
Orthogonal Optimization of Subqueries and Aggregation

César A. Galindo­Legaria Milind M. Joshi

{cesarg,milindj}@microsoft.com
Microsoft Corp.

One Microsoft Way
Redmond, WA 98052

ABSTRACT
There is considerable overlap between strategies proposed
for subquery evaluation, and those for grouping and aggre-
gation. In this paper we show how a number of small, inde-
pendent primitives generate a rich set of efficient execution
strategies —covering standard proposals for subquery evalu-
ation suggested in earlier literature. These small primitives
fall into two main, orthogonal areas: Correlation removal,
and efficient processing of outerjoins and GroupBy. An op-
timization approach based on these pieces provides syntax-
independence of query processing with respect to subqueries,
i. e. equivalent queries written with or without subquery
produce the same efficient plan.

We describe techniques implemented in Microsoft SQL
Server (releases 7.0 and 8.0) for queries containing sub-
queries and/or aggregations, based on a number of orthog-
onal optimizations. We concentrate separately on removing
correlated subqueries, also called “query flattening,” and on
efficient execution of queries with aggregations. The end re-
sult is a modular, flexible implementation, which produces
very efficient execution plans. To demonstrate the validity
of our approach, we present results for some queries from
the TPC-H benchmark. From all published TPC-H results
in the 300GB scale, at the time of writing (November 2000),
SQL Server has the fastest results on those queries, even on
a fraction of the processors used by other systems.

1. INTRODUCTION
Subqueries are a convenient and succinct construct of the

SQL language, which has been implemented by commercial
database systems for a number of years. They are a stan-
dard mechanism used frequently by real applications, and
researchers have worked on their efficient evaluation, propos-
ing powerful techniques. Here, we make the observation that
there is significant overlap between techniques proposed for
subquery execution and others such as GroupBy evaluation.
Therefore we take the approach of identifying and imple-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD 2001May 21­24, Santa Barbara, California, USA
Copyright 2001 ACM 1­58113­332­4/01/05 ...$5.00.

menting more primitive, independent optimizations that col-
lectively generate efficient execution plans.

In this paper, we present subquery and aggregation tech-
niques implemented in Microsoft SQL Server. It is organized
as follows. First, we review standard proposals for subquery
evaluation, and describe how they reduce to other primitive
optimizations. Then we review the algebraic representation
of correlation, or use of parameterized subexpressions. In
Section 2 we focus on representation and normalization of
subqueries, with the goal of replacing correlations by stan-
dard relational algebra operators. In Section 3 we describe
techniques for efficient execution of queries with aggrega-
tion. In Section 4 we give an overview of how techniques
described earlier fit into the architecture of our query pro-
cessor. We present performance results of our approach in
Section 5, with data from current published TPC-H results.
Section 6 concludes the paper.

1.1 Standard subquery execution strategies
Before describing subquery strategies in detail, it is impor-

tant to clarify the two forms of aggregation in SQL, whose
behavior diverges on an empty input. “Vector” aggregation
specifies grouping columns as well as aggregates to com-
pute.1 For example, obtaining the total sales per date:

select o orderdate, sum(o totalprice)
from orders
group by o orderdate

If orders is empty, the result of the query is also empty.
“Scalar” aggregation on the other hand, does not specify
grouping columns. For example, get the total sales in the
table:

select sum(o totalprice) from orders

This second query always returns exactly one row. The re-
sult value on an empty input depends on the aggregate; for
sum it is null, while for count it is 0 [13]. In algebraic ex-
pressions we denote vector aggregate as GA,F , where A are
the grouping columns and F are the aggregates to compute;
and denote scalar aggregate as G1

F .
We review standard subquery execution strategies using

the following SQL query, which finds customers who have
ordered more than $1,000,000. The subquery uses a scalar
1The use of distinct for duplicate removal is a special case
of “vector aggregate,” collapsing groups with equal values
into a single row, but without actual aggregate functions to
compute. We normalize distinct as GroupBy.

571

aggregate to compute the total ordered by a customer. It
is called a “correlated subquery” because it uses parameters
resolved from a table outside of the subquery, in this case
column c custkey. Our examples use the straightforward
data schema of the TPC-H benchmark.

Q1: select c custkey
from customer
where 1000000 <

(select sum(o totalprice)
from orders
where o custkey = c custkey)

Correlated execution.The execution that is closest to the
SQL formulation is to take each customer and compute a
total amount, as specified in the subquery, then filter out
customers who have ordered less than the specified amount.
This is commonly considered an inferior strategy, as it in-
volves per-row processing of customers, instead of a set ori-
ented execution —but it can actually be the best strategy,
if the outer table is small, and appropriate indices exist.

Outerjoin, then aggregate.This execution strategy was
original proposed by Dayal [5]. To use set-oriented algo-
rithms, we can first collect all orders for each customer, then
aggregate grouping by customer, and finally filter based on
the aggregate result. The corresponding SQL formulation is
as follows.

select c custkey
from customer left outer join

orders on o custkey = c custkey
group by c custkey
having 1000000 < sum(o totalprice)

The use of outerjoin is faithful to the correlated execution
semantics: The correlated subquery uses scalar aggregation
and therefore returns exactly one row for each customer,
even if there are no qualifying orders. Using outerjoin, cus-
tomers with no matching orders are preserved, and the ag-
gregation result on such non-matching row is null.

