Transactions Lecture 3 (Fekete)

E Tie University of Syduey

Topics in Database Isolation
I1TB, January 2006
Lecture 3: Replica Management

Alan Fekete
(University of Sydney)
fekete@it.usyd.edu.au

Road Map

* Lecture 1: Isolation levels
* Lecture 2: Safe Use of Low Isolation
¢ Lecture 3: Replication Management
— The key principle (R any, W all)
— Global concurrency control
— The main design choices
— Serializable systems with lazy propagation
— Using Sl in replication
— Limited divergence

1ITB Jan 2006 Transactions Lectures by Alan Fekete

Definition

* Replication is when the value of some data
item is stored in more than one place

— Typically in different databases at different
physical locations

— Similar issues arise with cached copies

» Eg keep a copy of the part-list at each
warehouse

1ITB Jan 2006 Transactions Lectures by Alan Fekete

Motivation

» Performance

— Each reader can find a copy close-by
« Less latency to access the data
— More parallelism, load-sharing
« Improved throughput
« Fault-tolerance
— Failure of some site doesn’t halt all activities
— Graceful degradation

1ITB Jan 2006 Transactions Lectures by Alan Fekete

Key principle

* Read any copy

— Preferably near to the client

For unchanging data, this is wonderful! But what
if the data item value sometimes changes (i.e.
some transactions write the data)?

— Write all the copies

— This damages performance and fault-tolerance!

— Thus replication is best for data where reads dominate
over updates

1ITB Jan 2006 Transactions Lectures by Alan Fekete

Global transaction issues

« For now, ignore replication and just think
about a system with multiple databases, and
transactions that access them

» How to get global atomicity?

— Use Two-phase commit

— But this reduces performance markedly,

especially during periods where some nodes are
not available

1ITB Jan 2006 Transactions Lectures by Alan Fekete

Transactions Lecture 3 (Fekete)

Global serializability

« How to get serializable behavior?

« It is not enough for each db to provide serializable
operation locally

« If each db uses 2PL, then global execution is serializable
— All conflicts are compatible with the Commit order

« If you’re not sure each db uses 2PL, and you want global
serializability, you can
— keep global serialization graph
— introduce conflicts at every site through “ticket” updates

1ITB Jan 2006 Transactions Lectures by Alan Fekete 7

The main design choices

 There are many design choices for a system
with replicated data. In the next slides, we
present some of these, with sketches of the
trade-offs involved.

1ITB Jan 2006 Transactions Lectures by Alan Fekete 8

Where to replicate?

« Everywhere « Not everywhere
— “total replication” — “partial replication”
— All dbs have identical — Need to manage

contents information about replica
— Any read can be done locations, and choose
locally, with no cross- location for reads
network communication — Need to make choices about
« Simple system design placement
« Performance may suffer + Complicated system
design
« Performance may be
improved
1ITB Jan 2006 Transactions Lectures by Alan Fekete 9

If partial, what to replicate?

¢ Complete tables « Fragments of tables

— Each db has some of the — Keep copy of some rows,
tables perhaps based on values in

— Easy to decide whether particular columns

local copy exists for some

data

— Easy to reuse standard
dbms engine for query

optimization and processing
« Relatively simpler system

design

— Keep copy of some
columns

— Copy can be seen as a view
of underlying global table

¢ Complex system design

1ITB Jan 2006 Transactions Lectures by Alan Fekete 10

How consistent?

* “Always” consistent Eventually consistent
— At least, apps shouldn’t - “convergent”
observe difference — If updates cease for
from using single dbms long enough, all copies

+ “transparent will reach a common
replication” value

— Formal definition for ; .
“1 copy serializable Intermediate approach:

(abbreviated as 1-SR)” limited divergence

— Some systems propose
“1-copy SI”

1ITB Jan 2006 Transactions Lectures by Alan Fekete 11

How to propagate writes?

» Capture SQL
statements, and
execute at replicas

- Difficulties if state is

 Capture values
written/inserted, and
perform at replicas
— Use triggers to capture

not the same as when information
originally executed — Or access logs kept by
each dbms
1ITB Jan 2006 Transactions Lectures by Alan Fekete 12

Transactions Lecture 3 (Fekete)

When to propagate writes?

« Eager
— Update all replicas inside
the original transaction
— Requires two-phase commit
« Good for consistency
« Bad for performance
 Hybrid approach: do some
remote activity, but not
the updates themselves

e Lazy

— “asynchronous”

— Update one copy of each
item inside original txn,
then apply those writes that
are relevant to replicas at a
given site in a separate
“copier” txn

— Original txn may be entirely
local at one site

« Good for performance

« May be bad for
consistency

1ITB Jan 2006 Transactions Lectures by Alan Fekete 13

Is there a master?

