
Complex Group-By Processing
in XML
to appear in 23rd IEEE ICDE 2007, Istanbul, Turkey.

for CS631 – ITDBMS
B. Aditya Prakash (03005030)
Chaitanya G. Gokhale (03005019)

Talk Outline

Motivation
Related Work
Our Contributions
Query Structure
Algorithm : Nested-Group-By

Dealing with having
Moving Windows

Experimental Analysis
Conclusions & Future Work

Motivation
Emergence of XML as a popular data-
exchange standard
Group-by queries are one of the most
common class of practical queries
BUT – XQuery

Has no explicit group-by operator
And requires simulation of group-by operations by
nesting

Hence focus on efficient processing of a
group-by operator (additionally with
aggregation etc.)

Related Work

Beyer et al [1] and Borkar and Carey [2]
propose syntactic extensions to XQuery
FLOWR expressions to support explicit for
group-by.
But none discuss algorithms to directly
support group-by.
Another approach: Detect grouping in nested
queries and rewrite with explicit grouping
operations.

Related Work (contd.)

Most popular approach: Shred the XML data
to tables in Relational database and execute
equivalent SQL query [3]

Works for fixed schemas. Need to re-shred
frequently for dynamic schemas – inefficient
Conversion of XQuery to SQL – not automatic
Loss of expressive power of XML (hierarchy etc.)
Performance issues in nested/hierarchical queries
More on this later.

Our Contributions

Framework for expressing complex group-by
queries on XML with a variety of aggregation,
nesting, having clause etc.
A disk-based algorithm for efficient
processing of the above queries
Stringent experimental performance analysis

Example Group-by Query

Consider the following query:

Example (Contd.)

On this data:

Example (Contd.)

To get this Answer Tree:

General Query Framework

General form of a nested query :

Framework (Contd.)

Aggregation Operations : All of agg‘s are
aggregation operations such as min(),
count(), sum(), median() etc. applied on γ’s.

Aggregations can be nested e.g. maxMedian()
Conditions :

AggCons are sets of aggregation conditions.
Cons in the where clause are node-level selection
conditions.

Framework (Contd.)

Moving Windows : mw’s denote moving
window specifications.

mw ≡ { width, step, winType, domType }
winType = cumulative, fixed etc.
domType = active or standard

active domain : include only those values that appear in
database.
standard domain : include all the possible values

Percentiles can be expressed too

Algorithm : Nested-Group By (NGB)

The algorithm can be divided into three steps:
Initialization : construction of canonical tree
Merge phase : apply node merge operation
repeatedly
Answer extraction : Aggregate computation

NGB Algorithm (Contd.)

Initialization
Identify nodes of type α, β and γ’s, while pruning
nodes of other type. Outcome is a canonical tree
following input data tree structure.
Compute group-by labels from β values and
associate them with α nodes.
Based on type of aggregate function, associate
appropriate quantifier e.g simple counter for
count(), frequency table for median() etc.

NGB Algorithm (Contd.)

Merge Phase :
Processing β nodes :

if we have a new value create new node in answer tree
with appropriate group-by-label,
else update the existing node corresponding to this
group-by-label.
e.g. for Q1 first time Name = Kaufman is
encountered, a new Book node is created in the answer
tree as a child of root node.

NGB Algorithm (Contd.)

Processing γ (gamma) nodes :
Two cases need to be considered..
Holistic aggregation function such as median(): All
values for the specific β combination need to be
collected before aggregation

Values accumulated frequency table in main memory
In Disk-based version : values written out to a file, called
gamma file.

Non-Holistic aggregation function such as sum(),
average(): aggregation can be computed on-the-fly by
appropriate updates to a suitable finite set of counters.

NGB Algorithm (Contd.)
Pseudo-code for the algorithm :

Dealing with having

Naïve solution:
Compute the aggregation
Then apply the having clause
Unnecessary computation!

Anti-Monotonic Early Pruning
A constraint that remains false once it is first
violated
E.g. count(*) < 100, min(Price) > 100 etc.
Convertible constraints [4]
Helps in many cases especially during Nesting

Moving Windows

Repeated Aggregation Strategy (RA)
Most natural way
For each window we create a answer tree node
Each β value hashed to its ‘window’ nodes

hash(β) may be NULL if step > width
Update quantifiers of ALL corresponding ‘window’
nodes whenever we find a β value
Aggregation may need to be repeated!
But, is better some times!

