lowest index of a black-box in S;
replace Tj , . . . , Tn with T ← Tj ◦ · · · ◦ Tn;

procedure BestCombo(S = T1 ◦ · · · ◦ Tn)
k← 0; N [1..5] ← [0, 0, 0, 0, 0];
for j = 1..n do g← group(Tj); N [g]← N [g] + 1;
for j = 1..n − 1 do
curN ← N ;
T ← Combine(Tj , Tj+1); g ← group(T);
if g < 5 then // T is not a black-box
g1 ← group(Tj); g2 ← group(Tj+1);
curN [g]← curN [g] + 1;
curN [g1]← curN [g1]− 1;
curN [g2]← curN [g2]− 1;
if curN < N then k← j; N ← curN ;

return k;

Figure 12: Normalizing a transformation sequence

74 5 6

btmap bkmapfilterfkmap

Figure 13: Before normalization

o 5 o 7’

fkmap bkmap

4’ 6= =4 6

Figure 14: After normalization

in Figure 14.
�

5 Conclusions and Reminder
We have developed a complete set of techniques for
data warehouse lineage tracing when the warehouse
data is loaded through a graph of general trans-
formations. Some of our techniques are presented
in this version of the paper, but interested readers
are strongly encouraged to investigate the full ver-
sion [CW01] for a complete treatment of the topic:
http://dbpubs.stanford.edu/pub/2001-5.

References
[ACM+99] S. Abiteboul, S. Cluet, T. Milo, P. Mogilevsky, J. Simeon,

and S. Zohar. Tools for data translation and integration. IEEE Data
Engineering Bulletin, 22(1):3–8, March 1999.

[BB99] P. Bernstein and T. Bergstraesser. Meta-data support for data
transformations using Microsoft Repository. IEEE Data Engineering
Bulletin, 22(1):9–14, March 1999.

[BDH+95] P. Buneman, S.B. Davidson, K. Hart, G.C. Overton, and
L. Wong. A data transformation system for biological data sources.
In Proc. of the Twenty-first International Conference on Very Large
Data Bases, pages 158–169, Zurich, Switzerland, September 1995.

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing
and OLAP technology. SIGMOD Record, 26(1):65–74, March 1997.

[CR99] K.T. Claypool and E.A. Rundensteiner. Flexible database trans-
formations: The SERF approach. IEEE Data Engineering Bulletin,
22(1):19–24, March 1999.

[Cui01] Y. Cui. Lineage tracing in data warehouses. Ph.D. Thesis,
Computer Science Department, Stanford University, 2001.

[CW00] Y. Cui and J. Widom. Practical lineage tracing in data ware-
houses. In Proc. of the Sixteenth International Conference on Data
Engineering, pages 367–378, San Diego, California, February 2000.

[CW01] Y. Cui and J. Widom. Lineage tracing for gen-
eral data warehouse transformations. Technical re-
port, Stanford University Database Group, January 2001.
http://dbpubs.stanford.edu/pub/2001-5.

[CWW00] Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage
of view data in a warehousing environment. ACM Transactions on
Database Systems, 25(2):179–227, June 2000.

[DB2] IBM: DB2 OLAP Server. http://www.software.ibm.com/data/db2/.

[FJS97] C. Faloutsos, H.V. Jagadish, and N.D. Sidiropoulos. Recov-
ering information from summary data. In Proc. of the Twenty-Third
International Conference on Very Large Data Bases, pages 36–45,
Athens, Greece, August 1997.

[HMN+99] L.M. Haas, R.J. Miller, B. Niswonger, M.T. Roth, P.M.
Schwarz, and E.L. Wimmers. Transforming heterogeneous data with
database middleware: Beyond integration. IEEE Data Engineering
Bulletin, 22(1):31–36, March 1999.

[HQGW93] N. I. Hachem, K. Qiu, M. Gennert, and M. Ward. Manag-
ing derived data in the Gaea scientific DBMS. In Proc. of the Nin-
teenth International Conference on Very Large Data Bases, pages
1–12, Dublin, Ireland, August 1993.

[Inf] Informix Formation Data Transformation Tool.
http://www.informix.com/informix/products/integration/
formation/formation.html.

[LBM98] T. Lee, S. Bressan, and S. Madnick. Source attibution for
querying against semi-structured documents. In Proc. of the Work-
shop on Web Information and Data Management, pages 33–39,
Washington, DC, November 1998.

[LGMW00] W.J. Labio, H. Garcia-Molina, and J.L. Weiner. Efficient
resumption of interrupted warehouse loads. In Proc. of the ACM
SIGMOD International Conference on Management of Data, pages
46–57, Dallas, Texas, May 2000.

[LSS96] L. Lakshmanan, F. Sadri, and I.N. Subramanian. SchemaSQL
– a language for interoperability in relational multi-database sys-
tems. In Proc. of the Twenty-Second International Conference on
Very Large Data Bases, pages 239–250, India, September 1996.

[LW95] D. Lomet and J. Widom, editors. Special Issue on Materialized
Views and Data Warehousing, IEEE Data Engineering Bulletin 18(2),
June 1995.

[Mic] Microsoft SQL Server, Data Transformation Services.
http://msdn.microsoft.com/library/psdk/sql/dts ovrw.htm.

[Pow] Cognos: PowerPlay OLAP Data Analysis and Reporting Tool.
http://www.cognos.com/powerplay/.

[PPD] PPD Informatics: TableTrans Data Transformation Software.
http://www.belmont.com/tt.html.

[RH00] V. Raman and J. Hellerstein. Potters Wheel: An interactive
framework for data cleaning. Technical report, U.C. Berkeley, 2000.
http://control.cs.berkeley.edu/abc.

[RS98] A. Rosenthal and E. Sciore. Propagating integrity information
among interrelated databases. In Proc. of the Second Working Con-
ference on Integrity and Internal Control in Information Systems,
pages 5–18, Warrenton, Virginia, November 1998.

[RS99] A. Rosenthal and E. Sciore. First class views: A key to user-
centered computing. SIGMOD Record, 28(3):29–36, March 1999.

[Sag] Sagent Technology. http://www.sagent.com/.

[Shu87] N.C. Shu. Automatic data transformation and restructuring.
In Proc. of the Third International Conference on Data Engineering,
pages 173–180, Los Angeles, California, February 1987.

[Squ95] C. Squire. Data extraction and transformation for the data
warehouse. In Proc. of the ACM SIGMOD International Conference
on Management of Data, pages 446–447, California, May 1995.

[Sto75] M. Stonebraker. Implementation of integrity constraints and
views by query modification. In Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 65–78, California,
May 1975.

[WS97] A. Woodruff and M. Stonebraker. Supporting fine-grained data
lineage in a database visualization environment. In Proc. of the Thir-
teenth International Conference on Data Engineering, pages 91–102,
Birmingham, UK, April 1997.

