
Developing an Indexing Scheme for XML Document
Collections using the Oracle8i Extensibility Framework

Seema Sundara Ying Hu Timothy Chorma Jagannathan Srinivasan

{Seema.Sundara, Ying.Hu, Timothy.Chorma, Jagannathan.Srinivasan}@oracle.com

Oracle Corporation
One Oracle Drive, Nashua, NH 03062, USA

Abstract

Despite the success of the Oracle8i Extensibility
Framework to index data from diverse domains
(including text, images, spatial objects, chemical
compounds, molecular structures, and genomic
sequences), developing an indexing scheme is
perceived as a difficult task, to be embarked
upon only by experts, that too, for building
support for complex domains. The goal of this
demonstration is to show that: 1) the task of
building and integrating an indexing scheme with
the Oracle8i Extensibility Framework is quite
simple and 2) the applicability of the framework
is not limited to complex domains. We chose to
develop an indexing scheme for XML document
collections, since XML is becoming widely
popular. Using the Oracle8i Extensibility
Framework we will demonstrate 1) the ability to
define domain operators with user-defined cost
and selectivity functions, 2) the ability to define
domain-specific indexing schemes, 3) the ability
to specify user-defined index cost and statistics
collection functions, 4) the ability to optimize
queries involving domain operators via user-
defined optimizer functions and 5) the ability to
execute queries via domain indexes.

1. Introduction

For emerging new applications that deal with complex
data, the major DBMS vendors like Oracle and IBM have

introduced extensibility mechanisms that allow users to
extend the DBMS functionality. These mechanisms
include the ability to create user-defined types, user-
defined functions or operators, as well as specialized
indexing schemes. The Oracle8i Extensibility Framework
includes:
• Extensible Type System: It enables the creation of

domain specific object types with associated
attributes and methods that define their behavior.

• Extensible Indexing Framework: It allows users to
register new indexing schemes with the DBMS [7].
The user provides the code for defining the index
structure, maintaining the index, and for searching the
index data during query processing. The index
structure can be stored in Oracle tables, and can
exploit all the performance and scalability features of
the Oracle8i server.

• Extensible Optimizer Framework: It allows users to
provide cost and selectivity functions for user-defined
predicates as well as the cost and statistics collection
functions for domain indexes [5].

The task of developing the indexing and optimizer
related extensions are generally perceived to be very
complex. However, in this demonstration, we intend to
show how a new indexing scheme, along with the
optimizer related support, can be easily developed. Also,
the domain of interest need not be complex like chem-
informatics, but could be something simple like an XML
document collection.

Currently, two approaches are generally adopted for
storing, indexing, and querying XML data:

1) XML documents are parsed and the individual
scalar values are stored as columns in a table. The table
can be queried using relational predicates, which can
make use of B+-tree or bitmap indexes.

2) XML documents are stored as an opaque CLOB or
a BLOB column in a table. The table is queried using the
Contains operator which provides full-text search
capability. Text indexes can be built, for example, using
the Oracle interMedia Text product, which parses XML

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

documents and builds a traditional inverted index
structure for fast access [1].

Our approach is similar to 2) in that it stores the XML
document in the server as an opaque CLOB column in a
table. However, the table is queried using ExistsNode and
ExistsNodeWithValue operators. The ExistsNode operator
takes in a column value, and an xpath argument (a path to
a node in an XML document [2]), and returns TRUE or
FALSE depending on whether the specified xpath was
found in the XML document. The ExistsNodeWithValue
operator takes in a column value, an xpath, and a value,
and returns TRUE or FALSE depending on whether the
specified value exists at a leaf node that can be reached
via the xpath specified. A specialized indexing scheme is
developed for XML collections as described below.

2. Overview of the Indexing Scheme

When a domain index is created on a column with XML
data, the documents stored in that column are parsed, and
information about the structure and data of the XML
documents is stored in two index-organized tables - the
eix_data table, and the eix_dataguide table.

