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Abstract
The coming years will witness dramatic advances in wireless
communications as well as positioning technologies. As a result,
tracking the changing positions of objects capable of continuous
movement is becoming increasingly feasible and necessary. The
present paper proposes a novel, R�-tree based indexing technique
that supports the efficient querying of the current and projected
future positions of such moving objects. The technique is capable
of indexing objects moving in one-, two-, and three-dimensional
space. Update algorithms enable the index to accommodate a
dynamic data set, where objects may appear and disappear, and
where changes occur in the anticipated positions of existing objects.
A comprehensive performance study is reported.

1 Introduction
The rapid and continued advances in positioning systems,
e.g., GPS, wireless communication technologies, and elec-
tronics in general promise to render it increasingly feasible
to track and record the changing positions of objects capable
of continuous movement.

In a recent interview with Danish newspaper Børsen,
Michael Hawley from MIT’s Media Lab described how he
was online when he ran the Boston Marathon this year [19].
Prior to the race, he swallowed several capsules, which
in conjunction with other hardware enabled the monitoring
of his position, body temperature, and pulse during the
race. This scenario demonstrates the potential for putting
bodies, and, more generally, objects that move, online.
Achieving this may enable a multitude of applications.
It becomes possible to detect the signs of an impending
medical emergency in a person early and warn the person
or alert a medical service. It becomes possible to have
equipment recognize its user; and the equipment may alert
its owner in the case of unauthorized use or theft.

Industry leaders in the mobile phone market expect

more than 500 million mobile phone users by year 2002
(compared to 300 million Internet users) and 1 billion
by year 2004, and they expect mobile phones to evolve
into wireless Internet terminals [14, 25]. Rendering such
terminals location aware may substantially improve the
quality of the services offered to them [12, 25]. In addition,
the cost of providing location awareness is expected to
be relatively low. These factors combine to promise the
presence of substantial numbers of location aware, on-line
objects capable of continuous movement.

Applications such as process monitoring do not depend on
positioning technologies. In these, the position of a moving
point object could for example be a pair of temperature
and pressure values. Yet other applications include vehicle
navigation, tracking, and monitoring, where the positions of
air, sea, or land-based equipment such as airplanes, fishing
boats and freighters, and cars and trucks are of interest. It is
diverse applications such as these that warrant the study of
the indexing of objects that move.

Continuous movement poses new challenges to database
technology. In conventional databases, data is assumed to
remain constant unless it is explicitly modified. Capturing
continuous movement with this assumption would entail ei-
ther performing very frequent updates or recording outdated,
inaccurate data, neither of which are attractive alternatives.

A different tack must be adopted. The continuous move-
ment should be captured directly, so that the mere advance
of time does not necessitate explicit updates [27]. Put differ-
ently, rather than storing simple positions, functions of time
that express the objects’ positions should be stored. Then
updates are necessary only when the parameters of the func-
tions change. We use one linear function per object, with
the parameters of a function being the position and velocity
vector of the object at the time the function is reported to the
database.

Two different, although related, indexing problems must
be solved in order to support applications involving contin-
uous movement. One problem is the indexing of the cur-
rent and anticipated future positions of moving objects. The
other problem is the indexing of the histories, or trajectories,
of the positions of moving objects. We focus on the former
problem. One approach to solving the latter problem (while
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simultaneously solving the first) is to render the solution to
the first problem partially persistent [6, 15].

We propose an indexing technique, the time-parameterized
R-tree (the TPR-tree, for short), which efficiently indexes the
current and anticipated future positions of moving point ob-
jects (or “moving points,” for short). The technique naturally
extends the R�-tree [5].

Several distinctions may be made among the possible
approaches to the indexing of the future linear trajectories
of moving points. First, approaches may differ according
to the space that they index. Assuming the objects move in
d-dimensional space (d = 1; 2; 3), their future trajectories
may be indexed as lines in (d + 1)-dimensional space [26].
As an alternative, one may map the trajectories to points
in a higher-dimensional space which are then indexed [13].
Queries must subsequently also be transformed to counter
the data transformation. Yet another alternative is to index
data in its native,d-dimensional space, which is possible by
parameterizing the index structure using velocity vectors and
thus enabling the index to be “viewed” as of any future time.
The TPR-tree adopts this latter alternative. This absence of
transformations yields a quite intuitive indexing technique.

A second distinction is whether the index partitions the
data (e.g., as do R-trees) or the embedding space (e.g., as do
Quadtrees). When indexing the data in its native space, an
index based on data partitioning seems to be more suitable.
On the other hand, if trajectories are indexed as lines in
(d+1)-dimensional space, a data partitioning access method
that does not employ clipping may introduce substantial
overlap.

Third, indices may differ in the degrees of data replication
they entail. Replication may improve query performance,
but may also adversely affect update performance. The TPR-
tree does not employ replication.

Fourth, we may distinguish approaches according to
whether or not they require periodic index rebuilding.
Some approaches (e.g., [26]) employ individual indices
that are only functional for a certain time period. In
these approaches, a new index must be provided before
its predecessor is no longer functional. Other approaches
may employ an index that in principle remains functional
indefinitely [13], but which may be optimized for some
specific time horizon and perhaps deteriorates as time
progresses. The TPR-tree belongs to this latter category.

