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Abstract

String data is ubiquitous, and its management has
taken on particular importance in the past few
years. Approximate queries are very important on
string data especially for more complex queries
involving joins. This is due, for example, to the
prevalence of typographical errors in data, and
multiple conventions for recording attributes such
as name and address. Commercial databases do
not support approximate string joins directly, and
it is a challenge to implement this functionality ef-
ficiently with user-defined functions (UDFs).

In this paper, we develop a technique for build-
ing approximate string join capabilities on top of
commercial databases by exploiting facilities al-
ready available in them. At the core, our tech-
nique relies on matching short substrings of length

� , called � -grams, and taking into account both
positions of individual matches and the total num-
ber of such matches. Our approach applies to both
approximate full string matching and approximate
substring matching, with a variety of possible edit
distance functions. The approximate string match
predicate, with a suitable edit distance threshold,
can be mapped into a vanilla relational expression
and optimized by conventional relational optimiz-
ers. We demonstrate experimentally the benefits
of our technique over the direct use of UDFs, us-
ing commercial database systems and real data.
To study the I/O and CPU behavior of approxi-
mate string join algorithms with variations in edit
distance and � -gram length, we also describe de-
tailed experiments based on a prototype imple-
mentation.
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1 Introduction
String data is ubiquitous. To name only a few common-
place applications, consider product catalogs (for books,
music, software, etc.), electronic white and yellow page
directories, specialized information sources such as patent
databases, and customer relationship management data.

As a consequence, management of string data in
databases has taken on particular importance in the past
few years. Applications that collect and correlate data from
independent data sources for warehousing, mining, and sta-
tistical analysis rely on efficient string matching to perform
their tasks. Here, correlation between the data is typically
based on joins between descriptive string attributes in the
various sources. However, the quality of the string infor-
mation residing in various databases can be degraded due
to a variety of reasons, including human typing errors and
flexibility in specifying string attributes. Hence the results
of the joins based on exact matching of string attributes are
often of lower quality than expected. The following exam-
ple illustrates these problems:

Example 1.1 [String Joins] Consider a corporation main-
taining various customer databases. Requests for correlat-
ing data sources are very common in this context. A spe-
cific customer might be present in more than one database
because the customer subscribes to multiple services that
the corporation offers, and each service may have de-
veloped its database independently. In one database, a
customer’s name may be recorded as John A. Smith,
while in another database the name may be recorded as
Smith, John. In a different database, due to a typing
error, this name may be recorded as Jonh Smith. A re-
quest to correlate these databases and create a unified view
of customers will fail to produce the desired output if exact
string matching is used in the join. �

Unfortunately, commercial databases do not directly
support approximate string processing functionality. Spe-
cialized tools, such as those available from Trillium Soft-
ware1, are useful for matching specific types of values
such as addresses, but these tools are not integrated with

1www.trillium.com



databases. To use such tools for information stored in
databases, one would either have to process data outside
the database, or be able to use them as user-defined func-
tions (UDFs) in an object-relational database. The former
approach is undesirable in general. The latter approach is
quite inefficient, especially for joins, because relational en-
gines evaluate joins involving UDFs whose arguments in-
clude attributes belonging to multiple tables by essentially
computing the cross-products and applying the UDFs in a
post-processing fashion.

To address such difficulties, we need techniques for ef-
ficiently identifying all pairs of approximately matching
strings in a database of strings. Whenever one deals with
matching in an approximate fashion, one has to specify the
approximation metric. Several proposals exist for strings
to capture the notion of “approximate equality.” Among
those, the notion of edit distance between two strings is
very popular. According to this notion, deletion, insertion,
and substitution of a character are considered as unit cost
operations and the edit distance between two strings is de-
fined as the lowest cost sequence of operations that can
transform one string to the other.

Although there is a fair amount of work on the problem
of approximately matching strings (see Section 6), we are
not aware of work related to approximately matching all
string pairs based on edit distance (or variants of it), as is
needed in approximate string joins. Moreover, we are not
aware of any work related to this problem in the context of
a relational DBMS.

In this paper, we present a technique for computing ap-
proximate string joins efficiently. At the core, our tech-
nique relies on matching short substrings of length � of the
database strings (also known as � -grams). We show how
a relational schema can be augmented to directly represent

� -grams of database strings in auxiliary tables within the
database in a way that will enable use of traditional rela-
tional techniques and access methods for the calculation of
approximate string joins. By taking into account the to-
tal number of such matches and the positions of individ-
ual � -gram matches we guarantee no false dismissals under
the edit distance metric, as well as variations of it, and the
identification of a set of candidate pairs with a few false
positives that can be later verified for correctness.

Instead of trying to invent completely new join algo-
rithms from scratch (which would be unlikely to be incor-
porated into existing commercial DBMSs), we opted for
a design that would require minimal changes to existing
database systems. We show how the approximate string
match predicate, with a suitable edit distance threshold, can
be mapped into a vanilla SQL expression and optimized
by conventional optimizers. The immediate practical ben-
efit of our technique is that approximate string processing
can be widely and effectively deployed in commercial re-
lational databases without extensive changes to the under-
lying database system. Furthermore, by not requiring any
changes in the DBMS internals, we can re-use existing fa-
cilities, like the query optimizer, join ordering algorithms
and selectivity estimation.

