
The VLDB Journal manuscript No.
(will be inserted by the editor)

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks?

Mohamed A. Sharaf1,2, Jonathan Beaver1,3, Alexandros Labrinidis1,4, Panos K. Chrysanthis1,5

1 Department of Computer Science, University of Pittsburgh, Pittburgh, PA, 15260, USA.
2 e-mail: msharaf@cs.pitt.edu
3 e-mail: beaver@cs.pitt.edu
4 e-mail: labrinid@cs.pitt.edu
5 e-mail: panos@cs.pitt.edu

Received: TO BE COMPLETED / Revised version: TO BE COMPLETED

Abstract In-network aggregation has been proposed as one
method for reducing energy consumption in sensor networks.
In this paper, we explore two ideas in order to further reduce
energy consumption in the context of in-network aggregation:
First, influencing the construction of the routing trees for sen-
sor networks with the goal of reducing the size of transmitted
data. Toward this, we propose a group-aware network con-
figuration method, that “clusters” along the same path sensor
nodes that belong to the same group. Secondly, imposing a hi-
erarchy of output filters on the sensor network with the goal
of both reducing the size of transmitted data as well as min-
imizing the number of transmitted messages. More specifi-
cally, we propose a framework to use temporal coherency tol-
erances in conjunction with in-network aggregation to save
energy at the sensor nodes while maintaining specified qual-
ity of data. These tolerances are based on user preferences or
can be dictated by the network in cases where the network
cannot support the current tolerance level. Our framework,
called TiNA, works on top of existing in-network aggregation
schemes. We evaluate experimentally our proposed schemes
in the context of existing in-network aggregation schemes.
We present experimental results measuring energy consump-
tion, response time, as well as quality of data for Group By
queries. Overall, our schemes provide significant energy sav-
ings with respect to communication and a negligible drop in
quality of data.

1 Introduction

Advances in microelectronics have brought upon a new class
of computing devices, that combine sensing instrumentation
along with computation and communication capabilities, in-
cluding having mini operating systems embedded in the sen-
sor [14]. These sensor nodes, such as the Berkeley MICA

? This work is supported in part by NSF award ANI-0123705. The
first author is supported in part by the Andrew Mellon Predoctoral
Fellowship. This paper expands on the material presented in two
workshops [31,2].

Mote [13], are capable of collecting various measurements
such as light, motion/acceleration, and temperature. Until re-
cently, these sensor nodes where used within the confines of
laboratories, factory equipments, or buildings. As they be-
come smaller and cheaper, sensor nodes are expected to be
ubiquitously deployed in the environment. This would enable
them to collectively form large sensing networks over broad
geographical areas.

Such large sensor networks can be used from monitoring
endangered species [17,23], to monitoring structural integrity
of bridges [19], to patrolling borders. As such, sensor net-
works offer today an unprecedented level of interaction with
the physical environment [6]. Within a few years, miniatur-
ized, networked sensors have the potential to be embedded in
all consumer devices, in all vehicles, or as part of continu-
ous environmental monitoring. However, there are still many
crucial problems with the deployment of such large sensor
networks: limited storage, limited network bandwidth, poor
inter-node communication, limited computational ability, and
limited power of the sensor nodes. In this paper, we focus on
the latter problem, i.e., reducing power consumption in sen-
sor networks.

Several techniques have been proposed to alleviate the
problem of limited power at the network level (such as energy-
efficient routing and clustering [9,36,10]) and at the data man-
agement level (such as sampling [22], prediction [8], approx-
imation [4], power-based query optimization [22], and data
centric storage [28]). Another method at the data manage-
ment level is in-network query processing (or aggregation).
With in-network aggregation, a part of the computational work
of the aggregation is performed within the sensor node before
it sends the results out to the network. The reason why in-
network aggregation reduces power consumption is that sen-
sor power usage is dominated by transmission costs, as has
been shown in [10,16]. This can be easily illustrated by the
following simple example of a sensor network used to mon-
itor the average or the maximum temperature in a building
(e.g., in order to quickly detect a fire or adjust the air con-
ditioning). The default way to implement this is to have each
sensor send its temperature reading up the network to the base

2 Mohamed A. Sharaf et al.

station, with intermediate nodes responsible for just routing
packets. In in-network aggregation, communication among
sensor nodes is structured as a (routing) tree with the base
station as its root. In this scheme, each node would incorpo-
rate its own reading together with the average computed so
far by its children. As such, only one packet needs to be sent
per node and each intermediate node computes the new av-
erage temperature before sending information further up the
network. As a result, being able to transmit less data (because
of aggregation instead of having to forward all the packets)
will reduce energy consumption at the sensor nodes.

In this work we explore two ideas in order to further re-
duce energy consumption in the context of in-network aggre-
gation:

1. influencing the construction of the routing trees for sensor
networks with the goal of reducing the size of transmitted
data; and

2. imposing a hierarchy of output filters on the sensor net-
work with the goal of both reducing the size of transmit-
ted data as well as minimizing the number of transmitted
messages while ensuring a specified level of Quality of
Data (QoD).

For our first idea, we consider the semantics of the query
and the properties/attributes of the sensor nodes when con-
figuring the sensor network (in addition to traditional short-
est distance criteria). We have observed that the length of the
messages sent by a node when processing Group-By queries
depends on the number of groups existing in the routing sub-
tree rooted at that node. This observation leads to the princi-
ple that reducing the number of groups considered at a sen-
sor node (performing in-network aggregation) will reduce the
size of the transmitted data and hence incur less energy cost
for transmitting them. Based on this principle, our first contri-
bution is a group-aware network configuration method, that
“clusters” along the same path sensor nodes that belong to the
same group.

For our second idea, we exploit temporal correlation in
streams of sensor readings to suppress insignificant readings
which can be tolerated. Further, suppressing such readings
potentially allows nodes that do not have to transmit data to
switch into doze or sleep mode, powering down their anten-
nas. Doze mode offers the maximum possible saving in en-
ergy. Towards this, our second contribution is a framework,
called TiNA (short for Temporal coherency-aware in-Network
Aggregation). TiNA works on top of existing in-network ag-
gregation schemes such as TAG [21] and Cougar [35] and
aims to balance the reduction in energy with the loss of QoD
by adhering to user-specified QoD requirements. TiNA re-
duces energy consumption by using temporal coherency tol-
erances in conjunction with in-network aggregation to save
energy at each sensor node, while maintaining the specified
quality of data. These tolerances are based on user prefer-
ences or can be dictated by the network in cases where the
network cannot support the current tolerance level.

In order to specify temporal coherency tolerance, TiNA
introduces a new TOLERANCE clause in the SQL expres-

sion of sensor network queries. While it is the WHERE clause
that acts as an input result filter, this new TOLERANCE clause
acts as a hierarchical output transmission filter. By being a
transmission filter, TiNA is able to save energy for two rea-
sons. First, at the edge nodes (i.e., the leaf nodes of the rout-
ing tree), if a new reading falls inside the given tolerance the
reading is not transmitted. Secondly, at the internal nodes,
if aggregation eliminates values, transmitted messages have
smaller size.

We have experimentally evaluated both our proposed sche-
mes using simulation. Specifically, we have investigated the
reduction in energy for group-aware network configuration
for the sensor network implementations of TAG and Cougar,
with and without utilizing TiNA. We have also studied the
effect of TiNA on different Group-By and aggregation type
queries, as well as how TiNA is affected by the rate that
data changes. Additionally, we looked at TiNA’s effects on
the lifetime of the sensor network.

Our results show that our method, by not sending and
by decreasing the size of messages, provides large gains in
power savings over previous methods of in-network aggrega-
tion while minimizing the impact on quality of data. These re-
sults show that TiNA can reduce power consumption used by
communication by up to 60% and extend the life of the sen-
sor network by up to 270%. Furthermore, an additional 33%
of energy used for communication can be saved by incor-
porating the group-aware network configuration with TiNA.
Finally, our results also show that in some cases where the
period to send is too short for all data to be propagated up
through the network, TiNA increases the quality of data com-
pared to existing in-network aggregation methods.

The rest of this paper is organized as follows. In Sec-
tion 2 provides an overview of in-network aggregation. The
idea of routing in sensor networks and an introduction to our
new network configuration algorithm are presented in Sec-
tion 3. We describe TiNA, our framework for temporal in-
network aggregation in Section 4. In the same section, we
describe how to implement TiNA on top of TAG and Cougar
and in conjunction with our network configuration algorithm.
Section 5 describes our simulation testbed, and then in Sec-
tion 6 we show our experiments and results. We present re-
lated work in Section 7. We conclude in Section 8.

2 In-Network Aggregation

Directed diffusion [9,16] is the prevailing data dissemination
paradigm for sensor networks. In directed diffusion data gen-
erated by a sensor node is named using attribute-value pairs.
A node requests data by sending interests for named data.
Data matching the interest is then drawn towards the request-
ing node. Since data is self-identifying, this enables activa-
tion of application-specific caching, aggregation, and collab-
orative signal processing inside the network, which is collec-
tively called in-network processing. Ad-hoc routing protocols
(e.g., AODV[27]) can be used for request and data dissemi-
nation in sensor networks. These protocols, however, are end-
to-end and will not allow for in-network processing. On the

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 3

contrary, in directed diffusion each sensor node is both a mes-
sage source and a message sink at the same time. This enables
a sensor node to seize a data packet that it is forwarding on
behalf of another node, perform local, in-network processing
on this packet, if applicable, and forward the newly generated
packet up the path to the requesting node.

Cougar [3,35] abstracted the named data generated by the
sensor network as an append-only relational table. In this ab-
straction, an attribute in this table is either information about
the sensor node (e.g., id, location) or data generated by this
node (e.g., temperature, light). Queries that access this rela-
tional table can be either continuous [32,22] or event-based
[22]. In the former, the query result is updated periodically for
a specified interval, while in the latter, the occurrence of an
event triggers the data collection. Traditional ad-hoc queries
that might be issued to probe present or historical data are
also supported.

In the rest of this paper, we will only focus on continuous
queries, more specifically, on aggregate continuous queries.
Aggregate queries are particularly important in sensor net-
works where applications are often interested in summarized
and consolidated data rather than detailed data 1. For exam-
ple, queries might be posed to periodically monitor the total
occupancy of an office building, the maximum temperature
in a volcanic area, or the average traffic density on a major
road.

Continuous queries can be expressed using an extended
SQL select statement:

SELECT {attributes, aggregates}
FROM sensors
WHERE conditions-A
GROUP BY {attributes}
HAVING conditions-B

EPOCH DURATION i | EVERY e

The first five clauses are the same as in standard SQL. We
are focusing on standard SQL aggregation functions (AVG,
SUM, MIN, MAX, COUNT). The two clauses in the sixth
line were introduced by TAG [21] (the aggregation service for
TinyDB [22]) and Cougar [35]. Clause EPOCH DURATION i
was introduced by TAG. Parameter i is the epoch interval and
it specifies the arrival rate of new results as required by the
user. Hence, once every epoch, the user is expecting the net-
work to produce a new answer to the posed continuous query.
Clause EVERY e, was introduced by Cougar and, similarly to
EPOCH DURATION, specifies the interval between two con-
secutive results (which is called a round). In this paper, we
will be using both terms interchangeably.

Communication in a sensor network can be viewed as a
tree, with the root being the base station. Synchronizing the
transmission between nodes on a single path to the root is
crucial for efficient in-network aggregation. A sensor (par-
ent) needs to wait until it receives data from all nodes routing
through it (children) before reporting its own reading. This

1 See [12] for a discussion about more sophisticated applications.

delay is needed so that the parent node p can combine the par-
tial aggregates reported by its children with its own reading
and then send one message representing the partial aggrega-
tion of values sampled at the subtree rooted at p. The problem
of deciding how long to wait is treated differently in Cougar
and TinyDB. The details of the synchronization mechanisms
of these two systems are discussed in greater detail below.