Aggregate, then join.This execution strategy was original
proposed by Kim [11]. It is possible to aggregate directly
over the orders table to obtain the total sales per customer
and later join with the customer table. This alse allows
pushing the aggregate condition below the join. The SQL
formulation uses a derived table, not a subquery.

select c custkey
from customer,

(select o custkey from orders
group by c custkey
having 1000000 < sum(o totalprice))
as AggResult

where o custkey = c custkey

1.2 Our technique: Use primitive, orthogonal
pieces

From those listed above, the most efficient strategy de-
pends on size of tables, selectivity of conditions, and reduc-
tion factor of aggregation. Rather than going directly from

Agg/Join

SQL�query�

Agg/Outerjoin

Join/Agg

Outerjoin/Agg

Correlated�strategy�

Reorder�GroupBy

Simplify�Outerjoin

Remove�correlations

Algebrize

Reorder�GroupBy

Figure 1: Primitives connecting different execution
strategies.

a subquery usage to either of the above strategies, we use or-
thogonal, reusable primitives that lead to those listed above,
and more. And use cost-estimation to choose between them.
Figure 1 shows how primitive optimizations lead to differ-
ent “subquery strategies.” The above standard strategies
are only two of the possible boxes in the diagram; the other
strategies shown are also feasible, and will sometimes be
superior, depending on data distribution and indices avail-
able. There are a number of optimizations that can be done
on GroupBy queries that are not shown in this figure, but
are discussed later in Section 3. By implementing all these
orthogonal techniques, the query processor should then pro-
duce the same efficient execution plan for the various equiv-
alent SQL formulations we have listed above, achieving a
degree of syntax-independence. The basic transformations
shown in the figure are described next.

Algebrize into initial operator tree.Our algebraic rep-
resentation of correlations is based on the Apply operator.
Apply is a second-order relational construct that abstracts
parameterized execution of subexpressions. We elaborate
more on this operator below, in Section 1.3.

Remove correlations.Removal of correlation consists of
rewriting Apply into other operators such as outerjoin. In
Section 2.3 we go into the details of how this is achieved.
The result of correlational removal, on the example query
we used early is exactly the strategy proposed by Dayal.

Simplify outerjoin.Simplification of outerjoin into join,
under null-rejecting conditions, is elaborated in [7]. We use
the same framework, but add derivation of null-rejection
in GroupBy operators, which is not covered in that work.
Correlation removal typically results in outerjoins, which are
then simplified into joins, when possible. In our earlier ex-
ample, the condition 1000000 < x rejects a null value of
x, which triggers simplification of outerjoin into join.

Reorder GroupBy.Reordering GroupBy around joins was
presented in [3, 18]. In our implementation, we build on that

572

CUSTOMER SGb(X=SUM(O_TOTALPRICE)

ORDERS

APPLY(bind:C_CUSTKEY)

SELECT(1000000<X)

SELECT(O_CUSTKEY=C_CUSTKEY)

Figure 2: Subquery execution using Apply.

work by adding reordering around outerjoins, and operating
based on abstract properties of aggregate functions, rather
than considering the five standard SQL aggregates.

1.3 A useful tool: Represent parameterized
execution algebraically

A convenient tool in the development of our orthogonal
optimizations is the algebraic representation of parameter-
ized subquery execution. The basic idea is similar to the
APPLY or MAPCAR operators of LISP: Evaluate an ex-
pression on a collection of items, and gather the results.
The first construct we use is Apply. Relational database
practitioners will see this as nested loops with correlations,
while researchers on object-oriented databases might employ
lambda-calculus notation directly, e. g. [16, 4, 12]. Apply
takes a relational input R and a parameterized expression
E(r); it evaluates expression E for each row r ∈ R, and
collects the results. Formally,

R A⊗ E =
[
r∈R

({r} ⊗ E(r)) ,

where ⊗ is either cross product, left outerjoin, left semi-
join, or left antijoin. The most primitive form is A× ,
and cross product is assumed if no join variant is speci-
fied. Since we deal with SQL, all operators used in this pa-
per are bag-oriented, and we assume no automatic removal
of duplicates. In particular, the union operator above is
UNION ALL. Duplicates are removed explicitly using dis-
tinct, which as mentioned earlier is just a special case of
GroupBy.

For example, the correlated execution strategy for the sub-
query example Q1 shown earlier is represented algebraically
in Figure 2. In this case, each invocation of the parameter-
ized expression returns exactly one row, so the cardinality
of customer is preserved through Apply. In general, the
number of output rows depends on the cardinality of E(r),
as well as the join variant used to combine the result with
r.

The role of Apply in (sub-)query processing has been inde-
pendently explored by at least three research/development
groups: At Tandem, where it was called tuple substitution

join [1]; at Oregon Graduate Institue and Portland State
University, called d-join [17]; and at Microsoft [6]. It is in-
teresting to note that those three groups were all working
with an optimizer developed from the Cascades query opti-
mizer of Goetz Graefe [8].

Apply works on expressions that take scalar (or row-
valued) parameters. A second useful construct is Segmen-
tApply, which deals with expressions using table-valued pa-
rameters. It takes a relational input R, a parameterized ex-
pression E(S), and a set of segmenting columns A from R. It
creates segments of R using columns A, much like GroupBy
does, and for each such segment S it executes E(S). For-
mally,

R SAA E =
[
a

({a} × E(σA=aR)) ,

where a takes all values in the domain of A.
These higher order constructs do not add expressive power

to the standard relational operators ×, σ, π,−,∪, plus op-
erator GroupBy required for SQL. SegmentApply can be
rewritten in terms of Apply, and any expression containing
standard operators plus Apply can be rewritten in terms of
standard operators only [6]. The constructs do remain a
useful tool for query processing, facilitating query represen-
tation (Apply maps directly to a tuple-at-a-time formulation
style) and significantly enhancing the space of alternatives
considered for execution. This is achieved in an algebraic
fashion, allowing both formal algebraic manipulation as well
as smooth integration in algebraic query processors.

2. REPRESENTING AND NORMALIZING
SUBQUERIES

In this section we go into the detail of taking an SQL
subquery and generating an equivalent operator tree that
does not make use of correlated execution. The result is a
normal form corresponding to a query formulation without
subqueries. We consider all SQL subqueries, and describe
what makes their replacement by standard operators easy,
or hard, leading to broad subquery classes.

2.1 Direct algebraic representation with mu­
tual recursion

As a first step, the parser/algebrizer takes the SQL for-
mulation and generates an operator tree, which contains
both relational and scalar operators. For example, an SQL
where clause is translated into relational select, which has
two subexpressions in the operator tree. The first subex-
pression has a relational operator as root, which computes
the relational input to be filtered. The second subexpression
has a scalar operator as root, and it represents the predicate
to be use for filtering. Figure 3 shows the operator tree gen-
erated by the algebrizer for the example query Q1 of Section
1.1. Relational nodes are shown in bold.