The sequence of slash-separated labels that are
traversed to reach a node of an XML parse tree will be
called the path of that node. The eix_data table stores
the path to every leaf node in every XML document in the
indexed column, along with the leaf’s value, and the
document’s row identifier. This is similar to the edge
table approach of storing XML data [3], with a few
exceptions. Instead of storing each edge of the XML tree,
only full paths to leafs are stored, making every target
object a value. The key compression feature of index-
organized tables [6] is used to reduce storage
requirements by compressing common column prefixes in
the path column.

The eix_dataguide table models a DataGuide [4],
by storing the set of all paths (both leaf and branch)
appearing in all indexed XML documents, with duplicates
removed. Thus, the DataGuide provides a structural
summary of the XML document collection. The
DataGuide stores selectivity estimates for each path,
which are used to assist in query cost estimation. The
DataGuide can also be used to re-write queries involving
an inexact path (e.g. ‘…/author’) but this functionality was
not implemented for this demonstration.

3. Demonstration

For the demonstration, we use a data set from the DBLP
Bibliography consisting of about 200,000 citations (each
an XML document) with a total size of 104MB. The
demonstration will show the following aspects:

1) Developing an Indexing Scheme in Oracle8i: This
will walk the user through the various steps involved.
Namely, registering domain operators, indexing scheme,

and optimizer functions.
2) Query Optimization Using Extensible Optimizer

Framework: For a query involving one of the user-defined
operators, the plan chosen by the optimizer will be
examined before and after user-defined statistics have
been associated with the index. Before the association,
the optimizer will always choose the domain index to
evaluate the query. After the association, and after
analyzing the domain index, a different execution plan
might be chosen based upon the costs estimated by the
extensible optimizer routines. During statistics collection,
a selectivity is stored along with each path in the
eix_dataguide table, which the extensible optimizer
routines use to derive approximate costs of index scans
and functional evaluations. The Oracle8i EXPLAIN
PLAN command will be used to show the query execution
plan chosen.

3) Query Execution Using Extensible Indexing
Framework: Query executions involving an ExistsNode
operator will be compared before and after creating a
domain index on a table containing XML documents. In
the absence of the domain index, this query will use a
functional implementation of ExistsNode, which parses
documents from the table, searching for the specified path.
In the presence of the domain index, an index-based scan
will be used to evaluate the operator. Consider the
following query:
 SELECT citation FROM Bibliography WHERE
 ExistsNode(citation,‘/book/author’)=TRUE
The underlying index-based scan implicitly generates the
following query on the eix_data table:
 SELECT DISTINCT rowid FROM eix_data
 WHERE path = ‘/book/author’
The row identifiers returned by the query on the
eix_data table identify the set of documents satisfying
the query on the Bibliography table.

References
[1] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, R. Murthy:

Oracle8i - The XML Enabled Data Management System. ICDE
2000: 561-568.

[2] J. Clark, S. DeRose, Xml path language (xpath) version 1.0 w3c
recommendation. In http://www.w3.org/TR/xpath.html, 1999

[3] D. Florescu, D. Kossmann, A Performance Evaluation of
Alternative Mapping Schemes for Storing XML Data in a
Relational Database, Rapport de Recherche No. 3680 INRIA,
France, 1999.

[4] R. Goldman, J. Widom: DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. VLDB 1997: 436-
445

[5] Oracle Corporation, Oracle8i Data Cartridge Developer’s Guide,
Release 8.1.5, Part No. A68002-01, 1999.

[6] J. Srinivasan, S. Das, C. Freiwald, E. I. Chong, M. Jagannath, A.
Yalamanchi, R. Krishnan, A.-T. Tran, S. DeFazio, J. Banerjee:
Oracle8i Index-Organized Table and Its Application to New
Domains. VLDB 2000: 285-296

[7] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, S. DeFazio,
Extensible Indexing: A Framework for Integrating Domain-
Specific Indexing into Oracle8i, ICDE 2000: 91-100, 2000.