Synchronization in TAG Synchronization in TAG is accom-
plished by making a parent node wait for a certain time inter-
val before reporting its own reading. Specifically, TAG sub-
divides the EPOCH DURATION, specified by the user in the
SQL statement, into shorter intervals called communication
slots. The number of these slots is equal to the maximum
depth of the routing tree (d). The duration of each commu-
nication slot is (EPOCH DURATION) /d.

During a given communication slot, there will be one level
of the tree sending and one level listening. In the following
slot, those that were sending will go into doze mode until
the next epoch, while the nodes that were receiving will now
be transmitting. The cycle continues until all levels have sent
their readings to their parents. When a parent receives the in-
formation, it aggregates the information of all children along
with its own readings before sending the aggregate further up
the tree. This synchronization scheme provides a query result
every epoch duration. TAG also proposes pipelining, in which
a node waits several epochs of gathering data before sending
it up the tree, in order to allow increased sampling rates be-
yond the rate allowed by the communication slot scheme. In
this paper, however, when we refer to TAG we will be refer-
ring to only the basic slot based version of synchronization in
TAG.

Synchronization in Cougar Cougar takes a pragmatic ap-
proach to synchronization. This approach is motivated by the
fact that for a long running query, the communication pat-
tern between two sensors is consistent over short periods of
time. Hence, in a certain round, if node p receives data from
a node c, then node p will realize it is the parent of node c.
Node p will add c to its waiting list and predict to hear from
it in subsequent rounds. In the following rounds, node p will
not report its reading until it hears from all the nodes on its
waiting list. In order to prevent node p from waiting on c in-
definitely, node c transmits either a reading or a notification
packet during each round. The notification packet indicates
that the current reading at c does not satisfy the predicate as-
sociated with the query.

Since a parent only has to wait to hear from its children,
this results in messages from different parts of the tree going
up the tree at different rates. In order to accommodate this,
a parent must listen the entire time from the start of a round
until it hears from all its children. This ensures it hears from
every child and does not miss one by not listening from the
beginning. This synchronization scheme adapts to network
dynamics. Each node delivers its partial result as soon as it is
available, which should also reduce response time for uncon-
gested networks.

4 Mohamed A. Sharaf et al.

3 Energy Efficient Data Routing in Sensor Networks

The ability to route data from the various nodes of the sensor
network towards a central sink point (i.e., the base station) is
fundamental to the operation of sensor networks. To support
routing of data, the sensor network can be configured into
some form of hierarchy, such as routing trees [9,21] or clus-
tering [36,10]. The most commonly used routing scheme for
in-network aggregation is in the form of a tree, where each
node (child) selects a gradient [9] or parent [21] to propagate
its own readings.

The sensor network constructs the routing tree along with
the propagation of the query. The construction of the routing
tree is initiated from the base station. We assume that a new
query in our model originates at the base station which for-
wards it to the nearest sensor node. This sensor node will then
be in charge of disseminating the query down to all the sensor
nodes in the network and to gather the results back from all
the sensor nodes.

There are several ways in which the routing tree can be
built. One relatively simple way is to try to create the tree in
such a way that the distance between any two nodes is mini-
mized. This can be done in a greedy manner [15] by having
the first node heard from chosen as the parent. The intuition
behind this choice is the assumption that if a node is heard
from first, it was most likely the closest to the child. We call
this protocol First-Heard-From in this paper. For simplicity
we will use this protocol as a comparison basis with our new
protocol Group-Aware Network Configuration which will build
on the basis laid by the First-Heard-From protocol.

It should be noted that in an environment which is lossy
in nature, using the First-Heard-From protocol in general is
not appropriate. As pointed out in [33], packet-loss rate of a
channel and distance are not directly related. A node which is
closer may actually have a higher loss rate than a node which
is further away, leading to more retransmissions and conse-
quently, more energy being used. In such an environment a
more appropriate protocol would be the one that considers
loss rates and uses this in choosing the best parent.

3.1 First-Heard-From Network Configuration

The basic idea behind the First-Heard-From (FHF) network
configuration algorithm is as follows. Starting from the root
node, nodes transmit the new query. Children nodes will se-
lect as their parent the first node they hear from and continue
the process by further propagating the new query to all neigh-
boring nodes. The process terminates when all nodes have
been “connected” via the routing tree.

The FHF method is formally described as follows:

1. The root sensor prepares a query message which includes
the query specification. The root sensor also sets the (Ls)
value in the message to its level value (i.e., Lroot which
is 0 initially). It then broadcasts this query message to the
neighboring sensors.

2. A sensor i that receives a query message and has its level
value currently equal to ∞ will set its level to the level of
the node it heard from, plus one. That is, Li = Ls + 1.

3. Sensor i will also set its parent value Pi to Ids. It then
will set Ids and Ls in the query message to its own Idi

and Li respectively and broadcast the query message to
its neighbors.

4. Steps 2 and 3 are repeated until every node i in the net-
work receives a copy of the query message and is assigned
a level Li and a parent Pi.

In cases where nodes that are adjacent are equally distant
from one another, [12] suggests that a node will uniformly
and at random select from the available parents. This uni-
form selection will help in balancing the load among differ-
ent nodes that are equally adequate as parents. However, the
main weakness of this method is that it in fact creates the net-
work in a random way (only based on network proximity).
The children assign parents based on whichever node hap-
pened to broadcast the routing message first. This method as
well as other similar methods that consider only the network
characteristics, such as link low-loss rate, fail to consider the
semantics of the query or the properties/attributes of the sen-
sor nodes and hence cannot take any opportunities for energy
savings.

3.2 Group-Aware Network Configuration

In order to have a network configuration method that consid-
ers the semantics of the query and the properties of the sensor
nodes, we look closely at how in-network aggregation works.
In-network aggregation will depend on the query attributes
and the aggregation function. On the one hand, the list of at-
tributes in the Group-By clause subdivides the query result
into a set of groups. The number of these groups is equal to
the number of combinations of distinct values for the list of
attributes. Two readings from two different sensor nodes are
only aggregated together if they belong to the same group.
On the other hand, the aggregation function determines the
structure of the partial aggregate and the partial aggregation
process. For example, consider the case where the aggregate
function is SUM. In this case, the partial aggregate generated
by a routing sensor node is simply the sum of all readings that
are forwarded through this sensor node. However, if the ag-
gregate function is AVERAGE, then each routing sensor node
will generate a partial aggregate that consists of the sum of
the readings and their count. Eventually, the root sensor node
will use the sum and count to compute the average value for
each group before forwarding it to the base station for further
processing and dissemination.

Because aggregation combines all the readings for a par-
ticular group into one group aggregate reading, creating a
routing tree that keeps members of the same group within the
same path in the routing tree should help decrease the energy
used. The reason is simple: by “clustering” along the same
path nodes that belong to the same group, the messages sent
from these nodes will contain less groups (i.e., be shorter,

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 5

thus reducing communication costs). With this intuition in
mind, we introduce our Group-Aware Network Configuration
method, or GaNC for short.

The way is which the GaNC algorithm constructs the rout-
ing tree is as follows:

1. The root sensor prepares a query message which includes
the query specification. The root sensor also sets the (Ls)
value in the message to its level value (i.e., Lroot, which
is initially set to 0). It also sets the (Gs) to be its group id.
It then broadcasts this query message to the neighboring
sensors.

2. A sensor i that receives a query message and has its level
value currently equal to ∞ will set its level to the level of
the node it heard from, plus one. That is, Li = Ls + 1.

3. Sensor i will also set its parent value Pi to Ids and its
parent’s group id PGi to Gs. It will then set Ids, Ls and
Gs in the query message to its own Idi, Li and Gi respec-
tively and broadcast the query message to its neighbors.

4. While there are still query messages being propagated
around the network, node i continues to listen to all mes-
sages it can hear.

5. If node i hears a message from a node at the same level
as itself minus one (Li−1), it uses tie-breaker conditions
to decide if this new node should become its new parent.
If so, node i makes Ids its new parent.

6. Steps 2-5 are repeated until all query messages in the net-
work have been sent out and received.

The GaNC algorithm is built on the basis of the FHF pro-
tocol. The main difference is that a child under the GaNC
method can switch to a better parent while the tree is still
being built. This switch is based on a set of tie-breaker con-
ditions that go beyond the network characteristics, to intro-
duce the semantics of aggregation. GaNC works with seman-
tic groups which are static in nature and are based on hard
coded sensor attributes, such as floor number or location.

The goal of the group-aware network configuration algo-
rithm is to incorporate group identity into the routing tree
construction. As such, the first tie-breaker condition (for Step
5 of the algorithm) is whether the child has the same group id
as the parent. As long as a child is within listening distance of
multiple parent choices, a child will choose a parent that has
the same group id as itself instead of a parent from a different
group. This is a choice that will allow parents and children to
be in the same group as much as possible.

In the general case, a sensor node will be within listening
range of multiple other nodes. Despite the savings in clus-
tering nodes of the same group along the same path, a node
that is far away will require significantly more transmission
energy, and as such is not a good candidate. For that reason,
we introduce a distance factor, df , that will limit the max-
imum range for which we consider candidate sensor nodes
(for coming up with a “better” parent node). Under this ap-
proach, if di is the shortest distance seen so far (based on an
estimation from signal strength), we will only consider nodes
whose distance from a child node is at most df × di, for ex-

ample, for df = 1.2 we will only allow up to 20% more than
the minimum distance.

Thus, the second tie-breaker is the estimated distance from
the child to the parent. The parent with the lowest distance
will be chosen in cases when there is more than one parent to
choose from (that is in the same group as the child), or when
no parents are in the same group as the child. The reason for
this is that in both cases, routing through the closest parent
will save transmission energy for the child.

1

2

4 65 7

3

|msg|=2 |msg|=2
1

2

4 65 7

3

|msg|=1 |msg|=1

a) group un-aware b) group-aware

Fig. 1 Benefits of group-aware network configuration

To better illustrate the basic motivation and benefit of
GaNC, we use the simple example shown in Figure 1. In
this figure, nodes 2, 4, and 6 (the shaded ones) belong to
one group, whereas nodes 1, 3, 5, and 7 belong to a differ-
ent group. Let us assume that under the standard FHF net-
work configuration (Figure 1a), nodes 4 and 5 pick 2 as their
parent, whereas nodes 6 and 7 pick 3 as their parent. Using
in-network aggregation, the message sizes from nodes 2 and
3 to the root of the network will both be 2 (i.e., contain partial
aggregates from two groups). On the other hand, if we clus-
ter along the same path nodes that belong to the same group
(Figure 1b) we reduce the size of messages from nodes 2 and
3 in half: each message will only contain the partial aggregate
from a single group.

Overall, this algorithm uses more information to create a
better routing tree for aggregation type queries. The idea of
using the group ids to put children with parents should de-
crease energy consumption by decreasing message sizes: less
groups are being sent from a single parent, since its children
are in the same group as itself. In addition, nodes are trans-
mitting over shorter distances since distance is being used as a
secondary tie-breaker criterion. This in general will decrease
the transmission energy used, which increases exponentially
with distance. These two effects should decrease the overall
energy consumed by the network and make the routing tree
more efficient with aggregation queries.

4 Temporal Coherency-Aware In-Network Aggregation

In this section, we focus on the actual in-network aggregation
on top of a routing tree. Specifically, we present TiNA (short
for Temporal coherency-aware in-Network Aggregation) that
exploits the temporal correlation in a sequence of sensor read-
ings to reduce energy consumption by suppressing readings
that do not affect the expected quality of data as defined by
the user or application.