On this representation, scalar operators may have rela-
tional subexpressions as children, as shown in the figure.
Straightforward execution of this operator tree implies a
“nested loops style” of execution for the subquery, as well as
mutual recursion between the relational and the scalar exe-
cution components —per-row execution of relational select
calls scalar evaluation of a predicate, which in turns calls
relational execution of a subquery.

573

CUSTOMER

ScalarGb

ORDERS

SELECT

SELECT

1000000

<

SUBQUERY(X)

O_CUSTKEY

=

C_CUSTKEY

X:=

SUM

O_TOTALPRICE

Figure 3: Direct algebraic representation of sub-
query.

2.2 Algebraic representation with Apply
Mutual recursion between scalar and relation nodes in the

algebrizer output is removed by introducing Apply opera-
tors. The general scheme is to evaluate the subquery explic-
itly before the operator whose scalar expressions requires
the subquery result. Say there is a relational operator � on
input R, with a scalar argument e using a subquery Q. We
execute the subquery first using Apply, such that the sub-
query result is available as a (new) column q; then replace
the subquery utilization by such variable:

�e(Q)R ; �e(q)(R A⊗ Q).

As an example, removing mutual recursion from the op-
erator tree in Figure 3 results in the tree shown in Figure 2.
An operator A× is introduced below the relational select
to compute the subquery, whose result is stored in column
X. Figure 2 no longer shows the expanded operator trees
for scalar expressions.

We showed how to remove one subquery from a scalar
expression, but the technique naturally applies to multi-
ple subqueries, in which case a sequence of Apply operators
compute the various subqueries over the relational input.

Straightforward execution at this point is still based on
nested loops. However, recursive calls between scalar and re-
lational execution are removed, since scalar evaluation never
needs to call back into the relational engine. Removing mu-
tual recursion not only can have an impact on performance,
but it also simplifies implementation.

2.3 Removal of Apply
Given a relational expression with Apply operators, it is

R A⊗ E = R⊗true E, (1)
if no parameters in E resolved from R

R A⊗ (σpE) = R⊗p E, (2)
if no parameters in E resolved from R

R A× (σpE) = σp(R A× E) (3)
R A× (πvE) = πv ∪ columns(R)(R A× E) (4)

R A× (E1 ∪E2) = (R A× E1) ∪ (R A× E2) (5)

R A× (E1 − E2) = (R A× E1)− (R A× E2) (6)
R A× (E1 × E2) = (R A× E1) ./R.key (R A× E2) (7)

R A× (GA,F E) = GA ∪ columns(R),F (R A× E) (8)

R A× (G1
F E) = Gcolumns(R),F ′(R ALOJ E) (9)

Identities 7 through 9 require that R contain a key R.key.
In identity (7), Join on R.key is used as a shorthand for the
obvious predicate. In identity (9), F ′ contains aggregates
in F expressed over a single-column —for example, if F
is count(*), then F ′ is count(c) for some not-nullable
column c from E. Identity (9) is valid for all aggregates such
that agg(∅) = agg({null}), which is true for SQL aggregates.

Figure 4: Rules to remove correlations.

possible to obtain an equivalent expression that does not
use Apply. The process consists of pushing down Apply in
the operator tree, towards the leaves, until the right child of
Apply is no longer parameterized off the left child. Figure
4 describes the properties that allow this pushing —see [17,
6] for additional details, and discussion on these properties.

For example, consider the expression shown in Figure 2.
On the right child of Apply there is a scalar aggregation,
then a select, and below that point there are no more outer
references. Apply removal is shown in Fig 5. Identity (9)
is used to push Apply below Scalar GroupBy; then Identity
(2) is used to absorb the last parameterized select and re-
move the Apply. This results in the strategy of outerjoin
followed by aggregate. In addition, due to the predicate on
the aggregate result, the left outerjoin (denoted LOJ) can
be simplified to join.

2.4 All SQL subqueries
So far we have described transformations that normalize

subqueries into standard relational operators, and exempli-
fied the procedure using a scalar aggregate subquery. We
now describe additional SQL subquery scenarios, and how
our scheme is affected on those.

For boolean-valued subqueries, i. e. exists, not exists,
in subquery, and quantified comparisons, the subquery can
be rewritten as a scalar count aggregate. From the utiliza-
tion context of the aggregate result, either equal to zero or
greater than zero, it is possible for the aggregate operator
to stop requesting rows as soon as one has been found, since
additional rows do not affect the result of the comparison.

A common case that is further optimized is when a re-
lational select has an existential subquery as its only pred-
icate (or when such select can be created by splitting an-
other that ANDs an existential subquery with other condi-
tions). In this case, the complete select operator is turned
into Apply-semijoin for exists, or Apply-antisemijoin for not

574

σ1000000<X(customer A× G1
X=sum(o price)σo custkey=c custkeyorders)

= σ1000000<X Gc custkey,X=sum(o price)(customer ALOJ σo custkey=c custkeyorders), by identity (9)

= σ1000000<X Gc custkey,X=sum(o price)(customer LOJo custkey=c custkeyorders), by identity (2)

= σ1000000<X Gc custkey,X=sum(o price)(customer ./o custkey=c custkey orders), by outerjoin simplification.

Figure 5: Example of correlation removal.

exists. Such Apply is then converted into a non-correlated
expression, if possible, using Identity (2). For the resulting
semijoin, we consider execution as join followed by GroupBy
(distincting), which follows from the definition of semijoin.
This GroupBy is also subject to reordering, covering the
semijoin strategies suggested in [14].

There are two scenarios where normalization into stan-
dard relational algebra operators is hindered in a fundamen-
tal way. We call those exception subqueries and they require
scalar-specific features. Consider the following query.