« Primary copy

- “master-slave”

— One replica of each item is
authoritative

— It is always updated first

— If lazy propagation, this
either restricts transaction
content, or forces non-local
execution

« Bad for flexibility

* Group

— “multimaster” or “update
anywhere”

— Different txns can update
replicas in different orders

— If eager propagation, then
deadlock is very common;

— If lazy propagation, then
need conflict resolution to
ensure convergence

« Good for flexibility

1ITB Jan 2006 Transactions Lectures by Alan Fekete 14

System architecture

« Middleware

— Applications go through a
veneer that manages global
issues and then passes
operations to local dbs

— Middleware may not have
enough information eg internal
conflicts, risk of distributed
deadlocks

— No need to modify apps if they
use JDBC or similar AP|

— No need to modify engines

« More practical in most cases

« Engine-based
— Modify each dbms to know
about replication
— No need to modify applications
— Need to modify engines
« Hard to do except with open-
source dbms, or if you work for
one of the vendors!
- Unlikely to work with
heterogenous engines

1ITB Jan 2006 Transactions Lectures by Alan Fekete 15

Communication platform?

« Point-to-point messages
— Eg socket programming

« Always present on any
platform

* Programmer needs to deal
with failures, and with
out-of-order deliveries

« Can get good raw
performance

« Group communication
services
— Eg Spread, Transis, etc
— Deliver to all members of
the group
— Sender can require
guarantees on order etc
¢ Much easier system
design
¢ Performance may suffer

1ITB Jan 2006 Transactions Lectures by Alan Fekete 16

Design space summary

« In practice, want performance and simple

system design

— lazy propagation and primary copy
« In theory, want consistency and application

generality

— eager propagation, multi-master

1ITB Jan 2006 Transactions Lectures by Alan Fekete 17

Isolation and lazy propagation?

« If multi-master, then even convergence is hard to

enforce

— Need timestamps to recognize out-of-order updates

+ S0, assume primary copy

» Without restrictions on data and applications,

reads can see old data

— If atxn’s reads are not all at same site, it might even see

inconsistently old data

1ITB Jan 2006 Transactions Lectures by Alan Fekete 18

Transactions Lecture 3 (Fekete)

Example
« X has primary copy at A, o AtA: X, nlY
replica at B Wy [Xa] ¢, WYl Cy
* Y has primary copy at B, o AtB:r[Xg] r[Yg]
replica at A WZ[YB]Zc2 wg[s(B Cq

e Tlrunsat A: r[X]r[Y] ¢ Neither T1 nor T2 sees the
w[X] other’s changes

— Later copier T3 propagates
write of X to B

e T2runsat B: r[X] r[Y]
wY]

— Later copier T4 propagates
write of Y to A

1ITB Jan 2006 Transactions Lectures by Alan Fekete 19

Example 11
* X has primary copy at A, o AtA:n[Xawi[X,]c,
replicas at B and C o AtB: wWi[Xg] ¢; 1[Xg] K[Ys]
« Y has primary copy at B, W,[Yg] ¢,
replica at C o AtCiwgl[Ye] cgra[Xcl r3[Yel cg
« T1runsatA: r[X] w[X] Wg[Xc] Cs
— Later copier T4 propagates e T2sees T1, T3seesT2onY
write of X to B (hence knows about T1) but
— Copier T5 propagates write of does not see T1 on X

XtoC
* T2runsatB: r[X] rY]w[Y]
— Later copier T6 propagates
write of Y'to C

* T3runsatC: r[X]r[Y]

1ITB Jan 2006 Transactions Lectures by Alan Fekete 20

Restrictions

» Most work on serialization with lazy updates
assumes a restricted model of data and apps
» We limit application logic so that each original
transaction can run at one site
— It accesses data with copies at that site
— It only updates data whose primary copy is at that site
« Call this the “data ownership” assumption

— This is common in practice, since app is usually
focused on modifying data which “belongs” to the
organisation or suborg which wrote the app

— But it may read data which belongs elsewhere

1ITB Jan 2006 Transactions Lectures by Alan Fekete 21

The copy graph

» Nodes are the sites where databases are
located

* Edge from N; to N; if

— There is an item X whose primary copy is
located at N; and which is replicated at N;