The rest of the paper is organized as follows: In Sec-
tion 2 we give the notation and the definitions that we will
use. Then, in Section 3 we introduce formally the prob-

lem of approximate string joins and we present our pro-
posal. In Section 4 we present the results of an experi-
mental study comparing the proposed approach to other ap-
plicable methods, demonstrating performance benefits and
presenting performance trends for several parameters of in-
terest. Finally, in Section 5 we describe how we can adapt
our techniques to address further problems of interest. In
particular we show how to incorporate an alternate string
distance function, namely the block edit distance (where
edit operations on contiguous substrings are inexpensive),
and we address the problem of approximate substring joins.

2 Preliminaries

2.1 Notation

We use
�

, possibly with subscripts, to denote tables, � ,
possibly with subscripts, to denote attributes, and � , pos-
sibly with subscripts, to denote records in tables. We use
the notation

��� ��� to refer to attribute ��� of table
�

, and��� � ��� �
	�� to refer to the value in attribute
��� � � of record�
	 .

Let  be a finite alphabet of size � �� . We use lower-
case Greek symbols, such as � , possibly with subscripts, to
denote strings in �� . Let ������ be a string of length � .
We use ����� ��������� , �� !�" �  !� , to denote a substring of� of length

�$# �&%'� starting at position � .
Definition 2.1 [Edit Distance] The edit distance between
two strings is the minimum number of edit operations (i.e.,
insertions, deletions, and substitutions) of single characters
needed to transform the first string into the second. �

2.2 ( -grams: A Foundation for Approximate String
Processing

Below, we briefly review the notion of positional � -grams
from the literature, and we give the intuition behind their
use for approximate string matching [16, 15, 13].

Given a string � , its positional � -grams are obtained by
“sliding” a window of length � over the characters of � .
Since � -grams at the beginning and the end of the string
can have fewer than � characters from � , we introduce new
characters “#” and “$” not in  , and conceptually extend
the string � by prefixing it with � # � occurrences of “#”
and suffixing it with � # � occurrences of “$”. Thus, each

� -gram contains exactly � characters, though some of these
may not be from the alphabet  .

Definition 2.2 [Positional � -gram] A positional � -gram
of a string � is a pair � �*)+����� ����� ��% � # � � � , where ����� ����� ��%

� # � � is the � -gram of � that starts at position � , counting on
the extended string. The set ,.- of all positional � -grams of
a string � is the set of all the � �/�0% � # � pairs constructed
from all � -grams of � . �

The intuition behind the use of � -grams as a foundation
for approximate string processing is that when two strings�21 and �43 are within a small edit distance of each other,
they share a large number of � -grams in common [15, 13].
The following example illustrates this observation.



Example 2.1 [Positional � -gram] The positional � -
grams of length � =3 for string john smith are�
(1,##j), (2,#jo), (3,joh), (4,ohn), (5,hn ),
(6,n s), (7, sm), (8,smi), (9,mit), (10,ith),
(11,th$), (12,h$$) � . Similarly, the positional � -
grams of length � =3 for string john a smith, which
is at an edit distance of two from john smith, are�
(1,##j), (2,#jo), (3,joh), (4,ohn), (5,hn ),
(6,n a), (7, a ), (8,a s), (9, sm), (10,smi),
(11,mit), (12,ith), (13,th$), (14,h$$) � . If
we ignore the position information, the two � -gram sets
have 11 � -grams in common. Interestingly, only the first
five positional � -grams of the first string are also positional

� -grams of the second string. However, an additional six
positional � -grams in the two strings differ in their posi-
tion by just two positions. This illustrates that, in general,
the use of positional � -grams for approximate string pro-
cessing will involve comparing positions of “matching” � -
grams within a certain “band.” �

In the next section we describe how we exploit the con-
cept of � -grams to devise effective algorithms for approxi-
mate string joins (as opposed to the individual approximate
string matches described above).

3 Approximate String Joins

In the context of a relational database, we wish to study
techniques and algorithms enabling efficient calculation of
approximate string joins. More formally, we wish to ad-
dress the following problem:

Problem 1 (Approximate String Joins) Given tables
� 1

and
� 3 with string attributes

� 1 � �$� and
� 3 � � 	 , and an

integer � , retrieve all pairs of records � ��) ��� � � � 1�� � 3
such that edit distance(

� 1 � �$� � �+�0) � 3 � � 	 � ��� � )  �� .

Our techniques for approximate string processing in
databases share a principle common in multimedia and spa-
tial algorithms. First, a set of candidate answers is obtained
using a cheap, approximate algorithm that guarantees no
false dismissals. We achieve this by performing a join on
the � -grams along with some additional filters that are guar-
anteed not to eliminate any real approximate match. Then,
as a second step, we use an expensive, in-memory algo-
rithm to check the edit distance between each candidate
string pair and we eliminate all false positives.

In the rest of this section we describe in detail the al-
gorithms used, and how they can be mapped into vanilla
SQL expressions. More specifically, the rest of the sec-
tion is organized as follows. In Section 3.1 we describe
the naive solution, which involves the direct application of
user-defined functions (UDFs) to address the problem. In
Section 3.2 we describe how to augment a database with

� -gram information that is needed to run the approximate
string joins. Finally, in Section 3.3 we describe a set of fil-
ters that we use to ensure a small set of candidates and we
describe how to map these filters into SQL queries that can
be subsequently optimized by regular query optimizers.