In the TPR-tree, the bounding rectangles in the tree
are functions of time, as are the moving points being
indexed. Intuitively, the bounding rectangles are capable
of continuously following the enclosed data points or other
rectangles as these move. Like the R-trees, the new index
is capable of indexing points in one-, two-, and three-
dimensional space. In addition, the principles at play in the
new index are extendible to non-point objects.

The next section presents the problem being addressed,
by describing the data to be indexed, the queries to be sup-
ported, and problem parameters. In addition, related re-

search is covered. Section 3 describes the tree structure and
algorithms. It is assumed that the reader has some familiar-
ity with the R�-tree. To ease the exposition, one-dimensional
data is generally assumed, and the generaln-dimensional
case is only considered when the inclusion of additional di-
mensions introduces new issues. Section 4 reports on per-
formance experiments, and Section 5 summarizes and offers
research directions.

2 Problem Statement and Related Work
We describe the data being indexed, the queries being
supported, the problem parameters, and related work in turn.

2.1 Problem Setting
An object’s position at some timet is given by �x(t) =
(x1(t); x2(t); : : : ; xd(t)), where it is assumed that the times
t are not before the current time. This position is modeled
as a linear function of time, which is specified by two
parameters. The first is a position for the object at some
specified timetref , �x(tref ), which we term the reference
position. The second parameter is a velocity vector for the
object,�v = (v1; v2; : : : ; vd). Thus,�x(t) = �x(tref ) + �v(t �
tref ). An object’s movement is observed at some time,tobs.
The first parameter,�x(tref ), may be the object’s position at
this time, or it may be the position that the object would
have at some other, chosen reference time, given the velocity
vector�v observed attobs and the position�x(tobs) observed
at tobs.

Modeling the positions of moving objects as functions of
time not only enables us to make tentative future predictions,
but also solves the problem of the frequent updates that
would otherwise be required to approximate continuous
movement in a traditional setting. For example, objects may
report their positions and velocity vectors when their actual
positions deviate from what they have previously reported
by some threshold. The choice of the update frequency then
depends on the type of movement, the desired accuracy, and
the technical limitations [28, 20, 17].

As will be illustrated in the following and explained in
Section 3, the reference position and the velocity are used not
only when recording the future trajectories of moving points,
but also for representing the coordinates of the bounding
rectangles in the index as functions of time.

As an example, consider Figure 1. The top left diagram
shows the positions and velocity vectors of 7 point objects at
time 0.

Assume we create an R-tree at time 0. The top right dia-
gram shows one possible assignment of the objects to mini-
mum bounding rectangles (MBRs) assuming a maximum of
three objects per node. Previous work has shown that at-
tempting to minimize the quantities known as overlap, dead
space, and perimeter leads to an index with good query per-
formance [11, 18], and so the chosen assignment appears to
be well chosen. However, although it is good for queries at
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Figure 1: Moving Points and Resulting Leaf-Level MBRs

the present time, the movement of the objects may adversely
affect this assignment.

The bottom left diagram shows the locations of the objects
and the MBRs at time 3, assuming that MBRs grow to stay
valid. The grown MBRs adversely affect query performance;
and as time increases, the MBRs will continue to grow,
leading to further deterioration. Even though the objects
belonging to the same MBR (e.g., objects 4 and 5) were
originally close, the different directions of their movement
cause their positions to diverge rapidly and hence the MBRs
to grow.

From the perspective of queries at time 3, it would
have been better to assign objects to MBRs as illustrated
by the bottom right diagram. Note that at time 0, this
assignment will yield worse query performance than the
original assignment. Thus, the assignment of objects to
MBRs must take into consideration when most queries will
arrive.

The MBRs in this example illustrate the kind of time-
parameterized bounding rectangles supported by the TPR-
tree. The algorithms presented in Section 3, which are
responsible for the assignment of objects to bounding
rectangles and thus control the structure and quality of the
index, attempt to take observations such as those illustrated
by this example into consideration.

2.2 Query Types
The queries supported by the index retrieve all points with
positions within specified regions. We distinguish between
three kinds, based on the regions they specify. In the sequel,
ad-dimensional rectangleR is specified by itsd projections
[a`1 ; a

a
1 ]; : : : [a

`

d ; a
a

d ], a
`

j � aaj , into thed coordinate axes.

LetR, R1, andR2 be threed-dimensional rectangles andt,
t`<ta, three time values that are not less than the current
time.

Type 1 timeslice query: Q = (R; t) specifies a hyper-
rectangleR located at time pointt.

Type 2 window query:Q = (R; t`; ta) specifies a hyper-
rectangleR that covers the interval[t`; ta]. Stated
differently, this query retrieves points with trajectories
in (�x, t)-space crossing the (d + 1)-dimensional hyper-
rectangle ([a`1 ; a

a

1 ], [a
`

2 ; a
a

2 ], : : : , [a`d ; a
a

d ], [t
`; ta]).

Type 3 moving query:Q = (R1; R2; t
`; ta) specifies the

(d+1)-dimensional trapezoid obtained by connectingR1

at timet` toR2 at timeta.

The second type of query generalizes the first, and is itself a
special case of the third type. To illustrate the query types,
consider the one-dimensional data set in Figure 2, which
represents temperatures measured at different locations.
Here, queriesQ0 andQ1 are timeslice queries,Q2 is a
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Figure 2: Query Examples for One-Dimensional Data

window query, andQ3 is a moving query.
Let iss(Q) denote the time when a queryQ is issued. The

two parameters, reference position and velocity vector, of
an object as seen by a queryQ depend oniss(Q), because
objects update their parameters as time goes. Consider
objecto1: its movement is described by one trajectory for
queries withiss(Q) < 1, another trajectory for queries with
1 � iss(Q) < 3, and a third trajectory for queries with
3 � iss(Q). For example, the answer to queryQ1 is o1,
if iss(Q1) < 1, and no object qualifies for this query if
iss(Q1) � 1.