6 Mohamed A. Sharaf et al.

TiNA is built as a layer that operates on top of in-network
aggregation systems in order to minimize energy consump-
tion throughout the entire sensor network. In designing TiNA
we considered the different features of the existing in-network
aggregation systems, namely, Cougar and TAG. As discussed
above, in these systems all sensor readings are passed up the
tree once per epoch or round, as defined in the query. Ag-
gregation is done at the internal nodes while information is
forwarded up the routing tree.

The contribution of TiNA comes in how it selectively de-
cides what information to forward up the routing tree by ap-
plying a hierarchy of filters along each path of the network.
To perform data filtering in a controlled, well-defined man-
ner, TiNA introduces the TOLERANCE clause in the query
specification as follows:

SELECT {attributes, aggregates}
FROM sensors
WHERE conditions-A
GROUP BY {attributes}
HAVING conditions-B

Standard SQL

EPOCH DURATION i | EVERY e
]

TAG and Cougar

TOLERANCE tct
]

Introduced by TiNA

The tct parameter of the TOLERANCE clause is used
by the user to specify the temporal coherency tolerance for
the query. The tct value acts as an output filter at the read-
ings level, suppressing readings within the range specified by
tct. For example, if the user specifies tct = 10%, the sensor
network will only report sensor readings that differ from the
previously reported readings by more than 10%. Values for
tct range from 0, which indicates to report readings if any
change occurs, to any positive number. This tct is the maxi-
mum change that can occur to the overall quality of data in
the system using TiNA.

In this paper, we use a relative definition of tct, although
a similar absolute formulation of tct is possible. However,
the relative formulation of tct allows a uniform, easy to un-
derstand definition of user tolerance on heterogeneous data
sources, where the domain of sensed values is different from
one sensor to another. This is especially important when all
readings and groups in the aggregated result are equally im-
portant.

A TiNA sensor node must keep additional information in
order to utilize the temporal coherency tolerance. The infor-
mation kept at a certain sensor depends on its position in the
routing tree (i.e., a leaf or an internal node). Leaf nodes keep
only the last reported reading which is defined as the last
reading successfully sent by a sensor to its parent. Internal
nodes, in addition to the last reported reading for that node,
keep the last reported data it received from each child. This
data can either be a simple reading reported by a leaf node or
a partial result reported by an internal node.

– At a leaf node, when a new reading of value Vnew is
available, this new value is compared against the last re-
ported reading (say Vold). The new value is reported iff
|Vnew−Vold|

Vnew
> tct otherwise the value Vnew is suppressed.

– At an internal (i.e., parent) node, the following sequence
of operations takes place when the node is listening and
aggregating data:

1. It collects the data reported by its children. If a parent
does not receive complete data from any of its chil-
dren, it fills in the missing data using some or all of
the last reported data from that child.

2. It combines the complete data for each child together
to compute the partial result for the subtree rooted at
this parent node.

3. The internal node then takes its own reading. If its
own reading can be aggregated within a group that al-
ready exists in the partial result, then the reading is
aggregated regardless of its tct value. By doing this,
TiNA is taking advantage of the in-network aggrega-
tion mechanism where the aggregation at the parent
will improve the accuracy of the query results with-
out increasing the size of the partial result.

4. If including the new reading would result in creating a
new group, then the reading is only added if it violates
the tct value, otherwise it is suppressed in order to
minimize the partial result size while still maintaining
the specified tolerance.

5. Finally, the internal node takes an old partial result
(one computed from all children’s old data and its
own old reading) and compares it against the new
partial result it has created. For any tuple where the
partial aggregate value has not changed, that tuple is
eliminated from the final partial result. This elimina-
tion is equivalent to applying tct=0 at the partial ag-
gregate level which serves as an upper level filter.

Having the last operation repeated at every parent node
along all the network paths provides a hierarchy of filters on
every path. Setting the tct to zero for the hierarchical filtering
at intermediate nodes ensures that the partial aggregates, and
eventually the final aggregates, are always within the user-
specified tct.

This hierarchy of filters is important for the incremental
processing of aggregate queries as it captures cases of tempo-
ral correlation that cannot be captured at the readings level by
individual sensors. For example, consider the SUM aggrega-
tion function; readings from different sensors might change
from one round to another, however, it is possible that the
overall sum stays the same. This can only be detected at a
parent node which intercepts the stream of readings gener-
ated by these sensors and acts as an intermediate centralized
stream processor. Note that this operation can provide a com-
pletely empty partial result or a partial result that is missing
few groups compared to the old partial result. In both cases,
this node relies on the fact that its parent stored its last re-
ported data and it will use it to supply the missing groups as
mentioned in step 2.

Since parent nodes store the last reported reading of their
children, supporting the WHERE clause and handling node
failures becomes a non trivial issue. In both cases, the par-
ent needs to know whether the stored readings from a child

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 7

New: (2,4)
Old: (2,6)

1

2 3

4

New: (2,11)
Old: (2,10)

152

SumX
New: (1,4.1)
Old: (1,4)

4.11

SumX

41
212

SumX

4New: (2,6)
Old: (2,5)

Cost: 2
Cost: 2

Cost: 2

212
4.11
SumX

Cost: 4

172

SumX

62

SumX

Fig. 2 Query using TAG

New: (2,4)
Old: (2,6)

1

2 3

4

New: (2,11)
Old: (2,10)

152

SumX
New: (1,4.1)
Old: (1,4)

4.11

SumX

41
212

SumX

4New: (2,6)
Old: (2,5)

Cost: 2
Cost: 0

Cost: 2

212
4.11
SumX

Cost: 0

172

SumX

62

SumX

Fig. 3 Query using TiNA on top of TAG

are still valid. Specifically, the issue that arises when using
the WHERE clause and having fault tolerance is how to de-
termine the difference between a) a value not meeting the
conditions of the WHERE clause, b) a value not being sent
because it is inside the given tolerance range and c) a node
dying and thus not being in the network anymore. One sim-
ple way to deal with these cases is to adopt the notion of a
notification packet from Cougar and expand its usage to sup-
port TiNA functionality. The notification packet is simply a
packet containing a notification bit.

To handle the WHERE clause, a child uses the notifica-
tion packet with the notification bit turned off as a way to in-
validate stored readings at its parent. When a parent receives
a notification packet from a child with a notification bit set to
0(off), it knows that the reading it has stored for that child is
invalid and cannot be used in future aggregations. It will not
substitute any readings for that child until the child supplies it
with a new data. The notification bit could also be appended
into partial data in the case of internal nodes to allow parents
to know which group values to stop using as well.

To handle node failures, children are required to send heart-
beat messages to their parents at regular intervals while they
are suppressing values. This heartbeat is simple a notification
packet with the notification bit set to 1(on). This lets the par-
ent know the child is still alive and its reading is still valid
and should be used to substitute in aggregations. If a par-
ent does not receive a heartbeat message from a child after
a certain period of time, the parent will mark the child as dis-
connected until it hears from the child again. This heartbeat
technique will also work for mobile sensors, where a sensor
might change its location in the network, thus switching par-
ents.

In the case of parent node failures, we utilize the periodic
network reconfiguration to reconnect the children back to the
sensor network (through a new parent). In these cases, the
children nodes must first transmit their new value regardless
of the tct, as the new parent will not have any of the old state
information.

In the remaining of this section, we describe how TiNA
works on top of TAG and on top of Cougar. We also describe
the synergy between TiNA and GaNC.

4.1 TiNA on top of TAG

TiNA works on top of TAG by taking advantage of the pre-
defined sending and receiving communication slots in each
epoch. During a given communication slot, all children would
usually be sending their readings with the parents listening. In
TiNA, the parents are still listening, but it may be the case that
a child does not send a reading. In this case, when the com-
munication slot expires, the parent checks to see if it heard
from all its children. For each child it did not hear from, the
parent takes the last reported data it has for that child and ag-
gregates it with data from the other children. The rest of the
scheme then operates as usual for TiNA.

Example execution of TiNA Figures 2 and 3 show a com-
parison between two in-network aggregation schemes during
one epoch. Figure 2 shows the execution of the TAG base
case, whereas Figure 3 shows the execution of TiNA on top
of TAG. We assume a query to get the total light for all rooms,
while grouping by floor, with the tct = 10%:

SELECT {FLOOR, SUM(LIGHT)}
FROM SENSORS
GROUP BY {FLOOR}
EPOCH DURATION 30s
TOLERANCE 10%

Nodes are represented as circles in the figures and the
flow of data from child to parent is represented with arrows.
The boxes connected to each node represent the current state
at the node. The current state consists of the last reported
reading, called Old, the current reading, called New, and a
table representing that node’s previously reported partial re-
sult. As an example, consider node 3, its Old reading is 10, its
New reading is 11, and its previously reported partial result is
(2,15). In this partial result, the value 2 is the group identifier

8 Mohamed A. Sharaf et al.

(e.g., the x-coordinate), and 15 is the previous partial aggre-
gate value generated by summing its own old reading (=10)
to the old reading reported by node 4 (=5).

Tables along the connection lines represent the data be-
ing sent from child to parent. The Cost number under each of
these tables is the cost to send this data from child to parent.
The cost is just the size of the table, since it is used to illus-
trate relative costs. For example, a table with cost 4 is twice
as big as a table with cost 2, and thus will need to send twice
as much information, resulting in twice the transmission cost.

In Figure 2, we see a one-epoch execution of the query
using TAG without TiNA. In this example, every reading is
sent from child to parent. We illustrate the benefit of using
TiNA on top of TAG in Figure 3. The setup is the same as
before, but now the sensor network has employed the TiNA
scheme. Savings from TiNA (parts of messages that do not
need to be sent) are shown by being shaded out. Note that in
the epoch demonstrated, heartbeat messages are not needed
because all old values were sent in the previous epoch.

When it is time for node 4 to send, it first checks its new
reading against its old reading. Since the new reading (=6)
differs by more than 10% from its old reading (=5), it will
send its new reading and replace the old one. During the
next communication slot, nodes 2 and 3 check their read-
ings against their last readings. For both nodes, the change
is less than 10%. However, node 2 will suppress transmis-
sion, while node 3 will aggregate its new reading with the
reading reported from node 4 since they both belong to the
same group. As explained above, this operation improves the
result accuracy at no extra transmission costs. In the final slot,
node 1 will aggregate its own reading into the partial results
it received from node 3. However, for group 2, the new par-
tial aggregate value (=21) happened to be equal to the one
previously reported by node 1. Thus, the partial aggregate for
group 2 is suppressed and node 1 will not transmit any mes-
sages for this epoch.

As shown in the example execution of TiNA above, sen-
sor nodes save significant energy by suppressing transmission
at the reading level and the partial aggregate level. These sav-
ings are propagated up the levels of the routing tree. In our
example, the sum of sizes of all messages under the plain
TAG approach was 10, which was reduced to 4 when using
TiNA. Such a 60% decrease in the transmission cost reduces
energy consumption dramatically, but comes with a slight de-
crease in the accuracy of the results (4.0 instead of 4.1 in one
of the groups).

4.2 TiNA on top of Cougar

Using TiNA on top of Cougar does not involve any change to
the underlying Cougar framework. However, implementing
TiNA on top of Cougar is a little different than implementing
TiNA on top of TAG. In Cougar, parents wait to hear from
all their children before aggregating their own reading and
sending the result further up the routing tree.

Using TiNA on top of Cougar, TiNA does not suppress
the notification messages of Cougar but it replaces them with

those of TiNA. Thus, when a child would choose not to send
a reading because the reading did not violate the given tct,
it would send a heartbeat message (i.e., a TiNA notification
packet with the notification bit on). This will inform the par-
ent that the stored reading of that child is still valid and that
the parent can proceed with its processing.