3.1 Exploiting User-Defined Functions

Our problem can be expressed easily in any object-
relational database system that supports UDFs, such as Or-
acle or DB2. One could register with the database a ternary
UDF edit distance(s1, s2, k) that returns true
if its two string arguments 	 ��)
	�� are within edit distance of
the integer argument � . Then, the approximate string join
problem for edit distance � could be represented in SQL as:

Q1:
SELECT

� 1 � � � ) � 3 � �"	
FROM

� 1 , � 3
WHERE edit distance(

� 1 � �$�*) � 3 � � 	 )
� )
To evaluate this query, relational engines would essen-

tially have to compute the cross-product of tables
� 1 and� 3 , and apply the UDF comparison as a post-processing

filter. However, the cross-products of large tables are huge
and the UDF invocation, which is an expensive predicate,
on every record in the cross-product makes the cost of the
join operation prohibitive. For these reasons, we seek a
better solution and we describe our approach next.

3.2 Augmenting a Database with Positional � -Grams

To enable approximate string processing in a database sys-
tem through the use of � -grams, we need a principled mech-
anism for augmenting the database with positional � -grams
corresponding to the original database strings.

Let
�

be a table with schema � �� )*� 1 ) ����� )���� � , such
that �  is the key attribute that uniquely identifies records
in
�

, and some attributes � � , ����� , are string-valued.
For each string attribute � � that we wish to consider for
approximate string processing, we create an auxiliary ta-
ble

� � � ( � �  )
����	�) (�������� � with three attributes. For a
string � in attribute � � of a record of

�
, its � �/� % � # � po-

sitional � -grams are represented as separate records in the
table

� ��� ( , where
� ��� ( � ����	 identifies the position of

the � -gram contained in
� � � ( � ( �!���"� . These � �/�*% � # �

records all share the same value for the attribute
� � � ( � �� ,

which serves as the foreign key attribute to table
�

.
Since the auxiliary � -gram tables are used only during

the approximate join operation, they can be created on-the-
fly, when the database wants to execute such an operation,
and deleted upon completion. In the experimental evalua-
tion (Section 4) we will show that the time overhead is neg-
ligible compared to the cost of the actual join. The space
overhead for the auxiliary � -gram table for a string field � �
of a relation

�
with � records is:

# � � � � ( ��$ � � � # ��� � � %&%�� % � � %'%���(*)	�+ 1 � ��� � ��� �
	 ���
where % is the size of the additional fields in the auxil-
iary � -gram table (i.e., �-, and ./��	 ). Since � � � # ���  
(0)	�+ 1 � ��� ��� � � 	 ��� , for any reasonable value of � , it follows
that

# � � � � (��  1� � � %2%���(*)	�+ 1 � ��� � ��� �
	 ��� . Thus, the
size of the auxiliary table is bounded by some linear func-
tion of � times the size of the corresponding column in the
original table.

After creating an augmented database with the auxiliary
tables for each of the string attributes of interest, we can



efficiently calculate approximate string joins using simple
SQL queries. We describe the methods next.

3.3 Filtering Results Using � -gram Properties

In this section, we present our basic techniques for pro-
cessing approximate string joins based on the edit distance
metric. The key objective here is to efficiently identify can-
didate answers to our problems by taking advantage of the

� -grams in the auxiliary database tables and using features
already available in database systems such as traditional ac-
cess and join methods.

For reasons of correctness and efficiency, we require no
false dismissals and few false positives respectively. To
achieve these objectives our technique takes advantage of
three key properties of � -grams, and uses the three filtering
techniques described below.

Count Filtering:

The basic idea of COUNT FILTERING is to take advantage
of the information conveyed by the sets , - � and , -�� of

� -grams of the strings � 1 and � 3 , ignoring positional infor-
mation, in determining whether � 1 and � 3 are within edit
distance � . The intuition here is that strings that are within
a small edit distance of each other share a large number of

� -grams in common.
This intuition has appeared in the literature earlier [14],

and can be formalized as follows. Consider a string � 1 , and
let � 3 be obtained by a substitution of a single character in� 1 . Then, the sets of � -grams ,�- � and , - � differ by at most

� (the length of the � -gram). This is because � -grams that
do not overlap with the substituted character must be com-
mon to the two sets, and there are only � � -grams that can
overlap with the substituted character. A similar observa-
tion holds true for single character insertions and deletions.
In other words, in these cases, � 1 and � 3 must have at least� ����� � � � 1 � ) � � 3 � � % � # ��� # � $ ����� � � � 1 � ) � � 3 � � # � � -grams
in common. When the edit distance between � 1 and � 3 is
� , the following lower bound on the number of matching
� -grams holds.

Proposition 3.1 Consider strings � 1 and � 3 , of lengths� � 1 � and � � 3 � , respectively. If � 1 and � 3 are within an edit
distance of � , then the cardinality of ,�- ��� , - � , ignoring
positional information, must be at least ����� � � � 1 � ) � �43 � � #� # � � # ���
	 � . �

Position Filtering:

While COUNT FILTERING is effective in improving the ef-
ficiency of approximate string processing, it does not take
advantage of � -gram position information.

In general, the interaction between � -gram match posi-
tions and the edit distance threshold is quite complex. Any
given � -gram in one string may not occur at all in the other
string, and positions of successive � -grams may be off due
to insertions and deletions. Furthermore, as always, we
must keep in mind the possibility of a � -gram in one string
occurring at multiple positions in the other string.

