
Nicolas Anciaux*, Christophe Bobineau*, Luc Bouganim*,
Philippe Pucheral*, Patrick Valduriez**

* PRISM Laboratory
Univ. of Versailles, France����� ���	�
�������������	�
�������������	� ���� ��!"��#$� %��

** Lip6 Laboratory
Univ. of Paris 6, France&�')(*�+-, .�/�0�1�2�3�/�+-, .�/�0�1�4�5768(9;:�2 <"*

=?>A@-B;C�DFE?G;H�IJCLKME?B

Smartcard is the most secure and cheap portable
computing device today and became the world’s highest-
volume market for semiconductors in the year 2K. As
smartcards become multi-application (by hosting a
dedicated Java Virtual Machine) and more and more
powerful (32 bit processor, more than 1MB of stable
storage [Gem99]), the need for database management
arises. Embedding database management (query
processing, access rights, transaction control) in the card
simplifies and makes application code smaller and safer.

Smartcard DBMS cover the need of confidential,
portable and sharable databases such as: (i) diplomatic,
military or business data, (2) user profiles (passwords,
cookies, bookmarks, licenses, agenda…), and (3) personal
folders (scholastic, healthcare, loyalty…).

However, smartcards have severe hardware limitations
(tiny RAM, very costly write in stable storage…) making
traditional database techniques irrelevant. Small footprint
DBMS (e.g., Oracle 8i Lite), designed for portable
computers and PDA, do not address the more severe
limitations of smartcards.

In a recent paper [BBP+00], we addressed this
problem and proposed the design of what we call a
PicoDBMS. Since then, we have implemented a full-
fledged PicoDBMS prototype in JavaCard. We are
porting it on Bull’ s 32 bit smartcard, which we got only
recently. Thus, the objective of the demonstration is to:
• Validate our design by building a complex database

application (with respect to the smartcard) on our
prototype and showing the benefits of the approach.

• Validate our techniques by showing that they match
the smartcard hardware constraints.

N?OAP�Q;R7STRFU?V WLQYXZU?[F\Y]^R`_ba?c;d-WL[FU?W�ae[

The proposed demonstration is a sample of healthcare
application which is representative of personal folders and
has strong database requirements. The information stored
in the future health cards should include the holder’s
identification, insurance data, emergency data, the holder’s
doctors, prescriptions and even links to heavier data (X-ray
examination…) stored on hospital servers. Different users
may share data in the holder’s folder: the doctors who
consult the patient’s past records and prescribe drugs, the
pharmacists who deliver drugs, the insurance agents who
refund the patient, public organizations which maintain
statistics or study the impact of drugs correlation in
population samples and the holder herself.

The demonstration will show that our prototype meets
the healthcard application’s requirements, that is: (i) being
able to manage a significant amount of data (more in
terms of cardinality than in terms of volume), (ii)
supporting complex queries (f8g�hig�j a doctor asks for the
sum of antibiotics prescribed to the patient in the last
three months), (iii) handling sophisticated access rights
using views and aggregate functions (k8lnm$l�o a statistical
organization may be allowed to access aggregate values
only but not the raw data). The benefit of hosting the
healthcare data on smartcards rather than on a server is
high availability and high privacy of medical records.

p?qAr�s tFu?v^wyx{zYv^|J}-sM~?�Y�?�;�Y�-���;� |`��|F�;���?�LsMu?�

Smartcard’s hardware security makes it the ideal storage
support for private data. The impact of security is that the
data as well as the query engine, the view manager and
the access right manager must be confined in the chip.
Only functions that do not impact the query result can be
externalized to the terminal (e.g., the GUI, the query
parsing…). When designing the PicoDBMS’s embedded
components, we must follow several design rules derived
from the smartcard’s properties [BBP+00]:
• ���������i�"� ���8�����-���8�"� minimize the size of data structures