It should be noted that the size of the notification packet
is typically one bit in addition to the header, which allows
for significant savings when compared to the size of a data
packet that contains a reading. These savings are even more
noticeable if that heartbeat is sent instead of transmitting a
partial result that consists of multiple aggregates that are all
within the tct.

We illustrate how TiNA works on top of Cougar using
Figures 2 and 3 from the TAG example. Instead of each sen-
sor sending during its given time slice (in TAG), a sensor will
send once it hears from all its children (in Cougar). Further-
more, in Figure 3 nodes 2 and 1 will transmit a heartbeat in-
stead of sending nothing. The rest of the figure is exactly the
same, with the group data that is not sent in TiNA on top of
TAG, not being sent in TiNA on top of Cougar either. As long
as the parent hears from the child, it can fill in any informa-
tion that is necessary. Finally, note that in the case of TiNA
on top of Cougar the savings would come not only from the
decrease in transmission size, but also from the decrease in
response time. Since a parent has to listen until it hears from
all its children, by using TiNA, the time a parent hears from
all its children is also decreased, thus increasing the overall
savings.

4.3 TiNA with Group-Aware Network Configuration

TiNA can further improve its energy efficiency when it is de-
ployed together with a group-aware network configuration
method (GaNC). TiNA suppresses values at internal nodes
based on the aggregate values of each group. The more values
from a single group the more chances that changes in these
values will counteract each-other and as such, transmission
of the group will be suppressed.

There is an added benefit to using GaNC that is unique to
TiNA and can improve the overall quality of data. Remem-
ber that TiNA will “piggy-back” new readings of an inter-
nal node regardless of the amount of change, if the internal
node’s group was going to be transmitted because of chil-
dren input. In this optimization, the energy remains the same
since adding an extra item into the aggregation of a group,
does not increase the message size. In the case of GaNC, by
clustering along the same path to the root nodes that belong
to the same group, we increase the probability that a parent
node matches the group of its children and thus include its
own reading (i.e., get a “free ride”). This is expected to in-
crease the overall quality of data without increasing energy
consumption.

Let us now illustrate how TiNA can further boost the en-
ergy savings that are gained from using GaNC. Consider for
example a network of nodes deployed within a building keep-
ing track of the number of people in the building, grouped by

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 9

1

2

4 65 7

3

m m m

2mm

−5+5 +12

1

2

4 65 7

3

+5 +12

m

m m
m

−5
a) group un-aware b) group-aware

Fig. 4 Benefits of group-aware network configuration with TiNA.
Nodes in boxes indicate change in value more than tct (the value
difference is listed underneath). m indicates transmission of a mes-
sage of unit size.

floors. Figure 4a shows a section of the tree in this building’s
network as it would be built using the FHF network config-
uration method and Figure 4b shows the same section of the
tree using GaNC instead. These trees are the same as in Fig-
ure 1. The nodes are shown as circles and the groups they be-
long to are based on the color (there are two groups, shaded
(S) and not shaded (NS)). Finally, nodes in boxes indicate
that their value changed by more than the tct and thus need
to report the new values (the value difference in number of
people is listed underneath).

In Figure 4a, normal TiNA execution would show a total
of 5 messages being sent. The three messages from children
to parents at the lowest level would be of size 1 (1 group
with value) and the messages from the second level to the top
level would be of size 1 and 2. This leads to total message
size of 6. In addition, we have node 2 changing by less than
the tct, so its reading is not sent unless its group is already
being sent up; the remainder of the nodes are unchanged in
value. Finally, nodes 5 and 7 at the lowest level change by
complimentary amounts (5 people left that room, node 7, and
moved to the other room, node 5).

If instead of the configuration in Figure 4a we use the new
configuration shown in Figure 4b, the benefits of GaNC are
more apparent. In this case, we first get the benefit that nodes
5 and 7 are routed through the same parent, so their comple-
mentary data changes cancel each other. This makes sense be-
cause the number of people on the floor did not change, they
just moved their meeting to another room. This will save the
transmission from node 3 to node 1. In addition, since node
2 now has a child in its own group that is sending through
it, it can add its own reading into the message, thus increas-
ing the quality of data for the query. By configuring the tree
in a group-aware fashion, the total size of all messages was
reduced to 4. In addition, the overall quality of data has in-
creased, because more nodes are sending more precise in-
formation. This shows that by using TiNA with GaNC, the
overall energy used in the network can be decreased and the
overall quality of data can be increased.

5 Evaluation Testbed

In order to study the effects of the proposed TiNA framework,
we created a simulation environment using CSIM [29]. Fol-
lowing typical sensor network simulation practices, the sim-
ulated network was configured as a grid of sensors. We as-
sumed a lossless communication environment in which each
node could transmit data to sensor nodes that were at most
one hop away from it. In a grid this means it could only trans-
mit to at most 8 other nodes. When experimenting with the
GaNC protocol we will only use group semantics for net-
work configuration (the first tiebreaker) since the distance
tiebreaker (the second tiebreaker) is not applicable in such
a grid setting.

We simulated a simplified version of the CSMA/CA con-
tention-based MAC protocol, where a sender node will per-
form a channel sensing before initiating a transmission. If a
node fails to get the medium, it goes to sleep for a random
backoff period and then starts sensing the channel again. The
node will only transmit its message when the channel is free.
Before transmitting the message, the sender node will send a
Request to Send (RTS) packet to the destination which replies
with a Clear to Send (CTS) packet. These packets are used to
ensure that other nodes in the destination transmission range
will seize transmission so that collision will not occur. In our
CSMA/CA implementation, we do not explicitly include the
extra costs for the RTS and CTS packets, however, we are
studying the impact of the communication protocol overhead
in Section 6.7.

Using the simulator, we performed extensive experiments
to evaluate the performance of TiNA, when used on top of
TAG or on top of Cougar. For fairness in comparisons, we
simulated the optimized version of TAG where a child cache
is used [21]. In this caching scheme, a parent stores the partial
aggregates reported by its children, and uses those aggregates
when new ones are not available. This scheme is particularly
important in the cases where communication is unreliable or
the epoch duration is too short.

In the following experiments, the Group-By query is of
the form described in Section 3.2, and the sensor network
produces a result at intervals defined in the query. The objec-
tive of the query is to aggregate a measure (e.g., temperature)
across different regions of the network. In the default case,
the set of attributes used by the SELECT and the GROUP
BY clauses is any valid combination of the sensors’ X and Y
coordinates, hence, attributes = {}, {X}, {Y}, or {X,Y}. For
example, a query where attributes = X subdivides the sen-
sors readings into a number of groups equal to the number of
possible values of X (i.e., the width of the grid). In the an-
swer for this query, readings from all sensors that have the
same X coordinate are aggregated together according to the
aggregate function. For our experiments, we focused on the
standard SQL aggregation functions SUM, AVERAGE, and
MAX. We did not include the MIN function, which is simi-
lar to MAX, nor did we include COUNT, which is similar to
SUM.

10 Mohamed A. Sharaf et al.

We summarize all the experiment parameters in Table 1.
Next, we will present the models we used for generating our
synthesized data, whereas an analysis of real data is deferred
to Section 6.4.

Parameter Value Default

Grid Size 11x11 – 45x45 15x15
Packet Header Size 2 - 8 bytes 4
Aggregate MAX, SUM, AVG SUM
Number of Attributes 0 – 2 1
Epoch Durations 240 – 7404 mSec 1408 mSec
tct 0% – 30%
Number of Epochs 100

In-network Aggregation Cougar, TAG Cougar
Routing Scheme FHF, GaNC FHF

Randomness Degree 0.0 – 1.0 0.5
Random Step Size Limit 5%–25% of domain 5%

Peak Amplitude(A) 50
Period(T) 20 – 60 20
Phase(φ) 0

◦–180
◦

0
◦

Table 1 Simulation Parameters

5.1 Random Walk

One model we used for data generation is the random walk
model. In this model, the domain of values was between 1
and 100 (to approximate temperature readings in Fahrenheit).
A sensor reading is generated once at the beginning of each
query interval. The value changes between one interval to
the next with a probability known as the randomness degree
(RD). Each time a sample is to be generated, a coin is tossed.
If the coin value is less than RD, then a new value is gener-
ated, otherwise the sample value will be the same as before.
For example, if RD = 0.0, then the value sampled by a sen-
sor will never change, while if RD = 0.5, then there is a
50% chance that the new value at time t is different from the
value at time t+1. We used the Random Step Size Limit to re-
strict how much the new value can deviate from the previous
value. This limit is expressed as a percentage over the domain
of values. In our case, a 5% step size limit implies that a new
temperature reading can be at most 5 degrees less/more than
the previous reading.

5.2 Sinusoidal Data

In the sinusoidal data model, each sensor generates a stream
of values similar to a sinusoidal signal of the form:

f(t) = A sin(t
T

2π + φ)
where A is the peak amplitude, t is the current round/epoch,
T is the period in terms of number of epochs, and φ is the
phase. We set the value of A to 50 and we also set f(t) =
f(t) + A +1 at any time t in order to retain the same domain
of values provided by the random walk model.

Using this model, we can control generating data streams
with different properties. One such property is the temporal
correlation between values sensed at different sensors at the
same instance. This correlation can be controlled using the
φ parameter which enables us to set the relative direction of
changes in values. This correlation is especially important for
aggregate functions where the interaction between values can
lead to a constructive or destructive aggregation. A destruc-
tive aggregation is when values are changing in different di-
rections but the net results does not change significantly. A
constructive aggregation is when values change in the same
direction so that the net aggregate significantly changes.

5.3 Performance Metrics

In our experiments we focused on three measurements: en-
ergy consumption for communication, relative error, and re-
sponse time.

Energy: Energy is consumed in four main activities in sen-
sor networks: transmitting, listening, processing, and sam-
pling. We focused on transmission and listening power, since
the amount of time spent sampling is the same for all tech-
niques. We did not include energy required for processing
because it is negligible compared to that needed for commu-
nication.

As mentioned before, a sensor node will send its data to
the root through its assigned parent. A parent node is one hop
away from its child, and one hop closer to the root than its
child. So every node sends its data exactly one hop away, all
of which are the same distance from one another. This al-
lows us to assume a uniform cost of transmitting data. How-
ever, the overall energy consumed to transmit a partial result
depends on the size of the partial results and the number of
messages.

The values of the parameters needed to calculate the trans-
mission cost were the same as in [13]. Specifically, we sim-
ulated sensors operating at 3 Volts and capable of transmit-
ting data at a rate of 40 Kbps. The transmit current draw is
0.012 Amp while the receive current is 0.0018. Hence, the
cost of transmitting one bit in terms of energy consumption
units (Joules) is computed as:
Tcost = 3 Volt * 0.012 Amp * 1/40,000 Sec = 0.9 µJoules.

The cost of listening for one second is computed as:
Rcost = 3 Volt * 0.0018 Amp = 0.0054 Joules.

The energy consumed during listening is independent of
the number of messages received by the sensor. It only de-
pends on the time spent by the sensor being active and listen-
ing. In TAG that time is specified by the communication slot
interval. Cougar does not specify when a sensor stops listen-
ing and switches to doze mode. Hence, in our simulation, we
assumed that each sensor will start listening at the beginning
of each round. After a sensor receives data from all nodes on
its waiting list it will switch to doze mode.