We define a positional � -gram � ��)�� 1 � in one string � 1 to
correspond to a positional � -gram � � )���3�� in another string

SELECT ���� �
� , ���� �
� , ���� ��� , ���� ���
FROM �� , �������� , �� , ��������
WHERE ���� �
�� !��������"� �
� AND

��#� �
�� !��������"� �
� AND
��$���%�"� ��&�')(+*, -��������"� ��&#'�(+* AND. ��/�����"� 0�1�2�34��������"� 0�1�2 .�5!6 AND. 2�78'�9;:�<>=%���� ���8?@3A2�7�')9;:�<@=B���� ���#? .�5!6

GROUP BY ���� �
��C/���� �D��C/���� ���ECE��#� ���
HAVING COUNT(*) FG2�7�')9;:�<@=B���� ���8?@3IH�3!= 6 3-H�?KJ�L AND

COUNT(*) FG2�7�')9;:�<@=B���� ���)?@3IH�3!= 6 3IH�?KJ
L AND

edit distance( ���� ���ECE��#� ���#C 6 )

Figure 1: Query Q2: Expressing COUNT FILTERING, PO-
SITION FILTERING, and LENGTH FILTERING as an SQL
expression.

� 3 if � 1 $M� 3 and � ��)���1 � , after the sequence of edit opera-
tions that convert � 1 to � 3 , “becomes” � -gram � � )�� 3 � in the
edited string.

Example 3.1 [Corresponding � -grams] Consider the
strings �21 $ONQP>NKR>NQP>NSNKP>N and � 3&$ONKP>NSNQP>NTNQP>N . The
edit distance between these strings is 1 (delete x to trans-
form the first string to the second). Then �/U )
�SV � � in � 1
corresponds to �/W ) �SV � � in � 3 but not to �/X ) �SV � � . �

Notwithstanding the complexity of matching positional
� -grams in the presence of edit errors in strings, a useful fil-
ter can be devised based on the following observation [13].

Proposition 3.2 If strings � 1 and � 3 are within an edit dis-
tance of � , then a positional � -gram in one cannot corre-
spond to a positional � -gram in the other that differs from
it by more than � positions. �

Length Filtering:

We finally observe that string length provides useful infor-
mation to quickly prune strings that are not within the de-
sired edit distance.

Proposition 3.3 If two strings �21 and �43 are within edit
distance � , their lengths cannot differ by more than � . �

SQL Expression and Evaluation:

What is particularly interesting is that COUNT FILTER-
ING, POSITION FILTERING, and LENGTH FILTERING can
be naturally expressed as an SQL expression on the aug-
mented database described in Section 3.2, and efficiently
implemented by a commercial relational query engine. The
SQL expression Q2, shown in Figure 1, modifies query Q1
in Section 3.1 to return the desired answers.

Consequently, if a relational engine receives a request
for an approximate string join, it can directly map it to a
conventional SQL expression and optimize it as usual. (Of
course, � and � are constants that need to be instantiated
before the query is evaluated.)

Essentially, the above SQL query expression joins the
auxiliary tables corresponding to the string-valued at-
tributes

� 1 � � � and
� 3 � � 	 on their Qgram attributes, along

with the foreign-key/primary-key joins with the original



database tables
� 1 and

� 3 to retrieve the string pairs that
need to be returned to the user.

The POSITION FILTERING is implemented as a condi-
tion to the WHERE clause of the SQL expression above. The
WHERE clause will prune out any pair of strings in

� 1 � � 3
that share many � -grams in common but that are such that
the positions of the identical � -grams differ substantially.
Hence, such pairs of strings will be eliminated from consid-
eration before the COUNT(*) conditions in the HAVING
clause are tested. Furthermore, this filter reduces the size
of the � -gram join, hence it makes the computation of the
query faster, since fewer pairs of � -grams have to be ex-
amined by the GROUP BY and the HAVING clause. The
simplicity of this check when coupled with the ability of
relational engines to use techniques like band-join process-
ing [6] makes this a worthwhile filter.

The LENGTH FILTERING is implemented as an addi-
tional condition to the WHERE clause of the SQL expres-
sion above, which compares the lengths of the two strings.
Again, like the POSITION FILTERING technique, this filter
reduces the size of the � -gram join, and subsequently the
size of the candidate set.

Finally the COUNT FILTERING is implemented mainly
by the conditions in the HAVING clause. The string pairs
that share only a few � -grams (and not significantly many)
will be eliminated by the COUNT(*) conditions in the
HAVING clause. Any string pairs in

� 1�� � 3 that do not
share any � -grams are eliminated by the conditions in the
WHERE clause.

However, even after the filtering steps the candidate
set may still have false positives. Hence, the expensive
UDF invocation edit distance(

� 1 � �$� ) � 3 � � 	 ) � )
still needs to be performed, but hopefully on just a small
fraction of all possible string pairs.

We have included all the three filtering mechanisms in
Q2. Of course any one of these filtering mechanisms may
be left out of query Q2, and resulting queries will still per-
form our task albeit perhaps less efficiently. In Section 4,
we quantify the benefits of each of the filtering mechanisms
individually.

In Section 4, we quantify this performance difference
using commercial database systems and real data sets. By
examining the query evaluation plans generated by com-
mercial database systems, under varying availability of ac-
cess methods, we observed that relational engines make
good use of traditional access methods and join methods
in efficiently evaluating the above SQL expression.