and the PicoDBMS footprint.
• �`�)� �-���8�"� minimize the RAM usage given its

 J¡8¢¤£e¥ ¦¤¦M¥ §�¨ª© §¬«8§n�®°¯±¥ © ²³§�´�©8µ�¡M¡)¶�· ·¸§�¢`i¶�¢ ©¹§ µª© ²"¥ ¦�£�¶�© ¡8¢ ¥ ¶�·¹¥ ¦eº"¢¤¶L¨�© ¡¼»J¢ §�½�¥ »³¡¼»¾© ²L¶³©¿© ²³¡À«8§n¸¥ ¡M¦^¶L¢¤¡Á¨³§³©°£±¶�»³¡Â§�¢Ã»�¥ ¦¼© ¢ ¥ Ä�´�© ¡8»ÅµL§�¢^»"¥ ¢¤¡�«8©«�§�£±£�¡8¢¤«�¥ ¶�·i¶L»L½¼¶L¨�© ¶�º�¡¼ÆF© ²L¡�Ç�È�É�ÊË«8§n�®�¢ ¥ º�²³©i¨�§�©Ì¥ «¼¡�¶�¨³»Í© ²L¡�©Ì¥ © · ¡�§ µ¬© ²³¡F´LÄ³· ¥ «M¶�© ¥ §�¨�¶L¨L»�¥ © ¦�»L¶�© ¡�¶Î�J¡¼¶³¢ÎÆÏ¶L¨�»)¨�§L©Ì¥ «¼¡;¥ ¦�º-¥ ½8¡¼¨�© ²L¶�©$«8§Ð�®Ñ¥ ¨�º�¥ ¦�ÄÎ®J¡8¢¤£?¥ ¦¤¦¼¥ §�¨Ò§ µT© ²L¡�Ç�¡8¢ ®TÈÑ¶³¢Ðº"¡ZÉ?¶�© ¶ÁÊF¶�¦¤¡ZÓJ¨L»�§�¯`£�¡¼¨�© ÔÖÕ�§T«�§n�®§³© ²³¡8¢Î¯±¥ ¦¤¡¼Æ"§�¢`© §?¢¤¡ÌJ´³ÄL·Ì¥ ¦¤²�Æ�¢¤¡¼×³´�¥ ¢Ø¡¼¦J¶�µ�¡8¡¹¶L¨³»MÙÚ§�¢J¦ i¡�«�¥ ¶�·Î$¡8¢Ø£?¥ ¦¤¦¼¥ §�¨�µ�¢ §�£© ²�¡`Ói¨L»�§�¯`£±¡¼¨�©Û¸ÜLÝ"ÞLß�ß³àÏáÐâÏã�ä�Ý"åFæÎçÏß�è�é	æÎçÍê�ë?ìîíËï�Ý�âÏåÎß³Ü�ß³âÏÞLßLð
ñ Ý�òÍó�ð�ô¼æ¤ó�õ�ö	ð�è	÷"÷	ø

extremely limited size.
• ù;ú-ûÐüþýÃú-ÿ��8ý : minimize writes in stable storage given

their dramatic cost (≈1 ms/word).
• �������
	����� : take advantage of the fast read operations

(≈100 ns/word).
• ��������������� take advantage of the overabundant CPU

power (i.e., the time complexity of an algorithm is not
a major concern).

• �������! " $#�%�&���' take advantage of the low granularity and
direct access capability of the stable memory.

• (*),+.-"/�021 3�/�-546)57 never externalize private data from the chip.

8�9;:=<?>A@�BDCFE$G�HFI5J;BDK�LNMDOQPRB�S*O�T
From the read and access rules, it follows that a
PicoDBMS is a typical main-memory DBMS. Thus, it can
take advantage of a pointer-based storage and access
model to meet compactness and performance altogether.
The PicoDBMS exploits a combination of UWV�X�Y[Z�Y]\�^�X�_a`b UWZ�c , dfe�gfhDi jlk�m]e�n�h�oaprqsdFk�t and u�v wDxzya{A|�}�~�x����2uWy�� . By
storing the attribute values embedded in the tuples, FS is
adequate when the attribute does not present value
redundancy. DS precludes any duplicate value to occur by
grouping values in domains and by using references in
place of the attribute values. RS addresses index
compactness. RS links together all tuples sharing the same
attribute value through a circular chain of pointer headed
by this value. This chain of pointer is stored again in place
of the attribute values, providing a similar and compact
implementation of both select and join indices.

���;�=���*�������*���D�����"�"�]�*�
Traditional query processing uses main memory or disk
for storing intermediate results. The RAM and write rules
preclude the use of these algorithms in our context. In
addition, the security rule precludes any intermediate
results to be externalized outside of the chip.

To conform to these three rules, the PicoDBMS
execution model must be able to tackle any query,
whatever be its complexity and the volume of data it
involves, with - almost - no RAM consumption. To this
end, we proposed a new execution strategy called extreme
right deep tree which executes all operators (including
select, join, aggregate and duplicate removal) in a pure
pipeline fashion [BBP+00].