This example illustrates that queries far in the future are
likely to be of little value, because the positions as predicted
at query time become less and less accurate as queries move
into the future, and because updates not known at query
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time may occur. Therefore, real-world applications may
be expected to issue queries that are concentrated in some
limited time window extending from the current time.

2.3 Problem Parameters
The values of three problem parameters affect the indexing
problem and the qualities of a TPR-tree. Figure 3 illustrates
these parameters, which will be used throughout the paper.

� Querying window(W): how far queries can “look” into
the future. Thus,iss(Q) � t � iss(Q) + W, for Type 1
queries, andiss(Q) � t` � ta � iss(Q)+W for queries
of Types 2 and 3.

� Index usage time(U): the time interval during which an
index will be used for querying. Thus,tl � iss(Q) �
tl+U, wheretl is the time when index is created/loaded.

� Time horizon(H): the length of the time interval from
which the timest, t`, and ta specified in queries are
drawn. The time horizon for an index is the index usage
time plus the querying window.

tl t t

H = U + W

U

W

iss(Q) t

Figure 3: Time HorizonH, Index Usage TimeU, and
Querying WindowW

Thus, a newly created index must support queries that
reachH time units into the future. While the utility of
parameterU (andH) is more clearcut for static data sets and
bulkloading, we shall see in Section 3.4 that this parameter
is also useful in a dynamic setting where index updates are
allowed. Specifically, although a TPR-tree is functional at all
times after its creation, using different values for parameter
U during insertions affects the search properties of the tree.

2.4 Previous Work
Related work on the indexing of the current and future
positions of moving objects has concentrated mostly on
points moving in one-dimensional space.

Tayeb et al. [26] use PMR-Quadtrees [22] for indexing the
future linear trajectories of one-dimensional moving point
objects as line segments in(x; t)-space. The segments span
the time interval that starts at the current time and extends
H time units into the future. A tree expires afterU time
units, and a new tree must be made available for querying.
This approach introduces substantial data replication in the
index—a line segment is usually stored in several nodes.

Kollios et al. [13] employ the dual data transformation
where a linex = x(tref ) + v(t � tref ) is transformed to the
point (x(tref ); v), enabling the use of regular spatial indices.

It is argued that indices based on Kd-trees are well suited for
this problem because these best accommodate the shapes of
the (transformed) queries on the data. Kollios et al. suggest,
but do not investigate in any detail, how this approach may
be extended to two and higher dimensions. Kollios et al.
also propose two other methods that achieve better query
performance at the cost of data replication. These methods
do not seem to apply to more than one dimension.

Next, Kollios et al. provide theoretical lower bounds
for this indexing problem, assuming a static data set and
H = 1. Allowing the index to use linear space, the
types of queries discussed in Section 2 can be answered in
O(n(2d�1)=2d+k) time. Hered is the number of dimensions
of the space where the objects move,n is the number of data
blocks, andk is the size in blocks of a query answer. To
achieve this bound, an external memory version of partition
trees may be used [1]. It is argued that, although having
good asymptotic performance bounds, partition trees are not
practical due to the large constant factors involved.

Basch et al. [4] propose so-called kinetic main-memory
data structures for mobile objects. The idea is to schedule
future events that update a data structure so that necessary
invariants hold. Agarwal et al. [2] apply these ideas to
external range trees [3]. Their approach may possibly be
applicable to R-trees or time-parameterized R-trees where
events would fix MBRs, although it is unclear how to
contend with future queries that arrive in non-chronological
order. Agarwal et al. address non-chronological queries
using partial persistence techniques and also show how to
combine kinetic range trees with partition trees to achieve
a trade-off between the number of kinetic events and query
performance.

The problem of indexing moving points is related to the
problem of indexing now-relative temporal data. The GR-
tree [7] is an R-tree based index for now-relative bitemporal
data. Combined valid and transaction time intervals with
end-times related to the continuously progressing current
time result in regions that grow, albeit in a restricted way.
The idea in this index is to accommodate growing data
regions by introducing bounding regions that also grow.
Specifically, bounding regions are time-parameterized, and
their extents are computed each time a query is asked.

The RST-tree [24] is the spatiotemporal index that in-
dexes the histories of the positions of objects. Positions are
assumed to remain constant in-between explicit index up-
dates, and their histories are captured by associating valid
and transaction time intervals, which may be now-relative,
with them. The continuity thus stems from the temporal as-
pects rather than the spatial, and the techniques employed in
this index are more akin to those employed in the GR-tree
than those employed here.

Finally, Pfoser et al. [21] consider the separate, but
related problem of indexing the past trajectories of moving
points, which are represented as polylines (connected line
segments).
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3 Structure and Algorithms
This section presents the structure and algorithms of the
TPR-tree. The notion of a time-parameterized bounding
rectangle is defined. It is shown how the tree is queried,
and dynamic update algorithms are presented that tailor
the tree to a specific time horizonH. In the following,
we use the term bounding interval for a one-dimensional
bounding rectangle and the term bounding rectangle for any
d-dimensional hyper-rectangle.