Relative Error Metric: The relative error metric (REM) is
a measure of how close the exact answer and the approximate

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 11

Energy Ratio

0.00 0.25 0.50 0.75 1.00

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

increasing
tct

Cougar+TiNA(0%)

Cougar+TiNA(30%)

Cougar

Fig. 5 Relative Error Metric (REM)
of TiNA on top of Cougar, where
Energy Ratio =

Energy using TiNA

Energy using Cougar

Energy Ratio

0.00 0.25 0.50 0.75 1.00

R
es

po
ns

e
T

im
e

R
at

io

0.00

0.25

0.50

0.75

1.00

Cougar

Cougar+TiNA(0%)

Cougar+TiNA(30%)

increasing
tct

Fig. 6 Response time of TiNA
on top of Cougar, where
Response T ime Ratio =
Response Time using TiNA

Response Time using Cougar

Energy Ratio

0.00 0.25 0.50 0.75 1.00

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

TAG

TAG+TiNA(0%)

increasing
tct

TAG+TiNA(30%)

Fig. 7 Relative Error Metric (REM)
of TiNA on top of TAG, where
Energy Ratio =

Energy using TiNA

Energy using TAG

answer are. The exact answer is generated if all sensors de-
liver their current readings within the epoch/round time. An
approximate answer is one where some sensors fail to send
their current reading or decide not to send it. A sensor fails
to report a reading because of network congestion or short
epoch interval. A sensor decides not to send a message be-
cause of the user-specified temporal coherency tolerance.

In order to compute REM, we first need to measure the
error over the Group-By query. We measured this error as
described in [1]. Assume a query aggregates over a measure
attribute M . Let {g1, ..., gn} be the set of all groups in the
exact answer to the query. Finally, let mi and m′

i be the exact
and approximate aggregate values over M in the group gi.
Then, the error εi in group gi is defined to be the relative

error, i.e., εi =
(|mi−m′

i
|)

mi
. The error δ over the Group-By

query is defined as: δ = 1
n

∑n

i=1 εi finally, the average REM
(or simply, REM) over time is defined as:

REM =
1

T

T
∑

t=1

δt

where δt is the query error at epocht.
We are using REM as indication of the quality of data

(QoD), where a high REM reflects a low QoD, while a low
REM corresponds to a high QoD. Hence, we will be using
both terms interchangeably.

Response Time: The response time is a metric that applies
only to Cougar. As we mentioned earlier, the Cougar syn-
chronization method allows results to be delivered before the
end of the round interval, especially in the case of a lightly
loaded network. In the case of TAG, the response time is al-
ways equal to the epoch duration.

6 Experiments and Results

6.1 Sensitivity to temporal coherency tolerance

In the first experiment, we vary the tct value and measure
its effect on the relative error metric (REM), response time,
and energy for TiNA versus the base cases for Cougar and

TAG. The experiment uses the default values from Table 1
except for the tct, which we varied from 0% to 30%. Unless
otherwise noted, the sensor network in all experiments was
configured using the FHF method (as described in Section 3).

Figure 5 shows the trade-off between energy savings and
relative error when using TiNA on top of Cougar. We have
the ratio of energy required compared to that needed by plain
Cougar on the X-axis, and the relative error (which is 0% for
Cougar) on the Y-axis. For perfect QoD, and thus no relative
error (tct=0%), TiNA on top of Cougar uses only 56% of
the energy required by Cougar. For tct=30%, TiNA on top
of Cougar only uses 24% of the energy required by Cougar,
whereas the REM increases to 3.3%.

Figure 6 shows the energy savings and corresponding re-
duction in response time. The ratio of energy required com-
pared to that needed by plain Cougar is on the X-axis, whereas
the ratio of response time compared to that of Cougar is on
the Y-axis. Because TiNA can send notifications instead of
the readings for those cases that do not violate the tct, the time
needed to hear from all children decreases. This decrease in
response time is directly related to the savings in energy and
will increase further with higher tct values. For the case of
tct=0% (i.e., no relative error), the response time of TiNA
on top of Cougar was 60% of Cougar’s (while consuming
only 56% of the energy required by Cougar). For the case of
tct=30%, where only 24% of Cougar’s energy was used, the
response time when using TiNA on top of Cougar is 27% of
Cougar’s. This shows that using TiNA can result in substan-
tial savings in energy and further decrease the query response
time when used on top of Cougar.

Figure 7 shows the effects of TiNA on relative error and
energy when used on top of TAG. In this case, TiNA on top of
TAG uses between 86% (for tct=0%) and 74.9% (for tct=30%)
of the energy of the TAG base case with corresponding REM
of 0% and 3.7%. Compared to Cougar, these reductions are
smaller. The reason behind this is that TiNA, when used on
top of Cougar, saves energy both by not transmitting readings
and by reducing the time spent listening. In TAG, however,
TiNA only saves in transmission power since it must listen for
its entire assigned time slice. This means TiNA uses the same
receiving energy as in TAG, hence the savings for TiNA on

12 Mohamed A. Sharaf et al.

Epoch Duration (mSec)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

TAG
TAG+TiNA(0%)
TAG+TiNA(5%)
TAG+TiNA(10%)
TAG+TiNA(20%)
TAG+TiNA(30%)

Fig. 8 Energy usage vs epoch duration

top of TAG are limited to only transmission energy. Finally,
we do not show the response times for TAG or TiNA over
TAG, since they are always the same as the epoch duration.

In our experiments, we have focused only on the energy
consumed for communication. In order to put these energy
saving due to communication in perspective of the total sys-
tem savings (as mentioned in Section 5) we need to take into
consideration the cost of performing many other actions in-
cluding sampling, processing, even dozing. These overheads
depend on the type of the individual sensor nodes. Take for
example the case of energy used for taking different kinds
of readings (e.g., light, temperature, etc.) as reported in [22].
In this case, the savings provided by our scheme would de-
pend on the kind of sensing activity. Sensing the tempera-
ture would require 90µJoules of energy while the transmis-
sion, as we reported above in the case of Cougar, would take
500µJoules for the regular implementation of Cougar and
280µJoules for Cougar with TiNA and tct=0. This leads to
savings of 44%, however, including 90µJoules overhead for
taking the reading, the savings drop slightly, to 37%. If in-
stead of taking temperature readings a more costly sampling
type was performed, for example, using a magnetometer which
uses 1500µJoules to do a reading, the savings would only be
11%.

6.2 Sensitivity to the epoch duration

In cases where a sensor is in a dense portion of the network,
its data will suffer high latency due to congestion and retrans-
mission. Recall that in TAG, the epoch is broken up into com-
munication slots during which a given level is sending and an-
other level is listening. If the epoch duration is short (or if the
routing tree is skewed) it may happen that the communication
slot is too short for all nodes at a given level to successfully
transmit their readings. In this case some nodes will be able
to send their data while other nodes will not be able to trans-
mit. This will give query results of poor data quality, as the
aggregation will be missing data from sensors that failed to
communicate their readings.

In this experiment, we test the effect of epoch size on
TAG and compare it with TiNA on top of TAG. Up to now

Epoch Duration (mSec)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

6%

TAG
TAG+TiNA(0%)
TAG+TiNA(5%)
TAG+TiNA(10%)
TAG+TiNA(20%)
TAG+TiNA(30%)

Fig. 9 REM vs epoch duration

the epoch has always been large enough to allow all sensors
to send in all their values during the assigned time slice. The
goal of this experiment is to show to what degree TiNA can
alleviate this problem by suppressing the transmission of rela-
tively static readings in favor of the more dynamic ones which
contribute the most to the quality of the final aggregate.

Figure 8 shows that by increasing the epoch duration, the
amount of energy also increases in direct proportion. The rea-
son for this is that as the epoch length increases, more sensors
are able to send their readings. This behavior continues up to
the point where all sensors can send all of their readings, af-
ter which the increase in energy is due to parent nodes having
to listen for the entire time slice. The power used by TiNA
follows a similar pattern. The amount of savings by TiNA
decreases as the epoch time increases, since all the energy
savings by TiNA on top of TAG are on transmission power.

Figure 9 shows the effects on REM when we increase the
epoch size. In this case, we only get 0% relative error if there
is enough time for all sensors to send their data. This figure
shows that for smaller epochs, TiNA on top of TAG has a
better QoD than TAG. The reason is that TiNA is ”wisely”
choosing to send only those values that change, allowing par-
ents to have more information with which to produce more
accurate results. While TAG also has a cache to use, it is
sometimes sending data already in the cache which means
some new information cannot be sent. After a certain point,
the epoch size is large enough to accommodate all nodes be-
ing able to send, and thus the relative error levels off for all
schemes. Clearly, TAG will be dependent on finding the op-
timal epoch size for each workload, so we decided to use
Cougar for the remaining experiments.

6.3 Sensitivity to degree of in-network aggregation

In this experiment we show the behavior of TiNA under dif-
ferent degrees of in-network aggregation. The degree of in-
network aggregation is controlled by setting the number of
attributes in the Group-By clause.

Figure 10 shows the energy usage for Cougar and for
TiNA with various tct levels in the cases when we have no
Group-By, when we have Group-By with one attribute, and

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 13

Number of Attributes

0 1 2 3

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 10 Energy vs number of attributes

when we have Group-By with two attributes. In-network ag-
gregation is at the maximum in the case of no Group-By
where all sensors belong to the same group and a parent is al-
ways able to aggregate its reading with the readings reported
from its children. On the contrary, in-network aggregation
cannot be used in the case of a Group-By query with two
attributes (i.e., the X and Y coordinates). In this case, each
sensor represents its own group and thus a parent and a child
can never belong to the same group. Hence, the performance
of the network is similar to that provided by centralized query
processing.

Figure 10 shows that energy usage increases when the
number of attributes increases. However the rate of increase
in energy usage for TiNA is less than that for Cougar. For
instance, consider the performance of TiNA(0%) in the case
of no Group-By attributes and in the case of 2 Group-By at-
tributes. In the case of no Group-By (i.e., maximal in-network
aggregation), using TiNA on top of Cougar reduces the en-
ergy consumption by 20% compared to plain Cougar; this
reduction is 52% for Group-By with 2 attributes (i.e., no in-
network aggregation).

6.4 Sensitivity to variability of sensor readings

This experiment focuses on the rate at which data changes
and on the magnitude of change. We compared Cougar against
TiNA on top of Cougar with various tct levels. Figure 11
shows the energy savings based on the rate of data change.
The behavior of Cougar is not affected by the rate of data
change (top line in graph). In the case of RD=0, TiNA uses
almost no power, since it exploits the fact that sensor readings
do not change. Actually, each node only sends once through-
out its life; the rest of the time it only sends very small noti-
fication messages. At a 50% change rate, TiNA’s power sav-
ings range from 44% (for tct=0%) to 76% (for tct=30%). In
general, the less often data changes, the higher the chance
that readings will be the same as before and the greater the
chance to save on transmission costs when using TiNA. The
worst case will be when data is completely random (RD=1),
which is atypical for most applications. Even in this case, we
show energy savings between 8.2% and 68%. The 8.2% en-

Randomness Degree (RD)

0.00 0.25 0.50 0.75 1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 11 Energy vs Randomness Degree

ergy savings for TiNA(0%) compared to Cougar occurs be-
cause TiNA exploits the few cases where although the indi-
vidual sensor readings change, some of the partial aggregates
remain the same (and thus the aggregate is not transmitted).

tct 0% 5% 10% 15% 20% 30%
REM 0% 0.5% 1.2% 1.7% 2.6% 3.3%

Table 2 REM vs. tct (RD=0.5) for TiNA over Cougar

Table 2 shows the relative error for each of the different
tolerance levels. This table shows the case where the random-
ness degree is set at 0.5, the default case for our experiments.
Even as the tct increases, the relative error increases at a much
slower rate. For example, in the case where tct = 30%, the in-
crease in relative error is only 3.3%.