Moving Windows (Contd.)

Rolling-Over Strategy (RO)
Given query Q, consists of 2 stages

Run Q(mw’) – formed by removing the mw specification
in Q
Outcome is T(mw’)
Use T(mw’) to form final answer
Specific computation depends on aggregation fn.

Non-holistic (distributive and algebraic) functions can be
rolled-over from window to window. E.g. sum(), avg()
For holistic functions, maintain a frequency table. Now this
can be rolled over

Moving Windows (Contd.)

Example
Let range of values be
[1991, 2006]
Let width = 5, step = 1
RA Strategy –

Nodes for windows
[1991, 1995], [1992,
1996] .. etc
So repeatedly aggregate
for all windows where
say, 1992 is
encountered – hence
1991-1995, 1992-1996
are updated

RO Strategy –
Nodes formed ONLY for
each of 1991-2006
Aggregate each of them
only ONCE
If sum() is used

say, calculation for
[1991, 1995] has been
done
Now roll-over – just
subtract Agg(1991) and
add Agg(1996)

Moving Windows (Contd.)

Both are good depending on circumstances
When width < step, windows are disjoint

RO strategy involves redundant computation
Hence RA should perform better

When width > step, windows overlap
RA strategy does a lot of extra computation
Hence RO should perform better

Empirical results evaluate the performance trade-
off

Moving Windows (Contd.)

Can be easily extended to handle
Nested group-bys
Multiple Moving Windows

Gives rise to ‘hyper-rectangular’ mws
Different from NESTED mws
MW on multiple β’s. e.g. year(5, 1), price(10, 5)

Combined with having
Can save a lot of computation if MW is in an inner block
and having is in the outer

Experimental Analysis

For comparison, we picked Galax – single
major complete reference implementation of
XQuery, Qizx – one of the most efficient
XQuery engines available & a RDB(Oracle).

Galax performed very poorly taking minutes while
we could evaluate in seconds
Qizx did well for simple queries but scaled poorly
with data size, nesting.
Oracle – performed well with flat queries, but
degraded with increasing nesting.

Experimental Analysis (Contd.)

We also evaluated trade-offs of various
strategies discussed in the paper like early
pruning, RA vs. RO etc.
We give graphs for these in the next few
slides.

Experimental Analysis (Contd.)

Experimental Analysis (Contd.)

Experimental Analysis (Contd.)

Conclusions & Future Work

We have an efficient framework for nested
group-by queries in XML
Algorithm NGB has scalability, stability and
extensibility
Challenge now to extend it to data analytics
like OLAP etc.

THANK YOU!

Many details were omitted for brevity. Check
out the paper for details.
This was a joint work with Prof. Laks and
Prof. R. Ng at UBC, Vancouver and was
supported by Canadian research funds.

Any Questions?

References

[1] K. Beyer et al. “Extending XQuery for Analytics,” SIGMOD 2005, pp.
503–514

[2] V. Borkar and M. Carey. Extending XQuery for Grouping, Duplicate
Elimination, and Outer Joins. XML Conference and Expo., Nov.
2004.

[3]J. Shanmugasundaram et al. Relational Databases for Querying
XML Documents: Limitations and Opportunities. VLDB 1999: 302-
314.

[4] J. Pei et al. Mining Frequent Item Sets with Convertible Constraints.
ICDE 2001: 433-442.

Please refer the paper for a more complete bibliography.

	Complex Group-By Processing in XML�to appear in 23rd IEEE ICDE 2007, Istanbul, Turkey.
	Talk Outline
	Motivation
	Related Work
	Related Work (contd.)
	Our Contributions
	Example Group-by Query
	Example (Contd.)
	Example (Contd.)
	General Query Framework
	Framework (Contd.)
	Framework (Contd.)
	Algorithm : Nested-Group By (NGB)
	NGB Algorithm (Contd.)
	NGB Algorithm (Contd.)
	NGB Algorithm (Contd.)
	NGB Algorithm (Contd.)
	Dealing with having
	Moving Windows
	Moving Windows (Contd.)
	Moving Windows (Contd.)
	Moving Windows (Contd.)
	Moving Windows (Contd.)
	Experimental Analysis
	Experimental Analysis (Contd.)
	Experimental Analysis (Contd.)
	Experimental Analysis (Contd.)
	Experimental Analysis (Contd.)
	Conclusions & Future Work
	THANK YOU!
	References

