Automated Semantic Extraction from Databases in Microsoft SQL Server's English Query

Adam Blum
team lead, English Query/SQL Server
www.microsoft.com/sql/eq
adamblum@microsoft.com

What Is English Query

Engine

- COM object model that converts English sentences (questions) into SQL statements
- Can be used in any COM-supporting application

Modeling tool

- Used to build semantic model of database needed by EQ engine
- Developer creates entities and relationships corresponding to objects in SQL or OLAP database

EQ Runtime Scenario

What are EQ Semantic Models?

- entities
 - map to table, field, OLAP dimension, level, property, or fact
- relationship
 - In SQL contain join table
 - Entities play roles in relationship
 - Roles have join path, and can be quantified
 - Phrasings may be attached to relationships: name, trait, verb, adjective, subset, preposition

English Query in SQL Server 7.0

- what's good
 - easy access to information for all users
 - powerful, flexible analysis of data
- what could be better
 - building semantic models for complex schemata is tedious and time-consuming
 - difficult to understand and manipulate the resulting large models
 - Use restricted to "fixed schemata" (vertical applications) that can be individually handmodeled
 - Generic database tool vendors (Excel, Access, OLAP clients, reporting tools) would like to allow English queryability

The Solution

(What We Just Built for English Query 7.5)

- Graphical authoring
 - Allows easier creation of relationships
 - Understandability of larger models
 - Oriented to showing subsets of model
- Programmatic authoring
 - Semantic Modeling Format (SMF) XML grammar for representing database semantics
 - Allows applications to programmatically generate EQ semantic models via the XML Document Object Model
 - Authoring Object Model allows building from DOM
- Model Wizards
 - Automate 90% of OLAP entity and relationship creation, 70% of SQL entities and relationship
 - Can be driven via AOM, allowing EQ use against unknown schemas

Semantic Modeling Format

- Grammar is defined by SMF.DTD (Document Type Definition) and SMFSchema.XML (XML-Data Schema) available at microsoft.com/sql/eq
- SMF is used to define semantics of a database and mappings of semantics to SQL or OLAP database objects
- <SEMANTICS> element contains <ENTITY>
 elements and <RELATIONSHIP> elements with
 links to <TABLE> or <FIELD> elements or OLAP
 database elements
- "Traditional XML advantages": human-readable, platform independent, Internet friendly, availability of XML tools and APIs (the DOM) gives us "free authoring API"

SMF Elements

- Top level elements
 - <MODEL ID="Northwind">
 - <MODULE>
 <SEMANTICS>
 - < < ENTITY>...</ ENTITY>
 - <RELATIONSHIP>...</RELATIONSHIP</p>
 - </semantics>
 - ◆ <TABLES>...</TABLES>
 - </MODULE>
 - ◆ <PROJECT><DATABASE>
 - </MODEL>

ENTITY

- - <WORD>buyer</WORD>
 - <WORD>client</WORD>
 - <DBOBJECT TABLE="customers"/>
 - <DISPLAY FIELD="CustomerName"/>
 - </ENTITY>

The SMF Relationship Element

RELATIONSHIP

- <RELATIONSHIP ID="customers_order_products_from_employees">
- <JOINTABLE TABLE="OrderDetails"/>
- <ROLE ID="customer" HREF="customer"></ROLE>
- <ROLE ID="employee" HREF="employee"></ROLE>
- <ROLE ID="orderdate" HREF="ENTITY:order_date"></ROLE>
- <PHRASINGS>
- <VERB>order</VERB>
- <VERB>buy</VERB>
- <VERB>purchase</VERB>
- <OBJECT ROLEREF="product"/>
- PREPPHRASE>
- <PREP>from</PREP>
- <OBJECT ROLEREF="employee"/>
- </PREPPHRASE>
- </VERBPHRASING>
- <WHEN ROLEREF="orderdate"/>
- </RELATIONSHIP>

Model Wizards

- Automatically create entities and relationships
 based on structure of database
 - Default mode of starting a new English Query project
- Extremely effective against OLAP databases
 - Richer database model including hierarchy
 - Constrained, well-formed schemata
 - Friendly names
- Effective with SQL databases assuming good database design practices
 - Need friendly names, primary keys, foreign keys, ...
- Invoked programmatically via AutoModel()
 - Enables generic database tool scenario:
 AutoModel(), create XML DOM object, add entities
 and relationships that tool knows about via XML

OLAP Model Wizard heuristics

- Entities created ...
 - for every OLAP object: Dimensions, Levels, Properties, Measures, Facts
 - primary word from OLAP object name, two synonyms supplied
- Relationships created
 - Trait relationships
 - <dimension entity> has <level entity> (for each level entity)
 - <level entity> has <higher level entity>
 - <dimension entity> has <level entity> (for each level entity)
 - Hierarchy ("in") relationships
 - dimension entity becomes lowest level in semantic hierarchy
 - EQ engine single level of inference forces "extra relationships":
 - Direct relationships: "products are in brands", "brands are in subcategories", "subcategories are in categories", "categories are in departments"
 - "extra" relationships: "products are in subcategories", "subcategories are in departments"
 - Name relationship
 - bottom level entity becomes name entity of dimension entity, e.g. "product names are the names of products"
 - Dimension to dimension entity relationships
 - can be created between each pair dimension entities (modeler can enable), imputed from the dimension's common relationships to the OLAP fact table
 - Preferred method is for modeler to create verb relationship for fact table, e.g. "customers buy products in stores on dates"

OLAP Model Wizard Example

	iodei vvizara Example
	Creates these entities and relationships:
Sales	• customer
■ Customer	• customer names are the names of customers
Country	• customers are in cities
• State	• cities are in states
• City	• states are in countries
• Country	product
■ Product	product names are the names of products
Department	• products are in brands
Category	brands categorize products (checked)
• Subcategory	• brands are in subcategories
• Brand	• subcategories categorize products (checked)
• Product	• subcategories are in categories
Name	• categories categorize products (checked)
■ Store	• categories are in departments
• Country	
* Region	• departments categorize products (checked)
• District	• products are in subcategories
• City	• subcategories are in departments
• Store Name	
■ Time	• store names are the names of stores
• Year	• stores are in cities
• Quarter	• cities are in districts
• Month	• districts are in regions
◆ Day	• regions are in countries

SQL Model Wizard Heuristics

- Entities created ...
 - for all tables and fields, except "join tables (tables w/only keys)
 - "When" entity type set if associated with date/time field
 - "Where" entity type set if entity is "where word"
 - Proper name type set by sampling data
- Relationships
 - Trait relationships to fields that are neither foreign keys, primary keys or binary
 - Name relationships based on patterns in field name
 - Trait relationships to "foreign key destination" entities
 - "in" relationships optionally (unchecked) created from table entity to field entity if field is String type and data is firstcaps