3.1 Index Structure
The TPR-tree is a balanced, multi-way tree with the structure
of an R-tree. Entries in leaf nodes are pairs of the position of
a moving point and a pointer to the moving point, and entries
in internal nodes are pairs of a pointer to a subtree and a
rectangle that bounds the positions of all moving points or
other bounding rectangles in that subtree.

As suggested in Section 2, the position of a moving point
is represented by a reference position and a corresponding
velocity vector—(x; v) in the one-dimensional case, where
x = x(tref ). We lettref be equal to the index creation time,
tl. Other possibilities include settingtref to some constant
value, e.g.,0, or using differenttref values in different nodes.

To bound a group ofd-dimensional moving points,d-
dimensional bounding rectangles are used that are also time-
parameterized, i.e., their coordinates are functions of time. A
time-parameterized bounding rectangle bounds all enclosed
points or rectangles at all times not earlier than the current
time.

A tradeoff exists between how tightly a bounding rectan-
gle bounds the enclosed moving points or rectangles across
time and the storage needed to capture the bounding rectan-
gle. It would be ideal to employ time-parameterized bound-
ing rectangles that arealways minimum, but the storage cost
appears to be excessive. In the general case, doing so de-
teriorates to enumerating all the enclosed moving points or
rectangles. This is exemplified by Figure 4, where a node
consists of two one-dimensional pointsA andB moving to-
wards each other. Each of these points plays the role of lower
(resp. upper) bound of the minimum bounding interval at
some time. Examples with this property may be constructed
for any number of points.

t = 0

t = 3

A B

AB

Figure 4: Conservative (Dashed) Versus Always Minimum
(Solid) Bounding Intervals

Instead of using true, always minimum bounding rect-
angles, the TPR-tree employs what we termconservative

bounding rectangles, which are minimum at some time
point, but possibly (and most likely!) not at later times. In
the one-dimensional case, the lower bound of a conservative
interval is set to move with the minimum speed of the en-
closed points, while the upper bound is set to move with the
maximum speed of the enclosed points (speeds are negative
or positive, depending on the direction). This ensures that
conservative bounding intervals are indeed bounding for all
times considered.

Figure 4 illustrates conservative bounding intervals. The
left hand side of the conservative interval in the figure starts
at the position of object A at time 0 and moves left at the
speed of object B, and the right hand side of the interval
starts at object B at time 0 and moves right at the speed of
object A. Conservative bounding intervals never shrink. At
best, when all of the enclosed points have the same velocity
vector, a conservative bounding interval has constant size,
although it may move.

Following the representation of moving points, we let
tref = tl and capture a one-dimensional time-parameterized
bounding interval [x`(t); xa(t)] = [x`(tl) + v`(t �
tl); x

a(tl) + va(t � tl)] as(x`; xa; v`; va), where

x` = x`(tl) = minifoi:x`(tl)g

xa = xa(tl) = maxif(oi:xa(tl)g

v` = minifoi:v`g

va = maxifoi:vag

Here, theoi range over the bounding intervals to be enclosed.
If instead the bounding interval being defined is to bound
moving points, theoi range over these points,oi:x`(tl) and
oi:x

a(tl) are replaced byoi:x(tl), andoi:v` andoi:va are
replaced byoi:v.

The rectangles defined above are termed load-time bound-
ing rectangles and are bounding for all times not beforetl.
Because the rectangles never shrink, but may actually grow
too much, it is desirable to be able to adjust them occa-
sionally. Specifically, as the index is only queried for times
greater or equal to the current time, it is possible and prob-
ably attractive to adjust the bounding rectangles every time
any of the moving points or rectangles that they bound are
updated. The following formulas specify the adjustments to
the bounding rectangles that may be made during updates.

x` = minifoi:x`(tupd )g � v`(tupd � tl)

xa = maxifoi:xa(tupd )g � va(tupd � tl)

Here, tupd is the time of the update, and the formulas
may be restricted to apply to the bounding of points rather
than intervals, as before. Each formula involves five terms,
which may differ by orders of magnitude. Special care
must be taken to manage the rounding errors that may occur
in the finite-precision floating-point arithmetic (e.g., IEEE
standard 754) used for implementing the formulas [8].

We call these rectangles update-time bounding rectangles.
The two types of bounding rectangles are shown in Figure 5.
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The bold top and bottom lines capture the load-time, time-
parameterized bounding interval for the four moving objects
represented by the four lines. At timetupd , a more narrow
and thus better update-time bounding interval is introduced
that is bounding fromtupd and onwards.

o4
o3

o1
o2

x

ttupdlt

Figure 5: Load-Time (Bold) and Update-Time (Dashed)
Bounding Intervals for Four Moving Points

It is worth noticing that the sole use of load-time bound-
ing rectangles corresponds to simply bounding the2d-
dimensional points that result from the dual transformation
of the linear trajectories, as proposed by Kollios et al. [13].
Update-time bounding rectangles go beyond this approach.

3.2 Querying
With the definition of bounding rectangles in place, we show
how the three types of queries presented in Section 2 are
answered using the TPR-tree.

Answering a timeslice query proceeds as for the regular R-
tree, the only difference being that all bounding rectangles
are computed for the timetq specified in the query before
intersection is checked. Thus, a bounding interval specified
by (x`; xa; v`; va) satisfies a query (([a`; aa]), tq) if and
only if a` � xa + va(tq � tl) ^ aa � x` + v`(tq � tl).