4 Experimental Evaluation
In this section we present the results of an experimental
comparison analyzing various trends in the approximate
string processing operations. We start in Section 4.1 by
describing the data sets that we used in our experiments.
Then, in Section 4.2 we discuss the baseline experiments
that we conducted using a commercial DBMS to compare
our approach for approximate string joins against an im-
plementation that uses SQL extensions in a straightforward
way. Finally, in Section 4.3 we report additional experi-
mental results for our technique using a prototype relational
system we developed.

4.1 Data Sets

All data sets used in our experiments are real, with string
attributes extracted by sampling from the AT&T WorldNet
customer relation database. We have used three different
data sets set1, set2, and set3 for our experiments with dif-
ferent distributional characteristics.

Set1 consists of the first and last names of people. Set1
has approximately 40K tuples, each with an average length
of 14 characters. The distribution of the string lengths
in set1 is depicted in Figure 2(a): the lengths are mostly
around the mean value, with small deviation. Set2 was
constructed by concatenating three string attributes from
the customer database. Set2 has approximately 30K tu-
ples, each with an average length of 38 characters. The
distribution of the string lengths in set2 is depicted in Fig-
ure 2(b): the lengths follow a close-to-Gaussian distribu-
tion, with an additional peak around 65 characters. Finally,
set3 was constructed by concatenating two string attributes
from the customer database. Set3 has approximately 30K
tuples, each with an average length of 33 characters. The
distribution of the string lengths in set3 is depicted in Fig-
ure 2(c): the length distribution is almost uniform up to a
maximum string length of 67 characters.

4.2 DBMS Implementation

The first experiment we performed was to compare our ap-
proach with a straightforward SQL formulation of the prob-
lem with a function to compute the edit distance of two
strings as a UDF, and performing a join query by essen-
tially using the UDF invocation as the join predicate. This
is a baseline comparison to establish the benefits of our ap-
proach. We implemented the function to assess the edit
distance of two strings as a UDF2 and we registered it in a
commercial DBMS (Oracle 8i) running on a SUN 20 En-
terprise Server.

We started by issuing the Q1 query (see Section 3.1) to
the DBMS, to evaluate a self-join on set1. As expected,
the DBMS chose a nested loop join algorithm to evaluate
the join. We tried to measure the execution times over this
data set, but unfortunately the estimated time to finish the
processing was extremely high (more than 3 days). There-
fore, to compare our approach with the direct use of UDFs
we decided to compare the methods for a random subset of
set1 consisting of 1,000 strings. Hence, we issued the Q1
self-join query to determine string pairs in the small data
set within edit distance of � . Moreover, to assess the utility
of the proposed filters when applied as UDF functions, we
registered an additional UDF that first applies the filtering
techniques we proposed on pairs of strings supplied in the
input, and if the string pair passes the filter, then determines
if the strings are within distance � . Each of these queries
took about 30 minutes to complete for this small data set.
Applying filtering and edit distance computation within the
UDF requires slightly longer time compared to Q1. Finally,
we issued query Q2, which implements our technique (Sec-
tion 3.3). The execution times in this case are in the order of
one minute. The execution time increases as edit distance

2We implemented the
� =B< 6 ? decision algorithm to decide whether

two strings match or not within edit distance
6
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Figure 2: Distribution of String Lengths for the (a) set1, (b) set2, and (c) set3 Data Sets.
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Figure 3: Executing Queries Q1 and Q2 over the Sample
Database.

increases, since more strings are expected to be within the
specified edit distance, and we have to verify more string
pairs. The results are reported in Figure 3. It is evident
that using our relational technique offers very large perfor-
mance benefits, being more than 20 times faster than the
straightforward UDF implementation.

Using query Q2, we also experimented with various
physical database organizations for the commercial DBMS
and observed the plans generated. When there were no in-
dexes available on the � -gram tables, the joins are executed
using hash-join algorithms and the group-by clause is ex-
ecuted using hashing. When there is an index on one or
on both � -gram tables joins use sort-merge-join algorithms
and the group-by clause is executed using hashing.

4.3 Performance of Approximate String Processing
Algorithms

Based on the intuition obtained using the commercial
DBMS, we developed a home-grown relational system pro-
totype to conduct further experiments in a more controlled
and flexible fashion, disassociating ourselves and our ob-
servations from component interactions between DBMS
modules.

We emphasize that our objective is to observe perfor-
mance trends under the parameters that are associated with
our problem (i.e., � -gram size, number of errors allowed).
These experiments are not meant to evaluate the relative
performance of the join algorithms. Choosing which algo-
rithm to use in each case is the task of the query optimizer
and modern optimizers are effective for this task.

We conducted experiments using our prototype and the
data sets of Section 4.1. In our prototype, LENGTH FIL-
TERING and POSITION FILTERING are applied before cre-
ating the join on the � -gram relations. Then, COUNT FIL-
TERING takes place using hashing on the output of the join
operations between � -gram relations. We used two perfor-
mance metrics: the size of the candidate set and the total
running time of the algorithm decomposed into processor

time and I/O time. The processor time includes the time to
validate the distance between candidate pairs, and the I/O
time includes the time for querying the auxiliary tables.

The results below do not include the time to generate
and index the auxiliary tables. For all the data sets the time
spent to generate the auxiliary tables was less than 100 sec-
onds and the time to create a B-tree index on them, using
bulk loading, was less than 200 seconds. Hence, it seems
feasible to generate these tables on the fly before an ap-
proximate string join.