Figure 12 shows the energy consumption based on the
magnitude of change (i.e., Random Step Size Limit). The fig-
ure shows that Cougar is not affected by the magnitude of
change (the same behavior shown in Figure 11). It also shows
that, for a fixed tct value, increasing the step size results in
increasing the energy consumption. This increase in energy
is due to an increase in the rate of readings violating the tct
requirement between successive rounds. This also explains
the decrease in relative error when the step size increases,
as shown in Figure 13. At a step size that is relatively small
compared to tct, a reading could change many times while
still being within the specified tolerance level, however, these
changes contribute to an increase in relative error. Increasing
the step size makes the change more noticeable and hence
more changes are captured by the tct filter which leads to the
shown decrease in REM, i.e. an improvement in QoD.

The above observation is further illustrated using Fig-
ure 14. In this figure we used the sinusoidal data model to
generate readings as explained in Section 5. In this setting, all
sensors generated readings that were in phase (same φ), how-
ever, we varied the sinusoidal period (T) between runs. In
other words, a sensor reading is changing all the time and the
magnitude of change depends on the period. That is, a short
period (i.e., 20) is equivalent to a high frequency and a sig-
nificant change in value between successive readings, while a
longer period (i.e., 60) is equivalent to a low frequency sinu-

14 Mohamed A. Sharaf et al.

Random Step Size Limit

5% 10% 15% 20% 25%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(15%)
Cougar+TiNA(20%)

Fig. 12 Energy vs Step Size

Random Step Size Limit

5% 10% 15% 20% 25%

R
E

M
(%

)

0%

1%

2%

3%

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(15%)
Cougar+TiNA(20%)

Fig. 13 REM vs Step Size

Period(T)

10 20 30 40 50 60 70

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

6%

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(15%)
Cougar+TiNA(20%)

Fig. 14 REM vs. Sinusoidal period (T)

soidal and a small change between successive readings. The
results presented in Figure 14 show how the REM decreases
by decreasing the sinusoidal period, which agrees with the
results previously shown in Figure 13.
Real Data Analysis: In order to put our results in a real per-
spective, we analyzed some available environmental readings
from [25] which were previously used in [18]. We conducted
this analysis to extract the real data variability parameters,
namely, randomness degree and step size.

This data is gathered as part of the tropical atmosphere
ocean project and the measurements include surface winds,
sea surface temperature, upper ocean temperature and cur-
rents, air temperature, and relative humidity. Samples are taken
at a resolution interval of 10 minutes and telemetered to shore
in real-time via a satellite system.

In our analysis, we processed the air temperature readings
for the year 2003 which was available from 15 stations. We
converted the measured temperatures to the Fahrenheit scale
and we assumed that a reading does not change if its inte-
ger part stays constant. We computed the variability parame-
ters mentioned above given the default 10 min sampling rate.
Moreover, we computed the same parameters when readings
are sampled at longer intervals (up to 4 hours).

Figure 15 shows the randomness degree and average step
size when readings are sampled at different rates, as well as

Randomness Degree (RD)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 S
te

p
S

iz
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 mins
30 mins

1 hr
2 hrs 3 hrs

4 hrs

Default
Settings

Fig. 15 Real Data Analysis

our default settings. The figure shows that, in general, the ran-
domness degree and average step size increase by increasing
the sampling interval where the gaps are longer between suc-
cessive readings. It also shows that our default experimental
settings are realistic and more demanding than the real data
settings. In our default settings, we set the randomness degree
to 0.5 and the step size limit to 5 degrees (i.e., 2.5 degree on
average). Compared to real data sampled at 10 minutes in-
tervals, our experimental setting values are ' 3.6 times and
' 2.3 times the observed randomness degree and average
step size respectively.

6.5 Alternative approximation method

In this experiment, we are comparing TiNA to an alternative
approximation method, namely, sampling. Sampling can be
used to reduce the number of exchanged messages and con-
sequently the transmission energy. This can be achieved by
excluding entire epochs; during an excluded epoch all sen-
sors are idle and no result is reported by the network.

As in TiNA, sampling will provide approximated answers
where there is an error between the reported aggregates and
the exact ones. However, in the case of sampling this error is
unlimited, while in TiNA the error is limited by the user spec-
ified tolerance. Moreover, in TiNA the suppression or trans-

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 15

Phase(φ)

0° 45° 90° 135° 180°

R
E

M
(%

)

0%

1%

2%

3%

4%

5%

6%

7%
TiNA(10%)
Sampling

Fig. 16 REM vs. φ (tct=10%)

Phase(φ)

0° 45° 90° 135° 180°

R
E

M
(%

)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

TiNA(30%)
Sampling

Fig. 17 REM vs. φ (tct=30%)

mission decision is guided by the previously reported state,
while in sampling the decision does not consider the previ-
ous state.

In order to compare TiNA to sampling, we use the sinu-
soidal data model (which was presented in the previous sec-
tion). The sinusoidal data model has the ability to control the
temporal correlation between streams of readings generated
by different sources, which is important in order to assess the
quality of each approximation method. This can be illustrated
using Figures 16 and 17. In both figures, the x-axis represents
the maximum phase shift between any two sinusoidals gener-
ated by two different sensors. For example, in the case of 0◦,
all sinusoidals are in phase, while in the case of 180◦ each
sensor will use a sinusoidal where φ is randomly selected
from the range [0◦ − 180◦].

Figures 16 and 17 show the REM provided by TiNA and
by sampling under the same level of energy consumption. In
order to make sure that they are both using the same energy,
we measured the ratio between the energy used by TiNA to
that used by Cougar (or TAG) and use this ratio as the effec-
tive sampling rate. Since this cannot provide uniform sam-
pling intervals, we used that ratio to set the probability of
sampling. Hence, using sampling, the probability of the net-
work being active during an epoch is equal to that ratio. Dur-
ing the excluded epochs, reported results from the most recent
epoch are assumed to be reported to the user and are used to
measure the error.

Figure 16 compares the performance of TiNA(10%) with
that of sampling. We can see that the average REM provided
by TiNA is always less than that from sampling. However, the
difference in error diminishes with the increase in φ. For ex-
ample, consider the cases when φ = 0◦ and when φ = 180◦.
In the former case, the error provided by TiNA is 5% less than
that of sampling, while in the latter case, the resulting error is
almost equal. The reason is that when φ = 0◦ all readings are
either increasing or decreasing which leads to a continuous
constructive interaction (as defined in Section 5), where the
aggregated sum is always increasing or decreasing. Hence,
exempting an epoch from sampling will increase the error
significantly. Oppositely, when φ = 180◦, the readings gen-
erated by sensors at any point of time will span the complete

sinusoidal, leading to an overall destructive interaction where
the rate of change in the aggregate sum is low over time. This
observation is further illustrated in Figure 17 where we com-
pare TiNA(30%) to sampling. The figure shows that TiNA
outperforms sampling by 13% in the case of φ = 0◦ and with
only 0.2% when φ = 180◦.

Even though sampling provided a low overall average
REM in the case of φ = 180◦, the provided individual rel-
ative errors per epoch show noticeable fluctuations. This is
illustrated in Figure 18 where we plot the REM per epoch
for TiNA(30%) and sampling at φ = 180◦. The figure shows
that sampling provides a 0% REM when an epoch is included
in sampling, while the error is unpredictable when the epoch
is exempted. Moreover, it shows that the REM provided by
TiNA will never exceed the specified tolerance (i.e., 30%). In
the same experiment, we measured the maximum error over
the simulation time and the standard deviation of the error.
The results shows that TiNA(30%) exhibits a maximum error
of 21%, with a deviation of 5%, while the sampling method
shows a maximum error of 196%, with a 28% standard devi-
ation.

Time

0 20 40 60 80 100 120

R
E

M
(%

)

0%

50%

100%

150%

200%

250%

TiNA(30%)
Sampling

Fig. 18 REM vs. Time (φ = 180
◦)

16 Mohamed A. Sharaf et al.

tct value

0% 5% 10% 15% 20% 25% 30% 35%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0001

0.0002

0.0003

0.0004

SUM
MAX
AVG

Fig. 19 Sensitivity to Aggregation Function (Energy vs tct)

tct value

0 5 10 15 20 25 30

R
E

M
(%

)

0%

1%

2%

3%

SUM
MAX
AVG

Fig. 20 Sensitivity to Aggregation Function (REM vs tct)

6.6 Sensitivity to the aggregation function

In this experiment, we test the sensitivity of TiNA and Cougar
to the different aggregation functions. In Table 3, we report
the energy used by Cougar and TiNA(0%). The numbers in
parentheses represent the ratio of energy required compared
to that needed by plain Cougar. The table shows that TiNA
is using only about half the energy for each of the differ-
ent aggregation functions. It also shows that for Cougar, both
MAX and SUM use the same amount of energy, whereas in
TiNA, MAX has lower energy requirements. This is because
in MAX, changes at the reading level have less chance of
affecting the previous partial aggregate value. Hence, one re-
ported partial aggregate for MAX can stay valid for several
rounds which leads to reduced transmission costs.

Aggregate Energy for Cougar Energy for TiNA(0%)

SUM 0.0005 (100%) 0.000272 (54.5%)
MAX 0.0005 (100%) 0.00025 (50%)
AVG 0.000654 (100%) 0.00035 (53.5%)

Table 3 Energy for TiNA(0%)

Figure 19 shows the energy consumption for TiNA on top
of Cougar under different aggregation functions, with various
tct levels. In this figure, we see that AVG has higher energy
requirements than MAX and SUM. The reason for this is that
for MAX and SUM, only the max/sum of the readings needs
to be sent, while for AVG, the sum of the readings and the
count is reported.

Figure 20 compares the REM under different levels of tct
for various aggregation functions. We can observe that both
AVG and SUM have the same relative error in all cases, while
MAX provides a lower relative error. The former is because
AVG is just the sum divided by the count, and the latter is
because MAX as an aggregate is less sensitive to changes in
the sensors readings as explained above.

6.7 Sensitivity to communication protocol overhead

One thing that can vary based on the wireless communica-
tion protocol is the size of the packet header. Because packet
header size can affect the size of and number of packets needed
to transfer data, we wanted to make sure that making the
packet header larger or smaller would not dramatically affect
our results. Note that changing the header size is equivalent
to accounting for the additional control packets required by
the MAC protocol (e.g., CTS and RTS).

In this experiment, we allowed the packet header to vary
in size from 2 bytes to 8 bytes, while using 30 bytes as the
size of packets. The results for this experiment are shown
in Figure 21. All the results given are for the savings in en-
ergy normalized to the scheme on top of which TiNA lies.
This means that TAG+TiNA(0%) would be TiNA with tct=0
normalized to the energy readings of TAG (i.e., Savings us-

ing TAG+TiNA(0%) =
|EnergyT AG−EnergyT iNA(0%)|

EnergyT AG
), while

Cougar+TiNA(0%) would be the same but normalized to the
energy readings of Cougar.