Q2: select c name,
(select o orderkey from orders
where o custkey = c custkey)

from customer

For every customer, output the customer name, and the
result of a subquery that retrieves an oderkey. There are
three cases: If exactly one row is returned from the subquery,
then such value is used in the scalar expression; if no rows are
returned, then null is used; finally, if more than one row is
returned, then a run-time error is generated [13]. The above
query is valid, but will generate a run-time error if there
happens to be a customer with more two or more orders.
Since there are no run-time errors in standard relational
algebra, we need an additional operator to represent these
subqueries. We call such operator Max1row. It takes a
relational input and passes input rows unmodified, and it
generates a run-time error if the input has more than one
row. It is placed in the right subexpression of Apply, to
verify the SQL subquery semantics.

There is some amount of reordering that can be done on
Max1row, but we find this case uninteresting. In our experi-
ence, at most one row is returned in most meaningful cases,
and the compiler can detect this from information about
keys. There is no need for Max1row then. For example,
we reverse the roles of the tables next, retrieving customer
name for each order. The resulting query is more meaning-
ful, and the compiler avoids the use of Max1row, as long as
s custkey is a declared key.

select o orderkey,
(select c name from customer
where c custkey = o custkey)

from orders

Another problematic construct is conditional scalar ex-
ecution, expressed in SQL as case when <cond> then
<value1> else <value2> end. The point is, <value2>
should not be evaluated when <cond> is true. Therefore,
eager execution of a subquery, say contained in <value2>,
is incorrect, in particular if it happens to generate a run-time
error. To deal with this scenario, we use a modified version

of Apply with conditional execution of the parameterized
expression, based on a predicate. Implementing this is re-
quired for completeness, but in our experience this scenario
is very rare in practice.

2.5 Subquery classes
Our approach delineates three broad classes of subquery

usage in SQL, which grant different treatment from the
query processor.

Class 1. Subqueries that can be removed with no ad­
ditional common subexpressions.In general, removing
Apply requires introduction of additional common subex-
pressions —e. g. see Identity (5), which introduces two
copies of R. Cases that do not require introducing com-
mon subexpressions are easier. In particular, the com-
mon case of subqueries that are formed by a simple se-
lect/project/join/aggregate block are easy to handle. An
example query for this class is Q1 from Section 1.1. Our
normalization scheme produces an operator tree with stan-
dard relational operators and no correlations involved. Af-
terwards, cost-based optimization will consider a number of
alternatives, including re-introduction of a correlated exe-
cution, which can be very effective if few outer rows are
processed and appropriate indices exist. Earlier research on
SQL subqueries has implicitly focused on a subset of this
class of subqueries.

Any subquery processing strategy that applies on Class 1
subqueries must have a more primitive formulation, appli-
cable on expressions without correlations. For example, the
“magic” strategy for subquery evaluation described in [15]
has a primitive formulation on join and aggregation [17].

Class 2. Subqueries that are removed by introducing
additional common subexpressions.Achieving optimal-
ity and syntax-independence in this class requires an under-
standing of the plan space and mechanisms to generate plans
of interest, for queries with common subexpressions, which
we believe requires additional research. In our current imple-
mentation these subqueries are not removed during normal-
ization, but we do still consider unnesting transformations
during cost-based optimization. This can lead to improve-
ments over the original subquery form, and cost-based de-
cisions will be used to choose appropriate execution plans.
However, no syntax-independence is provided, and there is
no simple characterization of the space of interest. We are
not aware of any work that has attempted to optimize this
class of subqueries.

It is hard to formulate a short, meaningful query that fits
in this class, using the TPCH schema. The next query is
a valid (but meaningless) SQL example for the class, using
UNION ALL. Removing Apply requires Identity (5), which

575

introduces multiple copies of the outer table.

select *,
from partsupp
where 100 >

(select sum(s acctbal) from
(select s acctbal
from supplier
where s suppkey = ps suppkey
union all
select p retailprice
from part
where p partkey = ps partkey)
as unionresult)

Class 3. Exception subqueries.These subqueries are
fundamentally non-relational, as they require scalar-specific
features such as generating run-time errors. We consider
these cases relatively uninteresting, and rare in practice. To
our knowledge, no research work has addressed queries in
this class. An example query for this class is Q2 described
in Section 2.4.

3. COMPREHENSIVE OPTIMIZATION
OF AGGREGATION

In this section we describe techniques for efficient pro-
cessing of queries with aggregations. We extend, and for-
mulate in algebraic terms, earlier work related to reordering
of GroupBy/Aggregate, and segmented execution of queries.
The result is a number of transformation rules to generate
interesting execution strategies, to be used in the context of
cost-based optimization.

3.1 Reordering GroupBy
Aggregating a relation reduces its cardinality. This may

give us the impression that we can use the same early evalu-
ation strategy that we use for filters. But that is not always
the case because aggregation can be quite expensive and the
cost depends heavily on the number of rows being aggre-
gated. Take the case of joins. If the join predicate reduces
the cardinality dramatically it may be better to perform
the GroupBy after the join. Doing it later avoids unnec-
essary calculation of aggregates which will be thrown away
by the join. Another reason can be the existence of appro-
priate indices, which allows the join to be performed as an
index-lookup. This may not be possible when the aggre-
gate obstructs it. Therefore, it is best to generate both the
alternatives and leave the choice to the cost based optimizer.

In this section we study the conditions necessary to move
a GroupBy around filters, joins, semijoins etc. As we men-
tioned earlier some of these ideas were developed in [3, 18].
We formulate them here in a way that they can be imple-
mented as primitive optimization rules. In the next section
we do the same for outerjoins. In our discussion we will
formally denote a GroupBy as GA,F where A is the set of
grouping columns and F are the aggregate functions.

Let us begin with the discussion of a primitive to reorder
a filter and an aggregate. For a GroupBy operator, rows in
the input relation that have same values for the grouping
columns generate exactly one output row. If a filter above
an aggregate rejects a row, it needs to reject the whole group

that generated this row after it is pushed below the aggre-
gate. The only characteristic shared by this group of rows is
the values of the grouping columns. Therefore we can move
a filter around a GroupBy if and only if all the columns
used in the filter are functionally determined by the group-
ing columns in the input relation.