We now analyze the performance of approximate string
join algorithms under various parameters of interest.

Effect of Filters

In the worst case (like in query Q1), the cross product of
the relations has to be tested for edit distance. The aim of
introducing filters was to reduce the number of candidate
pairs tested. The perfect filter would eliminate all the false
positives, giving the exact answer that would need no fur-
ther verification. To examine how effective each filter and
each combination of filters is, we ran different queries, en-
abling different filters each time, and measured the size of
the candidate set. Then, we compared its size against that
of the cross product and against the size of the real answer
with no false positives.

We examined first the effectiveness of LENGTH FIL-
TERING for the three data sets. As expected, LENGTH FIL-
TERING was not so effective for set1, which has a limited
spread of string lengths (Figure 2(a)). LENGTH FILTER-
ING gave a candidate set that was between 40% to 70% of
the cross-product size (depending on the edit distance). On
the other hand, LENGTH FILTERING was quite effective
for set2 and set3, which have strings of broadly variable
lengths (Figure 2(b) and (c)). The candidate set size was
between 1.5% to 10% of the cross-product size. The de-
tailed results are shown in Figure 4.

Enabling COUNT FILTERING in conjunction with
LENGTH FILTERING causes a dramatic reduction on the
number of candidate pairs: on average (over the various
combinations of � and � tested) the reduction is more than
99% for all three data sets. On the other hand, enabling
POSITION FILTERING with LENGTH FILTERING reduces
the number of candidate pairs, but the difference is not so
dramatic. On average it shrinks the size of the candidate
set by 50%. Finally, enabling all the filters together worked
best, as expected, with only 50% as many candidate pairs as
those without POSITION FILTERING, confirming our previ-
ous measurement that position filtering reduces the candi-
date set by a factor of two. The comparative results for the
three data sets are depicted in Figure 4.
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Figure 4: Candidate Set Size for Various Filter Combinations and the (a) set1, (b) set2, and (c) set3 Data Sets ( � =2).
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Figure 5: Candidate Set Size for Various � -gram Lengths
with All Filters Enabled.

Our experiments indicate that a small value of � tends to
give better results. We observe that values of � greater than
three give consistently worse results compared to smaller
values. This is due to the threshold for COUNT FILTER-
ING, which gets less tight for higher � ’s. Furthermore,
the value of � =1 gives worse results than � =2, because the
value � =1 does not allow for � -gram overlap. When � =2 or

� =3, the results are inconclusive. However, since a higher
value of � results in increased space overhead (Section 3.2),

� =2 seems preferable. The increased efficiency for � � �
confirms approximate theoretical estimations in [10] about
the optimal value of � for approximate string matching with
very long strings ( � $ ������� �	� � � � , where � is the length of
the string). In Figure 5 we plot the results for � =2 and � =3.

Finally, we examined the effect of LENGTH FILTERING
and POSITION FILTERING on the size of the � -gram join
(i.e., the number of tuples in the join of the � -gram ta-
bles before the application of the GROUP BY, HAVING
clause). The effectiveness of these filters plays an impor-
tant role in the execution time of the algorithm. If the filters
are effective, the � -gram join is small and the calculation
of COUNT FILTERING is faster, because the GROUP BY,
HAVING clauses have to examine fewer � -gram pairs. Our
measurements show that LENGTH FILTERING decreases
the size of the � -gram join by a factor of 2 to 12 compared
to the naive equijoin on the � -gram attribute (the decrease
was higher for set2 and set3). Furthermore, POSITION FIL-
TERING, combined with LENGTH FILTERING, gives even
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Figure 6: Size of the � -gram Joins for Various Filter Com-
binations.

better results, resulting in join sizes that are up to two or-
ders of magnitude smaller than that from the equijoin. In
Figure 6 we illustrate the effectiveness of the filters for set1
and set2 (the results for set3 were similar to the ones for
set2). These results validate our intuition that POSITION
FILTERING is a useful filter, especially in terms of time ef-
ficiency.

Effect of Different Query Plans

We first report the trends for algorithms that do not make
use of indexes on the � -gram relations, and then show the
trends for the algorithms that use indexes on the � -gram
relations to perform the join operations. We describe our
observations in the sequel. Due to space constraints, we
present only results for self-joins using set1. The perfor-
mance trends are similar for the other data sets and for joins
that are not self-joins.

No Index Available: In the absence of indexes on re-
lations

� ��� ( , the applicable algorithms are Nested Loops
(NL), Hash Join (HJ), and Sort-Merge Join (SM). We omit
NL from the plots, as this algorithm takes approximately
14 hours to complete for edit distance � =1. Figures 7(a)(b)
show the results as the edit distance threshold is increased
for � -gram size of 3 (Figure 7(a)). We observe that as
the distance threshold is increased, the overall execution
time increases both in processor and I/O time. The trends
match our expectations: I/O time increases as the number
of candidate pairs increases, because more pairs are hashed



during the hash-based counting phase, for both algorithms.
Processor time increases since the candidate set has more
string pairs, thus more strings have to be tested. As � and �

increase, the overall time increases (Figure 7(b)). Both al-
gorithms become heavily processor bound for � =3, � =5 as
COUNT FILTERING becomes less effective and large num-
bers of false positive candidates are generated that subse-
quently have to be verified.

