MS SQL Server 7.0
Locking, Logging & Recovery
1 Architecture

David Campbell
Microsoft Corp.

Overview of 6.x architecture

o
= Page locking architecture
= Recovery protocols predicated on page locking
= TX undo takes pages back in time

= Transactional locks cover page “access”, no
latches.

= Fairly old code base
= Design target 10's MB of RAM, 1's GB of disk.
= Small footprint, tightly coupled, code base.

= Old disk/record layout
= "Device” model — file system in a file.
= Optimized for space, inflexible

= No way to represent NULL's, etc.
SQL Server 7.0 Locking, Logging

& Recovery Architecture

Goals & Constraints

W
Architect system for next 10-15 years.
= No “architectural headroom” in 6.x design

=« Didn't want to compromise new system

= Keep system running

= Kept system running during entire implementation
cycle — major effort; major payoff

= Compatibility
= Retain application compatibility

s Ease of use
= Make code smarter rather than add knobs

SQL Server 7.0 Locking, Logging
& Recovery Architecture 3

Architectural Philosophy

o
= Clean sheet”
= Pretend like we're doing it from scratch.
= Then apply constraints

= Separable components
= Can be tuned/optimized independently
= Clean interfaces

= The design team enabled this

= Real world experience from multiple
products

SQL Server 7.0 Locking, Logging
& Recovery Architecture

What we changed...

o
= Complete redesign of on-disk architecture

= New database structure
= Files instead of former “device” model

= New page structure
= 2K -> 8K page
=« Header from 32 -> 96 bytes
= Free space mgmt. and other row locking elements
= Mechanism to detect torn-writes

= New row format

= Extensible — complex types, schema version, etc.
= Can natively represent NULL's

SQL Server 7.0 Locking, Logging
& Recovery Architecture

Core SE architecture...

- w
W = Rewrote lock manager
= Rewrote recovery manager
= Rewrote log manager
= Rewrote allocation manager
= Rewrote DB and file I/O interface
= Rewrote page access interface
= Reworked access methods for row locking
= (You get the idea...)

SQL Server 7.0 Locking, Logging
& Recovery Architecture

Architecture on a slide

o
Key-range index locking, (as opposed to data
or RID locking).

= Concurrent Table, Page, and Row locking
granularities

= ARIES based recovery protocol

= Logical undo, (navigate indices to perform
undo).
= Multi-level recovery

= Ensures physical index consistency for logical
undo phase.

SQL Server 7.0 Locking, Logging
& Recovery Architecture 7

Key Range Locking

-

= How the “ghost” record was born...

= Initially implemented straight range
locking for deleted index keys.

Range Lock for (1,5]

SQL Server 7.0 Locking, Logging
& Recovery Architecture

‘ Key Range Locking

-

= Locking of entire resultant delete range too
prohibitive
= Solution was to implement deletes as updates.

= Allows concurrent inserts into range formed by
delete

S m

A\
* X Lock for 3

SQL Server 7.0 Locking, Logging
& Recovery Architecture

Key Range Locking

i
= Cleaning up ghosted keys

= Can be removed when X covering delete is
released.

= Can be removed en-masse when page LSN
< oldestActivelLSN

= Harvested when we need room for an
Insert

= Added a harvester thread for “sliding” data

SQL Server 7.0 Locking, Logging
& Recovery Architecture 10

Dynamic Locking

Cost

W‘W

Row « p Page 4 p Table
Row locks are great for concurrency but reguire |ots of
bookkeeping and lock manager calls

Table locks don’t allow much concurrency
but are cheaper to acquire and manage

Each hasits p| ace SQL Server 7.0 Locking, Logging

& Recovery Architecture

11

Page locking has its place

o
= Concern: cost of locking and unlocking
each row for a scan — particularly index

range scans, which are dense

= Having pages in the lock hierarchy
requires intent locks for multi-granular
locking.

= The trick is how to handle page splits.

SQL Server 7.0 Locking, Logging
& Recovery Architecture 12

Pages in the lock hierarchy

/

When a Tx splits a page, it must move all intent locks
corresponding to the moved keys — even those for
other transactions.