Moving aggregates around a join is a little more com-
plicated. A GroupBy can be pushed below a join if the
grouping columns, the aggregate calculations and the join
predicate each satisfy certain conditions. Suppose we have
a GroupBy above a join of two relations, i.e. GA,F (S ./p R),
and we want to push the GroupBy below the join so that
the relation R is aggregated before it is joined i.e. S ./p

(GA∪columns(p)−columns(S),F R). This is feasible if and only
if the following three conditions are met -

1. If a column used in the join predicate p is defined by
the relation R then it is part of the grouping columns.

2. The key of the relation S is part of the grouping
columns.

3. The aggregate expressions only use columns defined by
the relation R.

To see why this is correct, think of a join as a cross product
followed by a filter. The first two condition ensure that all
the columns of the predicate are functionally determined by
the grouping columns. This allows us to push the GroupBy
below the filter. The second condition implies that no two
rows from the relation S are included in the same group
during aggregation. The last condition ensures that the ag-
gregate expressions can be calculated with just the relation
R. These two conditions together enable us to push the
GroupBy below the cross product.

Pulling a GroupBy above a join is a lot easier. All that is
required is that the relation being joined has a key and that
the join predicate does not use the results of the aggregate
functions. These two restrictions follow directly from the
discussion above. Formally,

S ./p (GA,F R) = GA∪columns(S),F (S ./p R)

Even these two conditions are not as restrictive as they ap-
pear at first sight. If the relation S does not have a key, one
can always be manufactured during execution. As for the
second condition, conjuncts of a join predicate can always
be separated out into a filter performed after the join. We
can apply this strategy to the predicate p if it uses results
of the aggregate functions.

One can think of semijoins and antisemijoins as filters
since they include or exclude rows of a relation based on the
column values. The conditions necessary to reorder these
operators around a GroupBy can therefore be easily de-
duced from those for a filter. Suppose we have an aggregate
followed by a semijoin i.e. (GA,F R)�HpS we can push the
semijoin below if and only if p does not use the result of
any aggregate expressions and every column of predicate p,
say c, satisfies the condition that if c /∈ columns(S) then c
is functionally determined by the grouping columns(i.e. the
set A). The condition for antisemijoin is exactly the same.

3.2 Moving GroupBy around an outerjoin
Removing correlations for scalar valued subqueries results

in an outerjoin followed by a GroupBy. Therefore it is es-
pecially important for our optimizer to have primitives that

576

allow reordering of these two operators. None of the litera-
ture cited above discusses this issue.

In order to push a GroupBy below an outer join the join
predicate, grouping columns and the aggregate calculations
once again have to meet the three conditions mentioned
above. The only difference is that an extra project may have
to be added above the outerjoin if the aggregate expressions
do not meet a certain condition.

Let us see why this works and why a project may be nec-
essary. The result of an outerjoin has two types of rows viz.
those that match, and those that do not and are padded
with NULLs. We know that our grouping columns include
a key of the outer relation. This implies that a group can
never have both matched and unmatched rows. For the rows
that match, correctness can be proved by using the same
argument as join. For the rows that do not match, early
aggregation means that they will not be aggregated at all!
This is where the extra condition and the optional project
comes in.

In the result of an outerjoin, an unmatched row appears
exactly once. Therefore given that our grouping columns
include the key of the outer relation, a group that has an
unmatched row cannot have any other row. The aggregate
functions use only the columns from the non-outer relation.
For an unmatched row all these columns are NULL. There-
fore the property of aggregate expressions that is important
to us is the result of applying it to NULLs. If the result is
NULL as it is for most simple aggregate expressions, we need
do nothing more. The outerjoin will automatically provide
the NULLs we need. For the aggregate expressions which
do not result in a NULL, we need to add a project which
for each unmatched row sets the aggregate result to the ap-
propriate constant value.2 Note that this constant can be
calculated at compile time. For count(*), the value of this
constant is zero.

Formally we have

GA,F (S LOJpR) = πc(S LOJp(GA−columns(S),F R))

where the computing project πc introduces the non-NULL
results if necessary.

As an example, in the outerjoin/aggregate strategy shown
earlier in Section 1.1, the aggregation can be pushed down
below the outerjoin.

select c custkey
from customer left outer join

(select o custkey,
sum(o totalprice) as totalorder

from orders
group by c custkey) as AggResult

on o custkey = c custkey
where 1000000 < totalorder

No computing projects are required here as the aggregate
expression sum(o totalprice) does result in NULL when cal-
culated on a singleton NULL.

3.3 Local Aggregates
The restrictions on the join predicate, grouping column

etc. mean that it is not always possible to push a GroupBy
2Detection of unmatched rows requires a non-nullable col-
umn from the inners side, which can always be manufac-
tured, or else changes to outerjoin to provide a match col-
umn.

below a join. But sometimes it may be possible to do part
of the aggregations before the join and then combine these
partially aggregated rows afterwards to get the final result.
This can be efficient because it reduces the cardinality of the
join inputs. Some of these ideas are discussed in [3, 18]. Here
we introduce a new operator called LocalGroupBy (formally
LG) and develop primitives that allow us to push it below
other relational operators giving us this ability to aggregate
early.

In order to introduce a LocalGroupBy, the aggregate func-
tion has to be split into two new functions - one which does
the early partial aggregation, called a local aggregate in this
paper, and another which combines these aggregates to gen-
erate the final result, called a global aggregate in this paper.
Formally if we have an aggregate function f , we need a local
aggregate function fl and a global aggregate function fg such
that for any set S and for any partition of it {S1, S2, . . . , Sn}
we have

f(
n[

i=1

Si) = fg(
n[

i=1

fl(Si))

Note that the implementation, whether hash based or sort
based, of aggregate functions in a query execution engine
requires this ability of splitting an aggregate into local and
global components, if it has to spill data to disk and then
recombine it.3

If all the aggregate functions used in a GroupBy can be
split this way, which should almost always be true, we can
replace a “standard” GroupBy with a LocalGroupBy fol-
lowed by a “global” GroupBy. Formally we have

GA,F R = GA,FgLGA,FlR

where Fl and Fg are the local and global aggregate expres-
sions corresponding to F .

