
LoPiX: A System for XML Data Integration and Manipulation

Wolfgang May
may@informatik.uni-freiburg.de

Institut für Informatik, Universität Freiburg, Germany

1 Introduction
LOPiX is an implementation of XPathLog [May01b], an
XML/XPath-native, rule-based programming language for
manipulation and integration of XML documents. The
main syntactical constructs are XPath expressions, ex-
tended with variables. Due to the close relationship with
XPath, the semantics of rules is easy to grasp. In contrast
to other approaches, the XPath syntax and semantics is also
used for a declarative specification how the database should
be updated: when used in rule heads, XPath filters are in-
terpreted as specifications of elements and properties which
should be added to the database. The LoPiX system pro-
vides an implementation of XPathLog tailored to data inte-
gration, using a suitable graph-based data model. It extends
the pure XPathLog language with schema information ob-
tained from DTDs, a class concept, data-driven Web access
and export functionality and data integration functionality
[May01c] such as element fusion, synonyms, and tree view
projections of the internal database. Binaries of LOPiX to-
gether with a detailed paper on XPathLog can be found at
[LoP].

2 XPathLog
XPath is the common language for addressing node sets in
XML documents. XPathLog extends the XPath syntax with
the Datalog-style variable concept and implicit dereferenc-
ing. The variables are bound to the names/nodes/literals
which result from the respective match: In XPath-Logic
steps, ���������	��
������������� may be replaced by ���������	�

����������������� , ���������	��� , or ����������� �!�#" where
� and " are variables.

Example 1 Consider the following excerpt of the MON-
DIAL database [Mon] for illustrations.

$ country car code=“CH” capital=“cty-Bern”
memberships=“org-efta org-un . . . ” %

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

$ name % Switzerland $ /name %
$ city id=“cty-Bern” name=“Bern” % . . . $ /city %

:
$ /country %
$ organization id=“org-un” seat=“cty-USA-NewYork” %
$ name % United Nations $ /name % $ abbrev % UN $ /abbrev %
$ members type=“member” country=“F E A . . . ”/ %
$ /organization %

Output Result Set: The query “?- xpath & V” for any xpath
binds � to all nodes belonging to the result set of xpath.
For a result set consisting of elements, logical ids are re-
turned:

?- //country[name/text()=“Germany”]//city � C.
C/berlin
...

Dereferencing: For all organizations, give the name of the
seat city and all names and types of members:

?- //organization
[abbrev/text() � A and @seat/name/text() � S]
/members[@type � T]/@country/name/text() � N.

One element of the answer set is e.g.,

A/“UN” S/“New York” T/“member” N/“Germany”

Additionally, variables at nodetest position allow for
schema querying and generic handling of properties.

XPathLog programs are evaluated by LOPiX regarding
XPathLog as an update language for XML databases: The
evaluation of the rule body yields variable bindings which
are propagated to the rule head where facts are added to
the database. XPathLog expressions in the head have an
update semantics: The host of the expression gives the ele-
ment to be updated or extended; and the / operator and the
[. . .] construct specify which properties should be added or
updated (thus, [. . .] does not act as a filter, but as a con-
structor).

Example 2 Switzerland gets a data code and is made a
member of the European Union:

C[@datacode � “ch”], C[@memberships � O] :-
//country � C[@car code=“CH”],
//organization � O[abbrev/text() � “EU”].

results in

$ country datacode=“ch” car code=“CH”
memberships=“org-efta org-un org-eu . . . ” % . . .

$ /country %

Elements. Elements can either be created as free elements
by atoms of the form /name[...] (meaning “some element
of type name”), or as subelements.

Example 3 We create a new (free) country element with
some properties:

/country[@car code � “BAV” and @capital � X
and city � X and city � Y] :-

//city � X[name/text()=“Munich”],
//city � Y[name/text()=“Nurnberg”].

Elements are assigned as subelements to existing elements
using filter syntax in the rule head.

Additionally, subelements can be created by path ex-
pressions in the rule head which create nested elements
which satisfy the given path expression (according to its
atomic steps). XPathLog also allows to have variables at
name position. Thus, new structures can be generated de-
pendent on the metadata of the original ones.

3 The LOPiX System

LOPiX (Logic Programming in XML) is an implementa-
tion of XPathLog. The LOPiX architecture is shown in Fig-
ure 1. The central deductive engine is an adaptation of the
Evaluation component of FLORID [HKL

�
98]. The stor-

age component consists of an Object Manager which stores
the XML document(s) together with meta information such
as indexes, signatures, and class information. The OMAc-
cess module maps queries and insertions coming from the
Algebraic Evaluation and Algebraic Insertion to the stor-
age. Web access is controlled by rule heads, allowing
for a completely data-driven strategy. New documents are
fetched by their urls depending on information and links
(i.e., urls or XLinks) found in already known documents.
They are added to the database using the WebAccess com-
ponent which consists of an XML Parser and a DTD Parser
(handling signature information). The Execution compo-
nent handles system commands, user queries and program
evaluation (feeded into the Evaluation component).

4 Demonstration Outline

The demonstration shows the use of LOPiX as a tool for
XML data integration by the case study [Mon] – from
which the above examples are taken – which integrates
XML representations of data sources on the Web to a geo-
graphic database. The integration process illustrates data-
driven access to data sources, identification of relevant
entities for the result document, generation of the result-
ing XML tree, handling of overlapping sources, handling

Object
Manager

S
to

ra
ge

OM Access
WebAccess

DTD
Parser

XML
Parser

E
va

lu
at

io
n

Algebraic
Evaluation (�)

Algebraic
Insertion

Logic Evaluation
(Bottom-up) �����

E
xe

cu
ti

on

System
Commands

XPathLog Parser
(Programs and Queries)

User Interface
Pretty Printer

Bindings/XML

In
te

rn
et

XML
sources

XML
output

Figure 1: Architecture of the LOPiX System

data inconsistencies, different-name-for-an-object prob-
lems (german-language and english-language sources),
heuristics, incremental insertion of facts into the result tree,
generation of cross-references, and final output.

References
[HKL

�
98] R. Himmeröder, P.-T. Kandzia, B. Ludäscher,

W. May, and G. Lausen. Search, Analysis, and In-
tegration of Web Documents: A Case Study with
FLORID. In Proc. Intl. Workshop on Deduc-
tive Databases and Logic Programming (DDLP’98),
1998.

[LoP] The LOPiX System. http://www.informatik.uni-
freiburg.de/ may/lopix/.

[May01a] W. May. A Logic-Based Approach for Declara-
tive XML Data Manipulation. Technical report, Uni-
versität Freiburg, Institut für Informatik, 2001. Avail-
able from [LoP].

[May01b] W. May. XPathLog: A Declarative, Native
XML Data Manipulation Language. In International
Database Engineering and Applications Workshop
(IDEAS’01). IEEE Computer Science Press, 2001.

[May01c] W. May. Integration of XML Data in XPathLog.
In CAiSE Workshop “Data Integration over the Web”
(DIWeb’01), 2001.

[Mon] The MONDIAL Database. http://www.informatik
.uni-freiburg.de/ may/Mondial/.