Packet Header Size (bytes)

1 2 3 4 5 6 7 8 9

S
av

in
gs

 P
er

ce
nt

ag
e

0%

20%

40%

60%

80%

100%
TAG+TiNA(0%)
TAG+TiNA(10%)
TAG+TiNA(20%)
Cougar+TiNA(0%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)

Fig. 21 Savings in energy versus base schemes for various packet
header sizes

There are two observations from Figure 21. First is that
as the packet header size gets larger, the savings from us-
ing TiNA on top of TAG actually increase. This is evident

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 17

Number of Sensors

0 500 1000 1500 2000

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 22 Scalability: Energy vs number of sensors

Number of Sensors

0 500 1000 1500 2000

R
E

M
(%

)

0%

1%

2%

3%

4% Cougar
Cougar+TiNA(0%)
Cougar+TiNA(5%)
Cougar+TiNA(10%)
Cougar+TiNA(20%)
Cougar+TiNA(30%)

Fig. 23 Scalability: REM vs number of sensors

for the case of tct=0, where savings increased from 11.5% to
13.9% as the packet header size increased from 2 to 8 bytes.
The reason for this is that as the packet header gets larger in
size, the savings from sending no data (as will be done if the
data does not change) also gets larger. In addition, there are
cases where more packets need to be sent out as the packet
header gets larger in size. Since there are only 30 bytes in
each packet, if the packet header size is 8 then only 22 bytes
exist for the packet payload. If the data is 28 bytes, this will
require 2 packets to be sent in addition to the 8 bytes of over-
head. With TiNA, these 28 bytes may be cut down to 22 bytes
based on data staying within the tct, which allows only one
packet to be sent and saves not only the 6 bytes of data, but
also the 8 bytes of overhead.

The second observation is that the energy savings from
Cougar decrease, but not by much. For example, in the case
of a 2 byte packet header size and tct=10 the energy savings
were 70.7%, while with an 8 byte packet header size these
savings decrease to 67.4%. The reason for this has to do with
the notification packet used in TiNA on top of Cougar. Re-
member that the notification is only one bit, but the packet
includes the header as well. With all else being equal, a bigger
packet header will cause this notification packet to be larger,
and hence cause more energy to be used. This will also cause
nodes to listen for a slightly longer period of time because
more bytes are being transmitted. The result is the decrease
in energy savings, however this decrease pales in comparison
to the savings of using TiNA on top of Cougar, showing that
the packet header size does not dramatically effect the energy
savings gained from using TiNA.

6.8 Scalability

In order to test the scalability of the proposed TiNA frame-
work, we ran an experiment with increasing number of sen-
sors in the network (i.e. increasing the grid size). Figure 22
shows the effect on energy when the size of the network chan-
ges: as the size of the network increases, the amount of en-
ergy saved also increases. In the case of the 11x11 network,
TiNA is showing energy savings between 43% (for tct=0%)
and 74% (for tct=30%). However, for the largest grid size we

tested (45x45), we had savings of 48% and 81% for the same
tct levels.

Figure 23 shows the REM for the various tct levels when
the size of the network increases. The relative error actually
decreases as the network increases in size. For example, for
tct=30%, the relative error decreases from 3.3% when the
grid size is 11x11 to 2.6% when the grid size is 45x45. The
reason for this decrease is that in TiNA, a parent will send
its reading if either the reading changes or the group it is a
part of is already being sent up. As the grid size increases,
there is a better chance the parent’s group is being sent up
already, and that the parent can therefore add its own read-
ing in. This means more actual readings are being sent up the
routine tree, thus decreasing the relative error, which results
in an improved QoD.

6.9 Group-Aware Network Configuration

In this set of experiments we study the behavior of the pro-
posed group-aware network configuration algorithm (GaNC)
and also examine the synergy between TiNA and GaNC. We
present results of using TiNA on top of Cougar and use the
FHF network configuration method as our base case. We will
denote the experiments where GaNC was used by adding
+GaNC to the method.

For this set of experiments, the group IDs for the different
nodes are assigned at random with values between 1 and N ,
where N is the total number of groups in a particular experi-
ment.

6.9.1 Effects of Group-Aware Network Configuration
In this experiment we compare FHF with GaNC for varying

tct amounts. We will show the effects of GaNC for network
sizes of 15x15 and 45x45 and report both the energy savings
and the quality of data. Figures 24 and 25 show the energy
and relative error for the 15x15 size network and Figures 26
and 27 show the same for the 45x45 size network. The num-
ber of groups used in this experiment was set at 10.

The first observation is that for the most part, using GaNC
decreases the amount of energy used by the sensor network.

18 Mohamed A. Sharaf et al.

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

FHF

GaNC

Fig. 24 GaNC in 15x15 Grid (Energy)

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

R
E

M

0%

1%

2%

3%

FHF

GaNC

Fig. 25 GaNC in 15x15 Grid (REM)

This is especially prominent in larger networks. For TiNA
with tct=0%, energy savings are 4.6% for the 15x15 grid and
29.3% for the 45x45 grid. The savings when using GaNC
with plain Cougar are even higher: 7.1% for the 15x15 grid
and 33.3% for the 45x45 grid.

This shows that the proposed group-aware network con-
figuration method can reduce energy significantly even when
it is not used in conjunction with the TiNA framework.

The next observation is that regardless of the size of the
network, the energy savings of GaNC over FHF decrease as
the tct increases. In fact, for the 15x15 network, there is cross-
over point where FHF requires slightly less energy than the
GaNC method, for high values of tct. This is illustrated in
Figure 24 where GaNC saves 3.8% when tct=5% but uses
3.3% more energy when tct=25%. This result is not surpris-
ing: because of using GaNC, some nodes will switch to par-
ents that are in the same group as themselves. While this tends
to decrease the number of message a parent sends, there are
cases where switching parents can cause more messages to
be sent.

For example, assume that, using FHF, two children of the
same group are routed through a parent of a different group.
This would result in 3 messages being sent overall (one from
each child and one from the parent further up the tree). If,
however, when GaNC is used, each of these children change

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

FHF

GaNC

Fig. 26 GaNC in 45x45 Grid (Energy)

to be with a parent of their same group, they may end up
choosing two different parents, because the parents in their
same group are not close enough to be “clustered” together. In
order to propagate information up the tree under this setup, 4
messages are needed (one from each child and one from each
parent. This is a 25% increase in the total number of mes-
sages, which in turn causes an increase on the energy used in
the network.

For larger networks, the positive effects of using GaNC
will outweigh the negative effects (per our previous exam-
ple). As the tct increases, there are less nodes that are trans-
mitting, since their value changes are not violating the speci-
fied tct. In larger networks, since there are many nodes, there
will still be a lot of nodes transmitting, even under high tcts.
In Figure 26, we can see that for the 45x45 grid, the energy
savings at tct=0% are 29.3% and they drop to down to 24.7%
for tct=25% (howerver, there is no cross-over point in this
case).

The final observation is that there is very little difference
in the relative error between using GaNC versus using FHF
to create the routing tree, even with the large savings in en-
ergy (from GaNC). For the 15x15 grid, the relative error has
decreased in the case of GaNC. This decrease is minor, rang-
ing from .005% for tct=5% to .2% for tct=25%, but exists
nonetheless. This improvement is due to the ”free” ride some

In-network Aggregation Policy

Cougar TiNA 0% TiNA 5% TiNA 10% TiNA 15% TiNA 25%

R
E

M

0%

1%

2%

FHF

GaNC

Fig. 27 GaNC in 45x45 Grid (REM)

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 19

Number of Groups in Network

0 10 20 30 40 50 60

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022
Cougar
TiNA 0%
TiNA 10%
Cougar+GaNC
TiNA 0%+GaNC
TiNA 10%+GaNC

Fig. 28 Energy Comparison for varying number of groups

parent nodes may get by having a child already sending the
same group as the parent and therefore be able to aggregate
its own reading into the group aggregate without adding to
the amount of energy used. In the case of the 45x45 grid,
the relative error increases by a small amount. This increase
was between .0001% for tct=5% and .1% for tct=25%. This
small increase is explained by multiple nodes counteracting
each others changes; thus the internal node does not get the
”free” ride it may have gotten with only one child changing
values.

6.9.2 Synergy of TiNA and GaNC under varying number of
groups

In this experiment we examine how the number of groups
affects the behavior of GaNC. Figure 28 shows the results
from this experiment. We compared plain Cougar, TiNA over
Cougar with tct=0%, and TiNA over Cougar with tct=10%.
We run two sets of experiments, one where FHF was used
for configuring the network and one where we used GaNC
instead (we note such cases with +GaNC). The number of
groups ranged from 2 to 50. We had a total of 45x45 = 2025
nodes. With just 5 groups, GaNC is expected to reduce en-
ergy consumption significantly, since children nodes will be
able to select parents that are in the same group as them
(in other words, GaNC will have a lot of options to choose
from). For all three cases, using GaNC instead of FHF saves
41% in energy for Cougar, 38% for TiNA(0%), and 37% for
TiNA(10%).

Using GaNC when the number of groups is 50 will not
reduce energy as dramatically as with the case of 5 groups.
When the number of groups is high, there are less chances
that a child can find a parent in the same group. Based on
the grid configuration (which we used in our simulations),
each child has a maximum of three different parents to choose
from. With 50 different groups, the chance that the child is in
the same group as one of those three parents is less than 1%,
so the savings will be minimal.

This can be observed from Figure 28: for 50 groups the
savings with GaNC are 12% for Cougar, 10% for TiNA(0%),
and 9% for TiNA(10%). Overall, we see that when the num-
ber of groups increases, the savings with GaNC also decrease,

Time

0 20 40 60 80 100 120 140

N
um

be
r

of
 S

en
so

rs
 C

on
ne

ct
ed

0

50

100

150

200

250

Cougar

Cougar+TiNA(0%)

Fig. 29 Measurement of lifetime of the network

but are still significant even when there are 50 different groups
and the chance of a node actually switching parents in an ef-
ficient way is less than 1%.

6.10 Coverage

In the last set of experiments, we compared the network cov-
erage provided by TiNA on top of Cougar versus that pro-
vided by plain Cougar. We define the coverage of the network
for time ti as the number of sensors that are still able to send
their readings to the root sensor at that time. Obviously, sen-
sors with depleted energy are not counted. However, a sensor
may be still be “alive”, but if its parent is dead it is no longer
counted for the coverage measurement. For that reason, we
rebuild the routing tree for the sensor network periodically
(every 5 intervals in this experiment). When the routing tree
is reconstructed, a child chooses its parent in the same way as
when the tree was first created. Since previous parent nodes
may be dead, choosing former siblings as parents is possible.
Finally, in our experiment, each sensor is limited to sending
5000 bits of information before dying.

Figure 29 shows our results for this experiment. We used
TiNA with tct = 0%, which should maintain the same rela-
tive error as Cougar. Clearly, TiNA on top of Cougar outper-
forms the plain Cougar scheme, allowing sensors to stay alive
significantly longer. If we define the overall coverage as the
integral of coverage over the entire observation period (i.e.
the area under each curve in Figure 29), then using TiNA can
increase the overall network coverage by 270% compared to
the plain Cougar approach. Also shown in this figure are sev-
eral upwards bumps in the otherwise monotonically decreas-
ing network coverage curves. A bump indicates that recon-
figuration occurred, and several nodes that were previously
disconnected because their parents had failed have now been
given new parents which are still alive and thus these nodes
are once again connected to the network.

7 Related Work

The idea of using different criteria to effect the building of
routing trees has been examined on several fronts. One crite-

20 Mohamed A. Sharaf et al.

rion could be to use link quality to decide on the best parent to
use because better link quality means less lost packets. How-
ever, determining the quality of the link[34] is not a trivial
task. Another criteria is to use application semantics to do the
data routing in sensor networks. This has been presented in
[37,20], where the goal is to use information-directed routing
in order to minimize communication cost while maximizing
information aggregation. The work in [20] showed the signif-
icant gains of applying information-directed routing in locat-
ing and tracking moving objects.

Using the query semantics for efficient data routing was
introduced in [22], which proposed the use of a semantic rout-
ing tree (SRT). The basic idea that motivates the use of SRT
is the fact that a given query does not apply to all nodes in the
network. Hence, those nodes for which the query does not ap-
ply can be excluded from the query in order to save communi-
cation costs. As in GaNC, the work on SRT considered opti-
mizing the routing tree for the special case of constant-valued
attributes (e.g., location). However, the objective of the SRT
is providing a design to minimize the number of nodes partic-
ipating in a query with a predicate over that constant-valued
attribute. Whereas in GaNC, the objective is to cluster along
the same path sensor nodes that belong to the same group in
order to maximize the benefit of in-network aggregation in
reducing the size of messages.