LocalGroupBy has the interesting property that its group-
ing columns can be extended without affecting the final re-
sult. Adding a new column to the set of grouping columns
just partitions the groups further. But since we have a final
“global” aggregate to combine these partial results, the final
result remains unchanged.

This ability to extend grouping columns gives us infinite
freedom. Take the case of a join. It is now trivially easy to
satisfy the first two restrictions we mentioned in our discus-
sion about reordering aggregates with a join. We just add
the necessary columns. That leaves us with only the third re-
striction about aggregate functions. The solution once again
is to extend the grouping columns. An aggregate function
computation can be removed from a LocalGroupBy using
the following steps: First extend the grouping columns by
adding the aggregate input column (or expression, in gen-
eral); at this point, the aggregate function is operating on a
set of count(*) identical values. Now, replace the aggregate
computation by a later project that, in general, computes
the result based on count(*) and the original aggregate in-
put, which is a constant for the group. For example, suppose
the grouping columns include the column a and one of the
aggregates being calculated is sum(a). We can get the same
answer with the expression (a×count(*)) calculated after
the aggregation. This property of aggregate functions allows
3There can be composite aggregates, such as avg, which
do not have local/global versions. But they are computed
based on primitive aggregates that do, since we want to be
able to compute them using algorithms that spill to disk.

577

us to replace any aggregate function used in a LocalGroupBy
with a count(*), thus addressing the third restriction. We
can push a LocalGroupBy below any join and to any side
of the join. More details about reordering LocalGroupBy
with several other operators, and proofs of correctness can
be found in [10].

Note that the actual implementation of a LocalGroupBy
in the query execution engine need not be different from a
GroupBy. We use a separate operator only to make the job
of optimizer easy since the transformations described above
are only valid for the LocalGroupBy operator.

3.4 Segmented execution
Frequently the process of correlation removal for scalar

valued subqueries results in two almost identical expressions
joined together. The only difference is that one of them is
aggregated and the other is not. A simple example of this
is Query 17 of the TPC-H benchmark. After removing the
correlation, the SQL representation of the query is -

select sum(l extendedprice)/7.0 as avg yearly
from lineitem, part,

(select l partkey as l2 partkey,
0.2 * avg(l quantity) as x

from lineitem
group by l partkey) as aggresult

where p partkey = l partkey
and p brand = ’brand#23’
and p container = ’med box’
and p partkey = l2 partkey
and l quantity < x

Here we have two instances of the lineitem table joined
together where one of them is grouped by l partkey. The
SQL representation for this join using the implied predicate
is -

select l partkey, l extendedprice
from lineitem,

(select l partkey as l2 partkey,
0.2 * avg(l quantity) as x

from lineitem
group by l partkey) as aggresult

where l partkey = l2 partkey
and l quantity < x

Semantically this join is trying to find all the lineitem
rows where the quantity ordered is less than 20% of the
average for that part. But this means the selection of a
particular lineitem row does not require the whole derived
table aggresult. All we need is the average quantity for
the part referenced in that row. That gives rise to an in-
teresting correlated execution strategy. We can segment the
lineitem table based on the part and calculate the join for
each segment independently. A SegmentApply does exactly
that.

A SegmentApply operator is very similar to the Apply
operator we studied in detail. The only difference is that the
parameter is a set of rows rather than a single row. The inner
child of the SegmentApply is an expression that uses this set.
Figure 6 shows the transformed version of the lineitem join.
Segmented execution was discussed in [2]. Our contribution
is to formulate it as an algebraic operator so that it can be
used in a cost based optimizer. The formalism also allows
us to introduce reordering primitives.

SegmentApply[L_PARTKEY]�use�S

LINEITEM JOIN(L_QUANTITY�<�X)

SGb(X=0.2*AVG(L_QUANTITY))

S

S

Figure 6: SegmentApply

3.4.1 Introducing SegmentApply
Whenever we see two instances of an expression connected

by a join, where one of the expressions may optionally have
an extra aggregate and/or an extra filter, we attempt to
generate an alternative that uses SegmentApply. The key
thing to look for is a conjunct in the join predicate that is an
equality comparison between two instances of the same col-
umn from the two expressions. Such a comparison implies
that rows for which this column differs will never match.
We can therefore use the column to partition the relation.
Note that the join predicate can have multiple columns that
satisfy this criterion allowing us to have finer segments. If
the join predicate does yield such segmenting columns, we
introduce a correlated execution alternative that uses Seg-
mentApply.

Removing correlations for an existential subquery gener-
ates a semijoin, or antisemijoin. The argument in the previ-
ous section is valid for those operators too. We can therefore
introduce a SegmentApply in both these cases, if there are
common subexpressions and the required equality conditions
hold. The only difference is in the correlated expression.

3.4.2 Moving joins around SegmentApply
Going back to our TPC-H example, we can see that look-

ing at all the lineitem rows is an overkill because the final
result cares only about parts with a specific brand and a
specific container. It would be more efficient to only process
lineitem rows for these parts. This optimization is possi-
ble if we add a primitive to reorder a SegmentApply and
a join that allows us to reduce the lineitem table earlier
by joining it with the part table. Algebraic representation
of SegmentApply allows us to manipulate it like any other
operator and makes it very easy to add such a primitive.

The key condition to check when pushing a join below
a SegmentApply is preservation of the segment. The join
predicate needs to be such that it either allows all rows in
a segment to pass through or none of them to do so. If
pushing the join removes only some of the rows, the result
of the correlated expression will not be same. Suppose we
have a SegmentApply expression (R SAA E) ./p T where A
is the set of segmenting columns and p is the join predicate.
The all or none condition means that the predicate p can
use only the segmenting columns or columns of the relation
T and nothing else.4

4As we mentioned in case of GroupBy, this is not as restric-
tive as it appears. A join predicate can be split up into a

578

A join predicate which satisfies this condition may still
change the segment. If the join is such that one row of
R matches multiple rows of T all these resulting rows will
be included in the segment. There is a simple solution to
this however and it is to add the key of relation T to the
segmenting columns.5 This ensures that each instance of
the row goes to a different segment.