Indexes Available: We differentiate between two cases:
(a) one of the two relations joined is indexed, and (b) both
relations have B-tree indexes on them. In the first case, we
present results for Indexed Nested Loops (INL) and SM.
When both relations have indexes on them, SM is tested.
When there is only one index, then SM performs much
better than INL. Figures 7(c)(d) present the results for this
case. INL performs multiple index probes and incurs a high
I/O time. The performance trends are consistent with those
observed above for the no index case, both for varying � -
gram size and for varying the edit distance threshold. When
the size of the � -gram relations involved varies (e.g., when
one relation consists only of a few strings), the trends are
the same both for increasing the � -gram size as well as for
increasing � . In this case, however, INL performs fewer in-
dex probes and might be chosen by the optimizer. In prac-
tice, the DBMS picks INL as the algorithm of choice only
when one of the � -gram relations is very small compared
to the other. For all the other cases, SM was the algorithm
of choice and this is also confirmed by our measurements
with the prototype implementation.

Figures 7(e)(f) present the results for the case when in-
dexes are available on both relations for increasing number
of errors and two � -gram sizes (Figure 7(e)) and increasing

� -gram size for two values of � (Figure 7(f)). The per-
formance trends are consistent with those observed so far,
both for varying � -gram size and for varying the edit dis-
tance threshold.

5 Extensions
We now illustrate the utility of our techniques for two ex-
tensions of our basic problems: (i) approximate substring
joins, and (ii) approximate string joins when we allow block
moves to be an inexpensive operation on strings.

5.1 Approximate Substring Joins

The kinds of string matches that are of interest are often
based on one string being a substring of another, possi-
bly allowing for some errors. For example, an attribute
CityState of one table may contain city and state in-
formation for every city in the United States, while an-
other attribute CustAddress (of a different table) may
contain addresses of customers. One might be interested
in correlating information in the two tables based on val-
ues in the CityState attribute being substrings of the
CustAddress attribute, allowing for errors based on an
edit distance threshold. The formal statement of the ap-
proximate substring join problem is:

Problem 2 (Approximate Substring Join) Given tables� 1 and
� 3 with string attributes

� 1 � � � and
� 3 � �"	 ,

and an integer � , retrieve all pairs of records � ��) �
� � �

� 1 � � 3 such that for some substring � of
� 3 � � 	 � ��� � ,

edit distance(
� 1 � �$� � �+� ) � )  �� .

In order to use our approach, we reexamine what filter-
ing techniques can be applied for this problem. For a string�21 to be within edit distance � of a substring � � of � 3 , it
must be the case that � 1 and � � (and hence � 3 ) must have
a certain minimum number of matching � -grams. Addi-
tionally, the positions of these matches must be in the right
order and cannot be too far apart.

Clearly, LENGTH FILTERING is not applicable in this
case. However, it follows from the first observation above
that COUNT FILTERING is still applicable. Proposition 3.1
needs to be replaced by the following (weaker) proposition:

Proposition 5.1 Consider strings � 1 and � 3 . If � 3 has a
substring � � such that � 1 and � � are within an edit distance
of � , then the cardinality of ,.- � � , - � , ignoring positional
information, must be at least � � 1 � %'� # � ��% ���
	 � . �

The applicability of POSITION FILTERING is complex.
While it is true from the second observation above that the
positions of the � -gram matches cannot be too far apart,
the � -gram at position � in � 1 may match at any arbitrary
position in � 3 and not just in � � � . Hence, POSITION
FILTERING is not directly applicable for approximate sub-
string matching.

The SQL query expression for computing an approxi-
mate substring join between

� 1 and
� 3 incorporating “sub-

string style” can be easily devised from query Q2, if we
remove the clauses that perform the position and length fil-
tering and we replace the edit distance UDF with the ap-
propriate one.

The standard algorithm for determining all approximate
occurrences of a string � 1 in � 3 is rather expensive, taking
time � � � � � in the worst case. Here we develop an alterna-
tive filtering algorithm, called Substring Position Filtering
(SPF), that is based on � -grams and their relative positions,
and quickly (in quadratic time) provides a check whether
one string � 1 is an approximate substring of another string� 3 . We will briefly describe the SPF algorithm here; for
given strings � 1 and � 3 , SPF certifies � 3 to be a candidate
for approximate match of � 1 as an approximate substring
in one or more places within threshold � . As before, this is
a filter with no false dismissals.

SPF works by finding any one place where � 1 poten-
tially occurs in � 3 , if any. Let � � be the ����� � -gram in
string � 1 , �  �  �	��
� $ � � 1 ��% � # � . Let . ��	 � ��� ) � 3 �
be the set of positions in � 3 at which � -gram � � occurs;
this set may be empty. The algorithm, shown in Figure 8,
may be thought of as using standard dynamic programming
for edit-distance computation, but savings are achieved by
(i) applying the algorithm sparsely only at a subset of po-
sitions in � 3 guided by the occurrences of certain � -grams
(line 3 of SPF), and (ii) applying only part of the dynamic
programming, again guided by certain � -grams (line 5 of
SPF). Algorithm SubMatch is the dynamic programming
part, which is described here in a top-down recursive way
where the table SubMatchArray is filled in as it is com-
puted and read as needed (this is needed since which en-
tries of the SubMatchArray will be computed depends on
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Figure 7: Response Time (in seconds) for Various Physical Database Organizations.