To answer window queries and moving queries, we need
to be able to check if, in (�x, t)-space, the trapezoid of a query
(cf. Figure 6) intersects with the trapezoid formed by the part
of the trajectory of a bounding rectangle that is between the
start and end times of the query. With one spatial dimension,
this is relatively simple. For more dimensions, generic
polyhedron-polyhedron intersection tests may be used [9],
but due to the restricted nature of this problem, a simpler
and more efficient algorithm may be devised.

Specifically, we provide an algorithm for checking if ad-
dimensional time-parameterized bounding rectangleR given
by parameters(x`1 ; x

a

1 ; x
`

2 ; x
a

2 ; : : : ; x
`

d ; x
a

d ; v
`

1 ; v
a

1 ; v
`

2 ; v
a

2 ;
: : : ; v`d ; v

a

d ) intersects a moving queryQ = (([a`1 ; a
a
1 ];

[a`2 ; a
a

2 ]; : : : ; [a
`

d ; a
a

d ]; [w
`

1 ; w
a

1 ]; [w
`

2 ; w
a

2 ]; : : : ; [w
`

d ; w
a

d ]);

Query

Bounding interval

j

j

j

j

j

xj

j

tt tttl t

a

a

x
x

Figure 6: Intersection of a Bounding Interval and a Query

t`; ta). This formulation of a moving query as a time-
parameterized rectangle with starting and ending times is
more convenient than the definition given in Section 2.2. The
velocitiesw are obtained by subtractingR2 from R1 in the
earlier definition and then normalizing them with the length
of interval[t`; ta].

The algorithm is based on the observation that for two
moving rectangles to intersect, there has to be a time point
when their extents intersect in each dimension. Thus, for
each dimensionj (j = 1; 2; : : : ; d), the algorithm computes
the time intervalIj = [t`j ; t

a

j ] � [t`; ta] when the extents of

the rectangles intersect in that dimension. IfI =
Td

j=1 Ij =
;, the moving rectangles do not intersect and an empty
result is returned; otherwise, the algorithm provides the time
interval I when the rectangles intersect. The intervals for
each dimension are computed according to the following
formulas.

Ij =

8<
:

; if a`j > xaj (t
`) ^ a`j (t

a) > xaj (t
a)_

aaj < x`j (t
`) ^ aaj (t

a) < x`j (t
a)

[t`j ; t
a

j ] otherwise

The first disjunct in the condition expresses thatQ is above
R and the second means thatQ is belowR. Formulas fort`j
andtaj follow.

t`j =

8>>>><
>>>>:

t` +
xaj (t

`
)�a`j

w`j �v
a

j

if a`j > xaj (t
`)

t` +
x`j (t

`
)�aaj

waj �v
`

j

if aaj < x`j (t
`)

t` otherwise

Here, the first condition states thatQ is aboveR at t`, and
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the second states thatQ is belowR at t`.

taj =

8>>>><
>>>>:

t` +
xaj (t

`
)�a`j

w`j �v
a

j

if a`j (t
a) > xaj (t

a)

t` +
x`j (t

`
)�aaj

waj �v
`

j

if aaj (t
a) < x`j (t

a)

ta otherwise

In this formula, the first condition states thatQ is aboveR at
ta, and the second states thatQ is belowR at ta.

To see howt`j and taj are computed, consider the case
whereQ is belowR at ta. ThenQ must not be belowR
at t`, as otherwiseQ is always belowR and there is no
intersection (the case of no intersection is already accounted
for). This means that the lineaaj + waj (t � t`) intersects
the linex`j (t

`)+ v`j (t� t`) within the time interval[t`; ta].
Solving fort gives the desired intersection time (taj ).

Figure 6 exemplifies a moving query, a bounding rectan-
gle, and their intersection time interval in one dimension.

3.3 Heuristics for Tree Organization
As a precursor to designing the insertion algorithms for the
TPR-tree, we discuss how to group moving objects into
nodes so that the tree most efficiently supports timeslice
queries when assuming a time horizonH. The objective
is to identify principles, or heuristics, that apply to both
dynamic insertions and bulkloading, and to any number of
dimensions. The goal is to obtain a versatile index.

It is clear that whenH is close to zero, the tree may simply
use existing R-tree insertion and bulkloading algorithms.
The movement of the point objects and the growth of the
bounding rectangles become irrelevant—only their initial
positions and extents matter. In contrast, whenH is large,
grouping the moving points according to their velocity
vectors is of essence. It is desirable that the bounding rectan-
gles are as small as possible at all times in[tl; tl + H], the
interval during which the result of the operation (insertion
or bulkloading) may be visible to queries (tl is thus the time
of an insertion or the index creation time). An important
aspect in achieving this is to keep the growth rates of the
bounding rectangles, and thus the values of their “velocity
extents,” low. (In one-dimensional space, the velocity extent
of a bounding interval is equal tova � v`.)

This leads to the following general approach. The inser-
tion and bulkloading algorithms of the R�-tree, which we
consider extending to moving points, aim to minimize
objective functions such as the areas of the bounding
rectangles, their margins (perimeters), and the overlap
among the bounding rectangles. In our context, these func-
tions are time dependent, and we should consider their evo-
lution in [tl; tl+H]. Specifically, given an objective function
A(t), the following integral should be minimized.