Formally we have

(R SAA E) ./p T = (R ./p T) SAA∪columns(T) E
iff columns(p) ⊆ A ∪ columns(T).

The predicate of the join with the part table in TPC-H
Query 17 uses the column l partkey, which is our segment-
ing column. We can therefore push the join below the Seg-
mentApply. We need to add the key of the part table viz.
p partkey to the segmenting columns, but since the two
segmenting columns l partkey and p partkey are equal
we can safely remove one of them. The final expression is
shown in Figure 7.

Remember once again that these alternatives will be
costed and used in the final plan only if they appear
cheaper.

4. COMPILATION IN SQL SERVER
The following is a brief description of relevant compilation

steps in SQL Server, and how different optimizations are
incorporated. For the most part, the material of Section
2 deals with preparing a normalized operator tree, to be
used as input for cost-based optimization. The material of
Section 3 deals mostly with interesting alternatives that can
reduce execution time dramatically, but need to be costed
to determine when to use them, and are therefore part of
cost-based optimization.

Parse and bind.This step is a relatively direct translation
of SQL text into an operator tree containing both relational
and scalar operators, in the form shown in Section 2.1. Note
that current SQL allows the use of (correlated) subqueries
anywhere scalar expressions are allowed, including SELECT
and WHERE clauses. Any scalar expression may have a
relational expression as children.

Query normalization.This step transforms an operator
tree into a simplified/normalized form. Simplifications in-
clude, for example, turning outerjoins into joins, when pos-
sible, and detecting empty subexpressions. For subqueries,
mutual recursion between relational and scalar execution is
removed, which is always possible; and correlations are re-
moved, which is usually possible. At the end of normaliza-
tion, most common forms of subqueries have been turned
into some join variant.

Cost­based optimization.Execution alternatives are gen-
erated using transformation rules, and the plan with cheap-
est estimated cost is selected for execution. Important
classes of optimizations include: Reordering of join vari-
ants; reordering of GroupBy with join variants; considering

filter applied after the join.
5This is exactly what we did when pushing a join below a
GroupBy, which should not be surprising since a Segmen-
tApply is just a more general version of a GroupBy.

special strategies for GroupBy; and introduction of corre-
lated execution (the simplest and most common being index-
lookup-join). The architecture of our cost-based optimizer
follows the main lines of the Volcano optimizer [9], so that
generation of interesting reorderings is done by means of
transformation rules.

5. PERFORMANCE RESULTS
We now present the results of our optimizations on queries

from the TPC-H benchmark. Normalization flattens all sub-
queries in the benchmark, but this does not have a direct im-
pact on query performance —it is reordering, and GroupBy
optimization techniques that do have an impact. In particu-
lar, our full set of techniques apply on Query2 and Query17.

Figure 8 lists all published TPC-H results on the 300GB
scale, as of November 27th, 2000, which we include here
in compliance with the TPC reporting rules. In Figure 9
we plot the published results of elapsed time for Query2
and Query17. The numbers are taken from the information
available in the TPC web page (http://www.tpc.org), for
all eight TPC-H results on the 300GB scale. None of those
results use clusters. The x axis plots the number of proces-
sors used in each benchmark result, and the y axis plots the
elapsed execution time on the power run. For example, the
lower left point in the graph for Query17 corresponds to an
elapsed time of 79.7 sec, obtained on 8 processors; while the
lower right point on the same graph is for 210.4 sec time
on 64 processors. Points are separated by DBMS, since the
different query processors are likely to use different technolo-
gies. On these two queries, SQL Server has published the
fastest results, even on a fraction of the processors used by
other systems.

TPC-H has strict rules on what indices are allowed, re-
ducing the relative impact of physical database design, in
comparison to query processor technology and hardware.
Several factors contribute to the fast SQL Server result, in-
cluding both query optimization and execution. An essen-
tial component are the techniques described earlier in this
paper.

6. CONCLUSIONS
In this paper we described the approach used in Microsoft

SQL Server to process queries with subqueries and/or ag-
gregations. The approach is based on several ideas:

Subqueries and aggregation should be handled by or­
thogonal optimizations.Earlier work has sometimes com-
bined multiple, independent primitives to derive strategies
that are suitable for some cases. What we do instead is
to separate out those independent, small primitives. This
allows finer granularity of their application; it generates a
richer set of execution plans; it makes for more modular
proofs; and it simplifies implementation.

Algebraic constructs for parameterized subexpressions
are a useful query processing tool.The Apply and Seg-
mentApply constructs do not add expressive power to re-
lational algebra. However, they facilitate query representa-
tion for some query language constructs, and significantly
enhance the space of alternatives considered for execution.
This is achieved in an algebraic fashion, allowing both for-
mal algebraic manipulation as well as smooth integration in

579

SegmentApply[L_PARTKEY]�use�S

JOIN(L_PARTKEY�=�P_PARTKEY) JOIN(L_QUANTITY�<�X)

SGb(X=0.2*AVG(L_QUANTITY))

S

SLINEITEM FILTER(P_BRAND‘Brand#23’ �AND
P_CONTAINER�=�‘MED�BOX’)

PART

Figure 7: Join with PART pushed below SegmentApply

System Database QphH Price/QphH System Date
@300GB @300GB, Availability Submitted

in US$
COMPAQ ProLiant 8000-8P Microsoft SQL Server 2000 1506 280 11/17/00 11/17/00
HP NetServer LXr 8500 Microsoft SQL Server 2000 1402 207 08/18/00 08/18/00
HP 9000 N4000 Informix Extended 1592 973 05/02/00 05/02/00

Enterprise Server Parallel Server 8.30 FC2
COMPAQ AlphaServer Informix XPS 8.30 FC3 4951 983 08/31/00 07/13/00

GS320 Model 6/731
HP 9000 V2500 Informix Extended 3714 1119 12/17/99 10/21/99

Enterprise Server Parallel Server 8.30 FC2
IBM NUMA-Q 2000 IBM DB2 UDB 7.1 4027 652 09/05/00 09/05/00
IBM NUMA-Q 2000 IBM DB2 UDB 7.1 5923 653 09/05/00 09/05/00
IBM NUMA-Q 2000 IBM DB2 UDB 7.1 7334 616 08/15/00 05/03/00

Figure 8: Published TPC-H results for 300GB, as of November 27th, 2000. Included here in compliance with
the TPC reporting rules.