Algorithm SPF( � � , � � ,
6

)
�

missing = 0;
for ( �> H ; � 5 ������� ; �
	�	 )

for �����1�2)=����EC � ��?
cost = SubMatch( � ��C���	�H�C��
	-H );
if ((missing 	 cost)

5!6 JDL )
return

� � ��� ;
missing 	�	 ;

return � ;
�
SubMatch( � , � , � ) �

if ( ����������� ) return 0;
if SubMatchArray � ��C���� already computed, return it.
if ( ���� 1�2�=�� �EC � ? )

return SubMatch( � C�� 	-H�C��
	-H );
insertion cost = 1 	 SubMatch( � C���	-H�C!� );
deletion cost = 1 	 SubMatch( � C���C!�
	-H );
substitution cost = 1 	 SubMatch( � C���	-H�C"�#	�H );
SubMatchArray � ��C$���K &%('*) � insertion cost,

deletion cost, substitution cost �
return SubMatchArray � ��C���� ;

�
Figure 8: Substring Position Filtering (SPF) Algorithm.

relative occurrences of � -grams, and cannot be ascertained
a priori).

5.2 Allowing for Block Moves

Traditional string edit distance computations are for sin-
gle character insertions, deletions, and substitutions. How-
ever, in many applications we would like to allow block

move operations as well. A natural example is in match-
ing names of people; we would like to be able to match
“first-name last-name” with “last-name, first-name” using
an error metric that is independent of the length of first-
name or last-name. It turns out that the � -gram method is
well suited for this enhanced metric. For this purpose, we
begin by extending the definition of edit distance.

Definition 5.1 [Extended Edit Distance] The extended
edit distance between two strings is the minimum cost of
edit operations needed to transform the first string into the
second. The operations allowed are single-character inser-
tion, deletion, and substitution at unit cost, and the move-
ment of a block of contiguous characters at a cost of + units.

�

The extended edit distance between two strings � 1 and� 3 is symmetric and �  extended edit distance � � 1 )+� 3 �" 
� �-, � � � 1 � ) � � 3 � � .
Theorem 5.1 Let ,.- � and , - � be the sets of � -grams (of
length � ) for strings � 1 and � 3 in the database. If � 1 and � 3
are within an extended edit distance of � , then the cardinal-
ity of , - �#� ,.- � , ignoring positional information, is at least� � � � � � 1 � ) � � 3 � � # � #/. � � # ��� �#0 + � , where + � $ �&1$2 � . )3+ � .

Intuitively, the bound arises from the fact that the block
move operation can transform a string of the form 46587#9
to 4:7
589 , which can result in up to

. � #;.
mismatching

� -grams.



Based on the above observations, it is easy to see that
one can apply COUNT FILTERING (with a suitably modi-
fied threshold) and LENGTH FILTERING for approximate
string processing with block moves. However, incorporat-
ing POSITION FILTERING is difficult as described earlier
because block moves may end up moving � -grams arbi-
trarily. Nevertheless, we can design an enhanced filtering
mechanism (just as we did with the SPF algorithm in the
previous section) and incorporate it together with count fil-
tering into a SQL query as before. Due to space limitation
we do not list the details.

6 Related Work
A large body of work has been devoted to the development
of efficient solutions to the approximate string matching
problem. For two strings of length � and � , available in
main memory, there exists a folklore dynamic program-
ming algorithm to compute the edit distance of the strings
in � � � � � time and space [12]. Improvements to the ba-
sic algorithm have appeared, offering better average and
worst case running times as well as graceful space behav-
ior. Due to space limitations, we do not include a detailed
survey here, but we refer the reader to [10] for an excellent
overview of the work as well as additional references.

Identifying strings approximately in secondary storage
is a relatively new area. Indexes such as Glimpse [9] store a
dictionary and use a main memory algorithm to obtain a set
of words to retrieve. Exact text searching is applied there-
after. These approaches are rather limited in scope due to
the static nature of the dictionary, and they are not suitable
for dynamic environments or when the domain of possible
strings is unbounded. Other approaches rely on suffix trees
to guide the search for approximate string matches [4, 11].
In [1], Baeza-Yates and Gonnet solve the problem of exact
substring joins, using suffix arrays and outside the context
of a relational database.

In the context of databases, several indexing techniques
proposed for arbitrary metric spaces [3, 2] could be applied
for the problem of approximately retrieving strings. How-
ever such structures have to be supported by the database
management system.

Cohen [5] presented a framework for the integration of
heterogeneous databases based on textual similarity and
proposed WHIRL, a logic that reasons explicitly about
string similarity using TF-IDF term weighting, from the
vector-space retrieval model, rather than the notions of edit
distance on which we focus in this paper.

Grossman et al. [7, 8] presented techniques for repre-
senting text documents and their associated term frequen-
cies in relational tables, as well as for mapping boolean
and vector-space queries into standard SQL queries. In this
paper, we follow the same general approach of translating
complex functionality not natively supported by a DBMS
(approximate string queries in our case) into operations and
queries that a DBMS can optimize and execute efficiently.

7 Conclusions
String processing in databases is a very fertile and useful
area of research, especially given the proliferation of web

based information systems. The main contribution of this
paper is an effective technique for supporting approximate
string processing on top of a database system, by using
the unmodified capabilities of the underlying system. We
showed that significant performance benefits are to be had
by using our techniques.
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