Z tl+H

tl

A(t)dt (1)

If A(t) is area, the integral computes the area (volume) of the
trapezoid that represents part of the trajectory of a bounding
rectangle in (�x; t)-space (see Figure 6).

We use the integral in Formula 1 in the dynamic update al-
gorithms, described next, and in the bulkloading algorithms,
described elsewhere [23].

3.4 Insertion and Deletion
The insertion algorithm of the R�-tree employs functions
that compute the area of a bounding rectangle, the intersec-
tion of two bounding rectangles, the margin of a bounding
rectangle (when splitting a node), and the distance between
the centers of two bounding rectangles (used when doing
forced reinsertions) [5]. The TPR-tree’s insertion algorithm
is the same as that of the R�-tree, with one exception: instead
of the functions mentioned here, integrals as in Formula 1 of
those functions are used.

Computing the integrals of the area, margin, and distance
are relatively straightforward [23]. The algorithm that
computes the integral of the intersection of two time-
parameterized rectangles is an extension of the algorithm
for checking if such rectangles overlap (see Section 3.2).
At each time point when the rectangles intersect, the
intersection region is a rectangle and, in each dimensions, the
upper (lower) bound of this rectangle is defined by the upper
(lower) bound of one of the two intersecting rectangles.

The algorithm thus divides the time interval returned
by the overlap-checking algorithm into consecutive time
intervals so that, during each of these, the intersection is
defined by a time-parameterized rectangle. The intersection
area integral is then computed as a sum of area integrals.
Figure 6 illustrates the subdivision of the intersection time
interval into three smaller intervals for the one-dimensional
case. The algorithm is given elsewhere [23].

In Section 2.3, parameterH = U + W was introduced.
This parameter is most intuitive in a static setting, and for
static data. In a dynamic setting,W remains a component
of H, which is the length of the time period where integrals
are computed in the insertion algorithm. How large the other
component ofH should be depends on the update frequency.
If this is high, the effect of an insertion on the tree will not
persist long and, thus,H should not exceedW by much.
The experimental studies in Section 4 aim at determining
what is a good range of values forH in terms of the update
frequency.

The introduction of the integrals is the most important
step in rendering the R�-tree insertion algorithm suitable for
the TPR-tree, but one more aspect of the R�-tree algorithm
must be revisited. The R�-tree split algorithm selects
one distribution of entries between two nodes from a set
of candidate distributions, which are generated based on
sortings of point positions along each of the coordinate axes.
In the TPR-tree split algorithm, moving point (or rectangle)
positions at different time points are used when sorting.
With load-time bounding rectangles, positions attl are used,
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and with update-time bounding rectangles, positions at the
current time are used.

Finally, in addition to sortings along the spatial dimen-
sions, the split algorithm is extended to consider also sort-
ings along the velocity dimensions, i.e., sortings obtained by
sorting on the coordinates of the velocity vectors. The ra-
tionale is that distributing the moving points based on the
velocity dimensions may result in bounding rectangles with
smaller “velocity extents” and which consequently grow
more slowly.

Deletions in the TPR-tree are performed as in the R�-tree.
If a node gets underfull, it is eliminated and its entries are
reinserted.

4 Performance Experiments
In this section we report on performance experiments with
the TPR-tree. The generation of two- and three-dimensional
moving point data and the settings for the experiments are
described first, followed by the presentation of the results of
the experiments.

4.1 Experimental Setup and Workload Generation
The implementation of the TPR-tree used in the experiments
is based on the Generalized Search Tree Package, GiST [10].
The page size (and tree node size) is set to 4k bytes, which
results in 204 and 146 entries per leaf-node for two- and
three-dimensional data, respectively. A page buffer of 200k
bytes, i.e., 50 pages, is used [16], where the root of a tree is
pinned and the least-recently-used page replacement policy
is employed. The nodes that are modified during an index
operation are marked as “dirty” in the buffer and are written
to disk at the end of the operation or when they otherwise
have to be removed from the buffer.

The performance studies are based on workloads that
intermix queries and update operations on the index, thus
simulating index usage across a period of time. In addition,
each workload initially bulkloads the index. An efficient
bulkloading algorithm developed for the TPR-tree is used
[23]. This algorithm is based on the heuristic of minimizing
area integrals and hasH as a parameter. We proceed to
describe how the updates, queries, and initial bulkloading
data are generated.

Because moving objects with positions and velocities that
are uniformly distributed seems to be rather unrealistic,
we attempt to generate more realistic (and skewed) two-
dimensional data by simulating a scenario where the objects,
e.g., cars, move in a network of routes, e.g., roads, connect-
ing a number of destinations, e.g., cities. In addition to sim-
ulating cars moving between cities, the scenario is also mo-
tivated by the fact that usually, even if there is no underlying
infrastructure, moving objects tend to have destinations.

With the exception of one experiment, the simulated
objects in the scenario move in a region of space with
dimensions1000� 1000 kilometers. A numberND of des-
tinations are distributed uniformly in this space and serve as

the vertices in a fully connected graph of routes. In most
of the experiments,ND = 20. This corresponds to 380 one-
way routes. The number of points isN = 100; 000 for all but
one experiment. No objects disappear, and no new objects
appear for the duration of a simulation.

For the generation of the initial data set that is bulkloaded,
objects are placed at random positions on routes. The
objects are assigned with equal probability to one of three
groups of points with maximum speeds of0:75, 1:5, and3
km=min (45, 90, and180 km=h). During the first sixth of a
route, objects accelerate from zero speed to their maximum
speeds; during the middle two thirds, they travel at their
maximum speeds; and during the last one sixth of a route,
they decelerate. When an object reaches its destination, a
new destination is assigned to it at random.