0

50

100

150

200

250

300

0 8 16 24 32 40 48 56 64 72

Number�of�processors

T
im

e�
(s

ec
)

0
200
400
600
800

1000
1200
1400
1600
1800

0 8 16 24 32 40 48 56 64 72

Number�of�processors

T
im

e�
(s

ec
)

MS�SQL�Server

Informix

IBM�DB2

Results for Query 2. Results for Query 17.

Figure 9: Query performance reported in TPC-H results, 300GB scale.

580

algebraic query processors.

Parameterized expressions (i. e. correlated subqueries)
should be removed during query normalization, for
syntax­independence.In Section 2 we described algebraic
removal of correlations. We considered all SQL subqueries,
and described what makes their replacement by standard op-
erators easy, or hard, leading to three broad classes. On one
side of the scale, subqueries whose body consists of a sim-
ple SQL query block always can and should be normalized
out. In the next level, removal of subqueries requires in-
troducing common subexpressions, which impose additional
requirements on the query processor on the resulting “flat”
expressions. Finally, subqueries that need checking for er-
rors at execution time, such as verification that a scalar-
valued subquery returns at most one row, are not relational
in nature. From what we know, earlier work on subqueries
has implicitly focused on the simplest class.

A rich set of alternatives for GroupBy/Aggregate ex­
ecution should be considered during cost­based op­
timization. GroupBy/Aggregate appears frequently, either
writen directly in the original query, or as a result of query
normalization. In Section 3 we described two powerful tech-
niques: Reordering of GroupBy, and segmented execution.
We extend, and formulate in algebraic terms, earlier work,
resulting in a number of transformation rules to generate in-
teresting execution strategies. It is these optimizations that
make for the order-of-magnitude performance improvements
that we report.

We showed the effectiveness of our overall approach with
figures from published TPC-H results, in Section 5. In
particular, our full set of techniques apply on Query2 and
Query17. From all published TPC-H results in the 300GB
scale, at the time of writing (November 2000), SQL Server
has the fastest results on those queries, even on a fraction
of the processors used by other systems.

7. REFERENCES
[1] P. Celis and H. Zeller. Subquery elimination: A

complete unnesting algorithm for an extended
relational algebra. In Proceedings of the Thirteenth
International Conference on Data Engineering, April
7-11, 1997 Birmingham U.K, page 321, 1997.

[2] D. Chatziantoniou and K. A. Ross. Groupwise
processing of relational queries. In Proceedings of the
23rd International Conference on Very Large
Databases, Athens, pages 476–485, 1997.

[3] S. Chaudhuri and K. Shim. Including Group-By in
query optimization. In Proceedings of the Twentieth
International Conference on Very Large Databases,
Santiago, pages 354–366, 1994.

[4] S. Cluet and C. Delobel. A general framework for the
optimization of object-oriented queries. In Proceedings
of ACM SIGMOD 1992, pages 383–392, 1992.

[5] U. Dayal. Of nests and trees: A unified approach to
processing queries that contain nested subqueries,
aggregates, and quantifiers. In Proceedings of the
Thirteenth International Conference on Very Large
Databases, Brighton, pages 197–208, 1987.

[6] C. A. Galindo-Legaria. Parameterized queries and
nesting equivalences. Technical report, Microsoft,

2001. MSR-TR-2000-31.
[7] C. A. Galindo-Legaria and A. Rosenthal. Outerjoin

simplification and reordering for query optimization.
ACM Transactions on Database Systems, 22(1):43–73,
Mar. 1997.

[8] G. Graefe. The Cascades framework for query
optimization. Data Engineering Bulletin, 18(3):19–29,
1995.

[9] G. Graefe and W. J. McKenna. The volcano optimizer
generator: Extensibility and efficient. In Proceedings
of the Ninth International Conference on Data
Engineering, Viena, Austria, pages 209–218, 1993.

[10] M. M. Joshi and C. A. Galindo-Legaria. Properties of
the GroupBy/Aggregate relational operator. Technical
report, Microsoft, 2001. MSR-TR-2001-13.

[11] W. Kim. On optimizing an SQL-like nested query.
ACM Transactions on Database Systems,
7(3):443–469, Sept. 1982.

[12] T. Leung, G. Mitchell, B. Subramanian, B. Vance,
S. L. Vandenberg, and S. B. Zdonik. The AQUA data
model and algebra. In DBPL, pages 157–175, 1993.

[13] J. Melton and A. R. Simon. Understanding the new
SQL: A complete guide. Morgan Kaufmann, San
Francisco, 1993.

[14] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/rule based query rewrite optimization in
starburst. In Proceedings of ACM SIGMOD 1992,
pages 39–48, 1992.

[15] P. Seshadri, H. Pirahesh, and T. Y. C. Leung.
Complex query decorrelation. In Proceedings of the
Twelfth International Conference on Data
Engineering, New Orleans, Luisiana, pages 450–458,
1996.

[16] G. Shaw and S. Zdonik. An object-oriented query
algebra. In Proceedings of the Second International
Workshop on Database Programming Languages,
pages 249–225, 1989.

[17] Q. Wang, D. Maier, and L. Shapiro. Algebraic
unnesting of nested object queries. Technical report,
Oregon Graduate Institute, 1999. CSE-99-013.

[18] Y. P. Yan and P. A. Larson. Eager aggregation and
lazy aggregation. In Proceedings of the 21st
International Conference on Very Large Databases,
Zurich, pages 345–357, 1995.

581