Providing approximate answers to queries is an approach
that was first used to provide fast results when an exact an-
swer is not essential or when producing the exact answer is
very time consuming. Sampling is one technique that was
used in [11,1] to provide such approximate answers over mas-
sive stored data. Using sampling, a posed query will be an-
swered using summary statistics which allow producing an
approximate answer and provide a fast response time. These
summaries may either be generated online after the query is
posed [11], or may be precomputed as in [1]. Moreover, the
approximate answers are often supplemented with a statisti-
cal error bound to indicate the quality of the approximation
to the user.

In networked database system, approximation remains as
a very attractive technique to improve the utilization of the
limited resources. The work in [7] demonstrates the use of
wavelet-based summarization for storing data within the sen-
sor network for future querying. The importance of approxi-
mation in networked database systems increases when it is re-
quired to continuously process continuously generated data.
In that context, exploiting end-user tolerance to temporal co-
herency has been used to reduce communications cost for dy-
namic data generated by Web servers, data streams, and sen-
sor networks.

One approach for dynamic data reduction is to use nu-
meric bounds and queries with explicit precision constraints.
This is the approach that TiNA follows and which does not
require a prior knowledge of the generated data pattern and
it allows the user to control the desired degree of precision.
The former feature is specially important for cases where the
changes are abrupt and unpredictable, which makes this ap-
proach attractive for a wide range of applications.

Besides TiNA, this approach has been used in [26,5,30,
24]. In [5] the user specifies a temporal coherency require-
ment for data items on a Web proxy. The work shows that
combining this coherency requirement with intelligent data
dissemination techniques achieves efficient and scalable uti-
lization of Web servers and network resources. A following
work [30] focuses on selecting topologies and policies to re-
duce the number of messages in a network of repositories
while taking into account the data and coherency needs of
users attached to each repository.

In the context of data streams, the work in [26] proposes
a technique for reducing the communication overhead result-
ing from rapid update streams. In this technique, users reg-
ister queries with precision requirements at a central proces-
sor, which installs filters on remote data sources. These filters
are dynamically adjusted to account for sources that change
at different rates and magnitudes. However, this adaptive ad-
justment of filters is only feasible if data generated at dif-
ferent sources follow a certain pattern, which might not be
the general case. In this paper, we are addressing the prob-
lem of message reduction without any presumptions about
the data behavior. Moreover, this technique assumes a cen-
tralized system, which is equivalent to a one-level network. In
a hierarchical sensor network, where in-network aggregation
is typically used to support aggregate queries, additional pro-
cedures are needed to ensure the efficient interaction between
message suppression and in-network aggregation. Such pro-
cedures were discussed along the steps describing the func-
tionality of TiNA in Section 4.

The PREMON paradigm for motion detection uses the
spatio-temporal correlation in sensor readings to reduce trans-
missions [8]. In PREMON, the base station monitors the read-
ings of sensors and generates a prediction model for each sen-
sor, and sends these models back to the sensors. The perfor-
mance of the PREMON approach is highly dependent on the
accuracy with which prediction models can be generated and
the percentage of readings that can be successfully predicted
by them. The APTEEN protocol [24], like TiNA, attempts to
reduce the number of transmitted readings in a sensor net-
work. APTEEN uses filters to exploit temporal correlation in
order to suppress values (using a soft threshold). However,
unlike TiNA, APTEEN does not consider the semantics of
the queries (specifically of aggregation queries).

In the best of our knowledge, TiNA is the first frame-
work that exploits temporal correlation to support energy-
efficient, QoD-aware in-network aggregation. As explained
above, TiNA allows the user to specify a temporal coherency
tolerance which is satisfied by applying numeric bound filters
on sensor readings and partial aggregates.

8 Conclusions

In this work we explored two ideas in order to further reduce
energy consumption in the context of in-network aggregation:
(1) influencing the construction of the routing trees for sen-
sor networks with the goal of reducing the size of transmitted

Balancing Energy Efficiency and Quality of Aggregate Data in Sensor Networks 21

data, and (2) imposing a hierarchy of output filters on the sen-
sor network with the goal of both reducing the size of trans-
mitted data as well as minimizing the number of transmitted
messages needed to ensure a specified level of quality of data.
Our proposed methods provide a balance between energy ef-
ficiency and quality of aggregate data in sensor networks.

Specifically, this paper makes the following contributions:

– Proposed GaNC, a new network configuration algorithm
for sensor networks, which considers the semantics of
Group-By queries and the properties of the sensor nodes.

– Proposed TiNA, a framework of hierarchical output trans-
mission filters that can reduce energy consumption while
bounding the loss in the quality of aggregate data, based
on user preferences. Our framework is independent of the
underlying synchronization protocol used for sending and
receiving data between the sensor nodes.

– Presented extensive simulation results that show clear gains
for each proposed method in isolation and bigger benefits
when the two proposed schemes are combined.

We have shown experimentally that our schemes result in
large savings in energy over typical in-network aggregation
methods without significant loss in quality of data. Specifi-
cally, we showed that TiNA can reduce the energy used for
communication by up to 60%. We have also shown that using
GaNC in addition to TiNA can result in an additional 29%
savings in energy.

We also experimentally compared TiNA to a temporal
sampling method. For the same energy consumption levels,
TiNA had up to 13% higher overall quality of data than sam-
pling. However, the relative error when using sampling rea-
ched up to 196% in our experiment, while on the other hand,
TiNA maintained the relative error within the specified bounds
(30% in this case) at all times. Therefore, such temporal sam-
pling cannot be used to reduce energy consumption when
user-specified preferences must be satisfied.

TiNA has also been shown to increase quality of data in
cases where the period to transmit is too small and can in-
crease the lifetime of the network by 270% compared to ex-
isting approaches. The TiNA scheme is particularly attractive
for exploratory applications. In this case, TiNA is tuned to
minimize energy consumption during the preliminary analy-
sis and identify interesting trends in the sensor network. Once
a trend is identified and higher accuracy is needed, TiNA is
tuned to increase the quality of delivered data while consum-
ing minimal energy.

In conclusion, both proposed schemes (GaNC and TiNA)
work synergistically with existing in-network aggregation me-
thods to further reduce communication energy consumption
while maintaining quality of data within user-specified pref-
erences.

Acknowledgements We would like to thank the anonymous review-
ers for their thoughtful and constructive comments.

References

1. S. Acharya, P. B. Gibbons, and V. Poosala. Congressional sam-
ples for approximate answering of group-by queries. In Proc of
ACM SIGMOD, 2000.

2. J. Beaver, M. A. Sharaf, A. Labrinidis, and P. K. Chrysan-
this. Location-aware routing for data aggregation for sensor
networks. In Proc. of Geo Sensor Networks Workshop, 2003.

3. P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database
systems. In Proc. of MDM, 2001.

4. J. Considine, F. Li, G. Kollios, and J. Byers. Approximate ag-
gregation techniques for sensor databases. In ICDE, 2004.

5. P. Deolasse, A. Katkar, A. Panchbudhe, K. Ramamritham, and
P. Shenoy. Adaptive push-pull: Disseminating dynamic web
data. In Proc. of WWW10, 2001.

6. D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting
the Physical World with Pervasive Networks. IEEE Pervasive
Computing, 1(1):59–69, 2002.

7. D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and
J. Heidemann. An evaluation of multi-resolution search and
storage in resource-constrained sensor networks. In SenSys,
2003.

8. S. Goel and T. Imielinski. Prediction-based monitoring in sen-
sor networks: Taking lessons from MPEG. Computer Comm.
Review, 31(5), Oct. 2001.

9. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Es-
trin, and D. Ganesan. Building efficient wireless sensor net-
works with low-level naming. In Proc. of SOSP, Oct 2001.

10. W. R. Heinzelman, A. Chandrakasan, and H. Balakrish-
nan. Energy-efficient communication protocol for wireless mi-
crosensor networks. In HICSS, Jan 2000.

11. J. Hellerstein, P. Haas, and H. Wang. Online aggregation. In
SIGMOD, 1997.

12. J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond
average: Toward sophisticated sensing with queries. In ISPN,
pages 63–79, March 2003.

13. J. Hill and D. Culler. Mica: A wireless platform for deeply
embedded networks. IEEE Micro., 22(6), 2002.

14. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors. In Proc
of ASPLOS, 2000.

15. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann.
Inpact of network density on data aggregation in wireless sen-
sor networks. In 22nd International Conference on Distributed
Computing Systems (ICDCS’02), July 2002.

16. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffu-
sion: A scalable and robust communication paradigm for sensor
networks. In Proc. of MOBICOM, Aug 2000.

17. P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife track-
ing: design tradeoffs and early experiences with zebranet. In
Proc. of ASPLOS’02.

18. I. Lazaridis and S. Mehrotra. Capturing sensor-generated time
series with quality guarantees. In ICDE, 2003.

19. C. Lin, C. Federspiel, and D. Auslander. Multi-sensor single
actuator control of hvac, 2002.

20. J. Liu, F. Zhao, and D. Petrovic. Information-directed routing in
ad hoc sensor networks. In 2nd ACM international conference
on Wireless sensor networks and applications, 2003.

21. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a
tiny aggregation service for ad-hoc sensor networks. In Proc.
of OSDI, 2002.

22 Mohamed A. Sharaf et al.

22. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The de-
sign of an acquisitional query processor for sensor networks. In
Proc. of ACM SIGMOD, 2003.

23. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. An-
derson. Wireless sensor networks for habitat monitoring. In
Proc. of ACM WSNA’02, 2002.

24. A. Manjeshwar and D. P. Agrawal. APTEEN: A hybrid protocol
for efficient routing and comprehensive information retrieval in
wireless sensor networks. In Proc. of IPDPS, 2002.

25. M. J. McPhaden. Tropical atmoshphere ocean
project, pacific marine environmental laboratory.
http://www.pmel.noaa.gov/tao/.

26. C. Olston, J. Jiang, and J. Widom. Adaptive filters for continu-
ous queries over distributed data streams. In SIGMOD, 2003.

27. C. Perkins. Ad-hoc on demand distance vector routing
(AODV). Internet-draft, Nov. 1997.

28. S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, S. Shenker,
L. Yin, and F. Yu. Data-centric storage in sensornets. In Work-
shop on Hot Topics in Networks, 2001.

29. H. Schwetman. CSIM user’s guide. MCC Corp.
30. S. Shah, S. Dharmarajan, and K. Ramamritham. An efficient

and resilient approach to filtering and disseminating streaming
data. In VLDB, 2003.

31. M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis.
Tina: A scheme for temporal coherency-aware in-network ag-
gregation. In Proc. of MobiDE, 2003.

32. D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continu-
ous queries over append-only databases. In SIGMOD, 1992.

33. A. Woo and D. Culler. A transmission control scheme for media
access in sensor networks. In ACM Mobicom, July 2001.

34. A. Woo, T. Tong, and D. Culler. Taming the underlying chal-
lenges of reliable multihop routing in sensor networks. In Sen-
Sys, November 2003.

35. Y. Yao and J. Gehrke. Query processing for sensor net. In Proc.
of CIDR, 2003.

36. M. Younis, M. Youssef, and K. Arisha. Energy-aware routing
in cluster-based sensor networks. In MASCOTS, 2002.

37. F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sen-
sor collaboration. IEEE Signal Processing Magazine, vol. 19,
2002.