The workload generation algorithm distributes the updates
of an object’s movement so that updates are performed
during the acceleration and deceleration stretches of a route.
The number of updates is chosen so that the total average
time interval between two updates is approximately equal to
a given parameterUI, which is fixed at60 in most of the
experiments.

In addition to using data from the above-described simu-
lation, some experiments also use workloads with two- and
three-dimensional uniform data. In these workloads, the ini-
tial positions of objects are uniformly distributed in space.
The directions of the velocity vectors are assigned randomly,
both initially and on each update. The speeds (lengths of
velocity vectors) are uniformly distributed between 0 and 3
km=min. The time interval between successive updates is
uniformly distributed between 0 and2UI.

To generate workloads, the above-described scenarios are
run for 600 time units (minutes). ForUI = 60, this results in
approximately one million update operations.

In addition to updates, workloads include queries. Each
time unit, four queries are generated (2400 in total). Times-
lice, window, and moving queries are generated with proba-
bilities 0:6, 0:2, and0:2. The temporal parts of queries are
generated randomly in an interval of lengthWand starting at
the current time. The spatial part of each query is a square
occupying a fractionQSof the space (QS = 0:25% in most
of the experiments). The spatial parts of timeslice and win-
dow queries have random locations. For moving queries, the
center of a query follows the trajectory of one of the points
currently in the index.

The workload generation parameters that are varied in the
experiments are given in Table 1. Standard values, used if a
parameter is not varied in an experiment, are given in bold-
face.

4.2 Investigating the Insertion Algorithm
As mentioned in Section 3.4, the TPR-tree insertion algo-
rithm depends on the parameterH, which is equal toW plus
some duration that is dependent on the frequency of updates.
How the frequency of updates affects the choice of a value
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Parameter Description Values Used

ND Number of destinations [cardinal number] 0, 2, 10,20, 40, 160
N Number of points [cardinal number] 100,000, 300,000, 500,000, 700,000, 900,000
UI Update interval length [time units] 60, 120
W Querying window size [time units] 0, 20,40, 80, 160, 320
QS Query size [% of the data space] 0.1,0.25, 0.5, 1, 2

Table 1: Workload Parameters

for H was explored in two sets of experiments, for data with
UI = 60 and for data withUI = 120. Workloads with uni-
form data were run using the TPR-tree. Different values of
H were tried out in each set of experiments.

Figure 7 shows the results forUI = 60. Curves are
shown for experiments with different querying windowsW.
The leftmost point of each curve corresponds to a setting of
H = 0.
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Figure 7: Search Performance ForUI = 60 and Varying
Settings ofH

The experiments demonstrate a pattern, namely that the
best values ofH lie betweenUI=2 + W andUI + W. This
is not surprising. InUI =2 time units, approximately half
of the entries of each leaf node in the tree are updated, and
after UI time units, almost all entries are updated. The
leaf-node bounding rectangles, the characteristics of which
we integrate usingH, survive approximately similar time
durations. In the subsequent studies, we useH = UI=2+W.

4.3 Comparing the TPR-Tree To Its Alternatives
A set of experiments with varying workloads were per-
formed in order to compare the relative performance of the
R-tree, the TPR-tree with load-time bounding rectangles,
and the TPR-tree with update-time bounding rectangles.

For the former, the regular R�-tree is used to store

fragments of trajectories of points in (�x; t)-space. For this to
work correctly, the inserted trajectory fragment for a moving
point should start at the insertion time and should spanH
time units, whereH is at least equal to the maximum possible
period between two successive updates of the point. Not
meeting this requirement, the R-tree may return incorrect
query results because its bounding rectangles “expire” after
H time units. In our simulation-generated workloads, the
slowest moving points on routes spanning from one side of
the data space to the other may not be updated for as much as
600 time units. For the R-tree we, thus, setH = 600, which
is the duration of the simulation.

Figure 8 shows the average number of I/O operations per
query for the three indices when the number of destinations
in the simulation is varied. Decreasing the number of
destinations adds skew to the distribution of the object
positions and their velocity vectors. Thus, uniform data is
an extreme case.

0

100

200

300

400

500

600

700

800

900

2 10 40 160 Uniform

S
ea

rc
h 

I/O

Number of destinations, ND

R-tree
TPR-tree with load-time BRs

TPR-tree

Figure 8: Search Performance For Varying Numbers of
Destinations and Uniform Data

As shown, increased skew leads to a decrease in the
numbers of I/Os for all three approaches, especially for the
TPR-tree. This is expected because when there are more
objects with similar velocities, it is easier to pack them into
bounding rectangles that have small velocity extents and also
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are relatively narrow in the spatial dimensions.
The figure demonstrates that the TPR-tree is an order of

magnitude better than the R-tree. The utility of update-time
bounding rectangles can also be seen, although it should
be noted that tightening of bounding rectangles increases
the update cost. For example, for a workload with 10
destinations, the use of update-time bounding rectangles
decreases the average number of I/Os for searches from 33
to 17, while update cost changes from 1.3 to 1.6 I/Os. For
uniform data, the change is from 211 to 54, for searches, and
from 2 to 3.5, for updates.