SQL Server 7.0 Locking, Logging
& Recovery Architecture 13

Dynamic Locking

Isolation

‘wm
level
Scan type
(Range,Table Probe) ‘
__, Locking strategy

of rows (Table, Page, Row)
In scan “ ! !
of rows/page

Operation gype Access Path
(scan, update) Concurrency Level

Selectivit
SQL Server 7.0 Locking, Logging

& Recovery Architecture 14

Dynamic Locking Example

= Scan index and then
lookup rows based upon
scan:

= Use page locks to scan
index, (contiguous
compact range)

BN = Use row locks when reading
0 B F from fixed-RID base table

sl = Minimizes locking cost,
maximizes concurrency

= All done dynamically
at run-time

SQL Server 7.0 Locking, Logging
& Recovery Architecture

15

Latching hurts

o
= Had to add latches to handle concurrent
access to pages — previously covered by

page locks.
= Nalve implementation
» Latch/unlatch for each row in scan

= Save off scan position (key) for each row
= This can cost 100’s instructions/row

SQL Server 7.0 Locking, Logging
& Recovery Architecture 16

Latching hurts

i
= How we handled this:

= Don't release latch for each row

= Rather than releasing latch when leaving page,
hold the latch in “lazy” mode with notification

= When notified that your lazy latch is blocking
some other requestor:
= Save off scan key
= Release lazy latch

= Typical cost:

« 1 Latch acquire/release per page, don't have to save off
keys

SQL Server 7.0 Locking, Logging
& Recovery Architecture 17

Multi-level recovery

.
= Undo is logical: i.e. undo of index delete
IS normal index insert operation.

= Requires physically consistent index
structure to perform undo operation.

= Solution: “"System” transactions and

multi-level recovery protocol

« MLR: a recovery method for multi-level systems
David B. Lomet, Sigmod '92

SQL Server 7.0 Locking, Logging
& Recovery Architecture 18

Multi-level recovery

o
= Index splits performed under latches to
provide isolation.
= [ree is inconsistent during split

= Database has 3 consistency states:
= Inconsistent
= Physically consistent
= Transactionally consistent

SQL Server 7.0 Locking, Logging
& Recovery Architecture 19

Multi-level recovery

!

= Crash during split

Redo phase - inconsistent

Undo system Xacts —
physically consistent

. Undo user Xacts —
X-actional consistency

SQL Server 7.0 Locking, Logging
& Recovery Architecture

20

Warm Standby Server

{

= Copy and apply log to remote server
= Disaster recovery, reporting, etc.

TX Logs>

SQL Server 7.0 Locking, Logging
& Recovery Architecture

21

Warm standby server

2

= 6.X algorithm
= Copy log

= Perform recovery
= Redo
« Identify losers
= Undo losers by taking pages “back” in time

= Copy log... (New log dump contains data
for previous loser Tx's)

SQL Server 7.0 Locking, Logging
& Recovery Architecture

22

Warm standby server — 7.0 Issue

it

= The problem:
= Copy log
= Perform redo

= Undo generates compensating action and
takes pages to point where subsequent
redo will fail!

= Thought about physical undo
=« Complicated
= Not running same code as "rea

|II

time

SQL Server 7.0 Locking, Logging
& Recovery Architecture 23

Warm standby server — 7.0 issue

Y
= The solution: Copy on first undo reference

= Algorithm:
= Copy log
= Copy pages from side file
= Perform redo, record redoLastLSN

= Perform undo
= If pageLSN < redoLastLSN copy page to side file

= Backtostep1

SQL Server 7.0 Locking, Logging
& Recovery Architecture 24

QA/Testing

W‘M
= Fail Fast

« If something’s wrong don't continue with bad
state
= Code Reviews
= Peer reviews of all checkins.
= More detailed reviews of new subsystems

= Assertions/Assumption checks
= More than parameter validation.
= Latch enforcement (memory protect unlatched
pages)
= Assert that proper locks held on all modifications

SQL Server 7.0 Locking, Logging
& Recovery Architecture 25

QA/Testing

i

= SE Stress”

= Highly concurrent workload with stress induction

o (k:_llilelglts randomly canceling queries and being
illed.

= RAGS
= Random query generator
= Results can be compared with old release
= Ran in single user and concurrent mode
= SQL “Killer”
= OLTP workload with backup and log backup
= Randomly kill and recover
= Restore and recover and compare results
= Runs for weeks...

SQL Server 7.0 Locking, Logging
& Recovery Architecture 26

QA/Testing

i
= Failpoints

= Induce failures at interesting points:
= In middle of B-Tree split

= At interesting points in 2-phase commit protocol
= Exception induction

= Throws low level exceptions, (out of memory, log

full, lock request cancelled, I/0 failure), from
every reachable call path.

« Finds hard bugs that otherwise wouldn’t be found
in house.

= Playback testing

= 100’s of real-life concurrent customer workloads

SQL Server 7.0 Locking, Logging
& Recovery Architecture 27