�����F�;����� �R¡£¢¤� ¥§¦¨��©«ª�¬.¯®?¬5�°��©
The demonstration platform (Figure 1) includes a full-
fledged PicoDBMS prototype, a JDBC driver, a user
interface and a monitor interface. Our PicoDBMS
prototype is written in JavaCard 2.1 and runs today on a
smartcard simulator and on the most recent Bull’s 32 bit
smartcard. It includes a storage manager, a query
manager, an access right manager and a view manager.
The PicoDBMS footprint is around 30KB.

The user interface comes as a Java applet that can be
downloaded on any Java-enabled terminal. It allows
formulating SQL queries, which are sent to the PicoDBMS
via a dedicated JDBC driver. The monitor interface
delivers both static information (EEPROM image) and
runtime information (RAM usage, number of read and
write operations, execution time, query execution plans)
about the PicoDBMS.

One difficulty in assessing the performance of our
PicoDBMS is that its internal state cannot be easily sniffed
when embedded in a chip. Thus, we use the smartcard
simulator to experiment with the PicoDBMS on databases
larger than the smartcard storage capacity and help
understanding the behavior of the PicoDBMS' internals, in
combination with the monitor interface.

±W²]³�´*µ�¶�·D¸N¹fº!»f¼�½D¾�¿ À�Á�¿]Â]¼�½�ÃWÄ�ÁD¿ Å¯¼�À5»
ÆÈÇ�É«Ê«Ë¯ÌÎÍ°Ï¯ÐÒÑ�Ó¨Ï�Ê«Ô.Õ
We would like to thank Pascal Urien for the technical
support provided on the Schlumberger / Bull-CP8
smartcard platform, and Nacim Rahali and the students of
the ISTY engineering school for helping us implementing
the demonstration.

ÖÈ×�Ø,×�Ù¯×�Ú«Û�×�Ü
[BBP+00] C. Bobineau, L. Bouganim, P. Pucheral, P.

Valduriez. PicoDBMS : Scaling Down Database
Techniques for the Smartcard (Best Paper Award).
Int. Conf. on Very Large Databases (VLDB), 2000.

[Gem99] Gemplus. SIM Cards: From Kilobytes to
Megabytes.www.gemplus.fr/about/pressroom/, 1999.

Ý Þ ß à á â ã ä ã å ß à
æ ç ç ß è è é ê å ë ì â ã ä ã å ß à

í ê ß î â ã ä ã å ß à
ï ì ð à ã å ß â ã ä ã å ß à

ñWòAó�ô�õFö$÷�ø

ù õ ö ú õ û ò ü ý û þ ÿ������������
	��[ÿ���
��������� ���������
���! ���� �"��#���� ��$% ��&�
$('*)"������$��������� ���������
�,+-�/./0 � �%�&0 �1� �"2&����34$5'6)/���7��$��������� ���������
�98�: ��' ;�<" ����=��: <-� �>$(?��/0 @��� BA�$�C
DB����<�� �FE���?&�1G�� H-�10 �1I��
$J2&����3K$L'�)/���7��$NM����"@O�P.RQ*$

SUTWV9X�Y[Z�\=]�^_\a`OX�Y9`
Y[\=T�]�ba^_c�T

d e f g h g f i e j k i l
m n o p q>r s t u vFs wFxzy { | t u v}s wFx�~}q q | x t t Phone
 001 Smith Wesson
 002 John Doe
 003 Franckie Jim
 005 Joelle Seban 1 rue des ci
 007 Buzzy John Paris 014525414

 454 f ldskfjsdk kjfds kjfsdklfjsd kfjdkjfk kdjf
02545416 sjklsdfj lskd kjsdklfj lksd

� � � � � � � � � � � � � � �
Doctor

LastName
FirstName
Address
Phone

�
�
sit

VisitId
DoctorId
Date
….

� � � � � �
iption

PrescId
VisitId
DrugId
….

Field
Sort
Test
…

π � � �

� � � �
�
� � ��
�
� �

���O�R�R�
� � �� �¡�� ¢�� �
�
�O� ¢�£¤=¥&¦[§��= R£
�7¢W¨
� � ��

©a©=ªa«a¬"B«a®O¯R°7±
²a²=³a´aµ"¶6·!¸ ¹ º »O¼

presc.

drug

visit

doc drug.type

σ

Count ½ ¾

¿ À Á Â Ã Ä Å Æ Â À Å Ç È É Á È Å Ê Ë Â É Ä Ç È Ë Å Ì

Á Á Í Â Ë É È É Ä Î Á ÌÏ Ð Ñ Ð Ò Ó
System area
Metadata
Relation 1
Relation 2
Relation 3
VarDomain
Holes
Lost space
Free Space

Ô
Ô
Õ

Ô
Ö
Õ