1ITB Jan 2006 Transactions Lectures by Alan Fekete 22

Strongly Acyclic Copy graph

* CRR96 showed: Problem: cycle from T1 to T1
— Assume data ownership

model @

— Assume each db uses 2PL
— Allow arbitrary execution
of copier transactions,
— then the overall execution is
1-copy serializable if and @

only if the undirected image
of the copy graph has no

cycles Problem: two different

paths from T1 to T3

1ITB Jan 2006 Transactions Lectures by Alan Fekete 23

Combining OLTP and OLAP

« A special case has been widely used, where
copy graph is a star

« Have one site which has the primary copy
for all items (OLTP node)

Other sites just run read-only queries
(OLAP nodes)

Eg RBSS’02, PA’04

1ITB Jan 2006 Transactions Lectures by Alan Fekete 24

Transactions Lecture 3 (Fekete)

Acyclic Copy Graph

« BKRSS99 introduced algorithms that work
if directed copy graph has no cycle

« Key idea: ensure that copiers update nodes
in a consistent order
— Based on a tree
— Or using timestamps

— Could also be done with totally ordered
multicast to carry each txn’s copiers

1ITB Jan 2006 Transactions Lectures by Alan Fekete 25

Use of Sl in Replication

 Because Sl is now so common (Oracle,
PostgreSQL), there is recently a lot of
interest in replication using Sl rather 2PL

* SW’00 shows how to ensure 1-SR using
ticket or graph techniques

« WK’05, LKPJ’05 show how to get 1-SI
— Without data ownership hypothesis
— Using totally-ordered multicast

1ITB Jan 2006 Transactions Lectures by Alan Fekete 26

Combining local Sl to 1-SI

» Assume each txn runs at a single site
» Then reading is determined by consistent snapshot
» But how to test for concurrent writes?

* Solution: deliver writeset info to other sites within
the txn
— But defer actually applying them

* Important to use db info so conflicts are checked
at tuple not table granularity

1ITB Jan 2006 Transactions Lectures by Alan Fekete 27

Extensions

» LKPJ’05 also deals with many practical
issues such as handling message failures,
preventing deadlocks, detecting some
conflicts early using the local Sl properties

 Overall message: they get quite scalable
performance

1ITB Jan 2006 Transactions Lectures by Alan Fekete 28

Relaxed Currency

 1-SR allows read-only queries which run on
out-of-date values

— Some applications want limits on how old data
might be

» RBSS’02 allows app to specify bound on
staleness

* GLRG’04 provides SQL extension
— And builds checks into query optimisation

1ITB Jan 2006 Transactions Lectures by Alan Fekete 29

Relaxed Consistency

« 1-SRand 1-SI both require all items read by txn T to come from a
consistent view

— This is easy if each txn runs at a single site

— Butitis hard if txn’s reads can be spread around, for performance or
because replication is not total

« Some applications may be willing to see data which were valid at
slightly different times
« Much theory about controlling timing of updates to limit divergence of
data values
— Esp work on real-time databases
* GLRG’04 introduced SQL syntax to capture apps requirements

— Focus on allocating reads to sites, rather than controlling divergence of
sites

1ITB Jan 2006 Transactions Lectures by Alan Fekete 30

Transactions Lecture 3 (Fekete)

Future Work

 Replication across WANS

— Order-enforcing group communication costs
are very high here

* Limited divergence (QoS guarantees)

— Integrating system mechanisms with
application requirements

1ITB Jan 2006 Transactions Lectures by Alan Fekete 31

References

» Gray, Helland, O’Neil, Shasha ““The dangers of
replication and a solution” in SIGMOD’96

» Chundi, Rosenkrantz, Ravi “Deferred updates and
data placement in distributed databases™ in
ICDE’96

« Breitbart, Komondoor, Rastogi, Seshadri,
Silberschatz “Update propagation protocols for
replicated databases in SIGMOD’99

1ITB Jan 2006 Transactions Lectures by Alan Fekete 32

References

 Schenkel, Weikum ““Integrating snapshot
isolation into transactional federations™ in
CooplS’00

* R6hm, Béhm, Schek, Schuldt “FAS — a freshness-
sensitive coordination middleware for a cluster of
OLAP components™ in VLDB’02

« Plattner, Alonso “Ganymed: scalable replication
for transactional web applications™ in
Middleware’04

1ITB Jan 2006 Transactions Lectures by Alan Fekete 33

References

* Guo, Larson, Ramakrishnan, Goldstein “Relaxed
Currency and Consistency: How to say good
enough in SQL”” in SIGMOD’04

* Wu, Kemme ““Postgres-R(SI): combining replica
control with concurrency control based on
snapshot isolation™ in ICDE’05

* Lin, Kemme, Patino-Martinex, Jimenez-Peris
“Middleware-based data replication providing
snapshot isolation” in SIGMOD’05

1ITB Jan 2006 Transactions Lectures by Alan Fekete 34