Figure 9 explores the effect of the length of the querying
window, W, on querying performance. The relatively con-
stant performance of the TPR-tree may be explained by not-
ing that the data in this experiment is skewed (ND = 20),
with groups of points having similar velocity vectors. Re-
sults would be different for uniform data (cf. Figure 7).
The relatively constant performance of the R-tree can be ex-
plained by viewing the three-dimensional minimum bound-
ing rectangles used in this tree as two-dimensional bounding
rectangles that do not change over time. That is why queries
issued at different future times have similar performance.
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Figure 9: Search Performance for Varying W

Next, Figure 10 shows the average performance for
queries with different-size spatial extents. The experiments
were performed with three-dimensional data. The relatively
high costs of the queries in this figure are indicative of how
the increased dimensionality of the data adversely affects
performance. An experiment with an R-tree using the shorter
H of 120 is also included. Using this value forH is possible
because uniform data is generated where no update interval
is longer than2UI, andUI = 60 in our experiments. This
significantly improves the performance of the R-tree, but it
remains more than a factor of two worse than the TPR-tree.
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Figure 10: Search Performance For Varying Query Sizes and
Three-Dimensional Data

To investigate the scalability of the TPR-tree, we per-
formed experiments with varying numbers of indexed ob-
jects. When increasing the numbers of objects, we also
scaled the spatial dimensions of the data space so that the
density of objects remained approximately the same and so
that the number of objects returned by a query was largely
(although not completely) unaffected. This scenario corre-
sponds to merging databases that are covering different ar-
eas into a single database. Uniform two-dimensional data
was used in these experiments.

Figure 11 shows that, as expected, the number of I/O
operations for the TPR-tree with update-time bounding
rectangles remains almost constant (as long as the number
of levels in the tree does not change). The results for the R-
tree are not provided, because of excessively high numbers
of I/O operations.

To explore how the search performances of the indices
evolve with the passage of time, we compute, after each 60
time units, the average query performance for the previous
60 time units. Figure 12 shows the results. In this experiment
(and in other similar experiments), the performance of
the TPR-tree after 360 time units becomes more than
two times worse than the performance at the beginning
of the experiment, but from 360 to 600, no degradation
occurs. This behavior is similar to the degradation of
the performance of most multidimensional tree structures.
When, after bulkloading, dynamic updates are performed,
node splits occur, the average fan-out of the tree decreases,
and the bounding rectangles created by the bulkloading
algorithm change. After some time, the tree stabilizes.

As expected, the TPR-tree with load-time bounding rect-
angles shows an increasing degradation of performance. The
bounding rectangles computed at bulkloading time become
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Figure 11: Search Performance for Varying Number of
Objects

unavoidably larger as the more distant future is queried. The
insertion algorithms try to counter this by making the veloc-
ity extents of bounding rectangles as small as possible. For
example, in this experiment the average velocity extent of
a rectangle (in one of the two velocity dimensions) is 1.32
after the bulkloading and becomes 0.35 after 600 time units
(recall that the extent of the data space in each velocity di-
mension is 6 in our simulation).

5 Summary and Future Work
Motivated mainly by the rapid advances in positioning sys-
tems, wireless communication technologies, and electronics
in general, which promise to render it increasingly feasible to
track the positions of increasingly large collections of contin-
uously moving objects, this paper proposes a versatile adap-
tation of the R�-tree that supports the efficient querying of
the current and anticipated future locations of moving points
in one-, two-, and three-dimensional space.

The new TPR-tree supports timeslice, window, and so-
called moving queries. Capturing moving points as linear
functions of time, the tree bounds these points using so-
called conservative bounding rectangles, which are also
time-parameterized and which in turn also bound other such
rectangles. The tree is equipped with dynamic update
algorithms as well as a bulkloading algorithm. Whereas
the R�-tree’s algorithms use functions that compute the
areas, margins, and overlaps of bounding rectangles, the
TPR-tree employs integrals of these functions, thus taking
into consideration the values of these functions across the
time when the tree is queried. The bounding rectangles
of tree nodes that are read during updates are tightened,
the objective being to improve query performance without
affecting update performance much. When splitting nodes,
not only the positions of the moving points are considered,

0

100

200

300

400

500

600

60 120 180 240 300 360 420 480 540 600

S
ea

rc
h 

I/O

Time

R-tree
TPR-tree with load time BRs

TPR-tree

Figure 12: Degradation of Search Performance with Time

but also their velocities.
Because no other proposals for indexing two- and three-

dimensional moving points exist, the performance study
compares the TPR-tree with the TRP-tree without the
tightening of bounding rectangles during updates and with
a relatively simple adaptation of the R�-tree. The study
indicates quite clearly that the TPR-tree indeed is capable of
supporting queries on moving objects quite efficiently and
that it outperforms its competitors by far. The study also
demonstrates that the tree does not degrade severely as time
passes. Finally, the study indicates how the tree can be tuned
to take advantage of a specific update rate.

This work points to several interesting research directions.
Among these, it would be interesting to study the use of more
advanced bounding regions as well as different tightening
frequencies of these. While the tightening of bounding
rectangles increases query performance, it negatively affects
the update performance, which is also very important. Next,
periodic, partial reloading of the tree appears worthy of
further study. It may also be of interest to include support
for transaction time, thus enabling the querying of the past
positions of the moving objects as well. This may be
achieved by making the tree partially persistent, and it will
likely increase the data volume to be indexed by several
orders of magnitude.
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