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Road Map

* Lecture 1: Isolation levels
* Lecture 2: Safe Use of Low Isolation
¢ Lecture 3: Replication Management
— The key principle (R any, W all)
— Global concurrency control
— The main design choices
— Serializable systems with lazy propagation
— Using Sl in replication
— Limited divergence

1ITB Jan 2006 Transactions Lectures by Alan Fekete

Definition

* Replication is when the value of some data
item is stored in more than one place

— Typically in different databases at different
physical locations

— Similar issues arise with cached copies

» Eg keep a copy of the part-list at each
warehouse
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Motivation

» Performance

— Each reader can find a copy close-by
« Less latency to access the data
— More parallelism, load-sharing
« Improved throughput
« Fault-tolerance
— Failure of some site doesn’t halt all activities
— Graceful degradation
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Key principle

* Read any copy

— Preferably near to the client

For unchanging data, this is wonderful! But what
if the data item value sometimes changes (i.e.
some transactions write the data)?

— Write all the copies

— This damages performance and fault-tolerance!

— Thus replication is best for data where reads dominate
over updates
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Global transaction issues

« For now, ignore replication and just think
about a system with multiple databases, and
transactions that access them

» How to get global atomicity?

— Use Two-phase commit

— But this reduces performance markedly,

especially during periods where some nodes are
not available
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Global serializability

« How to get serializable behavior?

« It is not enough for each db to provide serializable
operation locally

« If each db uses 2PL, then global execution is serializable
— All conflicts are compatible with the Commit order

« If you’re not sure each db uses 2PL, and you want global
serializability, you can
— keep global serialization graph
— introduce conflicts at every site through “ticket” updates
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The main design choices

 There are many design choices for a system
with replicated data. In the next slides, we
present some of these, with sketches of the
trade-offs involved.
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Where to replicate?

« Everywhere « Not everywhere
— “total replication” — “partial replication”
— All dbs have identical — Need to manage

contents information about replica
— Any read can be done locations, and choose
locally, with no cross- location for reads
network communication — Need to make choices about
« Simple system design placement
« Performance may suffer + Complicated system
design
« Performance may be
improved
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If partial, what to replicate?

¢ Complete tables « Fragments of tables

— Each db has some of the — Keep copy of some rows,
tables perhaps based on values in

— Easy to decide whether particular columns

local copy exists for some

data

— Easy to reuse standard
dbms engine for query

optimization and processing
« Relatively simpler system

design

— Keep copy of some
columns

— Copy can be seen as a view
of underlying global table

¢ Complex system design
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How consistent?

* “Always” consistent  Eventually consistent
— At least, apps shouldn’t - “convergent”
observe difference — If updates cease for
from using single dbms long enough, all copies

+ “transparent will reach a common
replication” value

— Formal definition for ; .
“1 copy serializable Intermediate approach:

(abbreviated as 1-SR)” limited divergence

— Some systems propose
“1-copy SI”

1ITB Jan 2006 Transactions Lectures by Alan Fekete 11

How to propagate writes?

» Capture SQL
statements, and
execute at replicas

- Difficulties if state is

 Capture values
written/inserted, and
perform at replicas
— Use triggers to capture

not the same as when information
originally executed — Or access logs kept by
each dbms
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When to propagate writes?

« Eager
— Update all replicas inside
the original transaction
— Requires two-phase commit
« Good for consistency
« Bad for performance
 Hybrid approach: do some
remote activity, but not
the updates themselves

e Lazy

— “asynchronous”

— Update one copy of each
item inside original txn,
then apply those writes that
are relevant to replicas at a
given site in a separate
“copier” txn

— Original txn may be entirely
local at one site

« Good for performance

« May be bad for
consistency
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Is there a master?

« Primary copy

- “master-slave”

— One replica of each item is
authoritative

— It is always updated first

— If lazy propagation, this
either restricts transaction
content, or forces non-local
execution

« Bad for flexibility

* Group

— “multimaster” or “update
anywhere”

— Different txns can update
replicas in different orders

— If eager propagation, then
deadlock is very common;

— If lazy propagation, then
need conflict resolution to
ensure convergence

« Good for flexibility

1ITB Jan 2006 Transactions Lectures by Alan Fekete 14

System architecture

« Middleware

— Applications go through a
veneer that manages global
issues and then passes
operations to local dbs

— Middleware may not have
enough information eg internal
conflicts, risk of distributed
deadlocks

— No need to modify apps if they
use JDBC or similar AP|

— No need to modify engines

« More practical in most cases

« Engine-based
— Modify each dbms to know
about replication
— No need to modify applications
— Need to modify engines
« Hard to do except with open-
source dbms, or if you work for
one of the vendors!
- Unlikely to work with
heterogenous engines
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Communication platform?

« Point-to-point messages
— Eg socket programming

« Always present on any
platform

* Programmer needs to deal
with failures, and with
out-of-order deliveries

« Can get good raw
performance

« Group communication
services
— Eg Spread, Transis, etc
— Deliver to all members of
the group
— Sender can require
guarantees on order etc
¢ Much easier system
design
¢ Performance may suffer
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Design space summary

« In practice, want performance and simple

system design

— lazy propagation and primary copy
« In theory, want consistency and application

generality

— eager propagation, multi-master
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Isolation and lazy propagation?

« If multi-master, then even convergence is hard to

enforce

— Need timestamps to recognize out-of-order updates

+ S0, assume primary copy

» Without restrictions on data and applications,

reads can see old data

— If atxn’s reads are not all at same site, it might even see

inconsistently old data
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Example
« X has primary copy at A, o AtA: X, nlY
replica at B Wy [Xa] ¢, WYl Cy
* Y has primary copy at B, o AtB:r[Xg] r[Yg]
replica at A WZ[YB]Zc2 wg[s(B Cq

e Tlrunsat A: r[X]r[Y] ¢ Neither T1 nor T2 sees the
w[X] other’s changes

— Later copier T3 propagates
write of X to B

e T2runsat B: r[X] r[Y]
wY]

— Later copier T4 propagates
write of Y to A
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Example 11
* X has primary copy at A, o AtA:n[Xawi[X,]c,
replicas at B and C o AtB: wWi[Xg] ¢; 1[Xg] K[Ys]
« Y has primary copy at B, W,[Yg] ¢,
replica at C o AtCiwgl[Ye] cgra[Xcl r3[Yel cg
« T1runsatA: r[X] w[X] Wg[Xc] Cs
— Later copier T4 propagates e T2sees T1, T3seesT2onY
write of X to B (hence knows about T1) but
— Copier T5 propagates write of does not see T1 on X

XtoC
* T2runsatB: r[X] rY]w[Y]
— Later copier T6 propagates
write of Y'to C

* T3runsatC: r[X]r[Y]
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Restrictions

» Most work on serialization with lazy updates
assumes a restricted model of data and apps
» We limit application logic so that each original
transaction can run at one site
— It accesses data with copies at that site
— It only updates data whose primary copy is at that site
« Call this the “data ownership” assumption

— This is common in practice, since app is usually
focused on modifying data which “belongs” to the
organisation or suborg which wrote the app

— But it may read data which belongs elsewhere
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The copy graph

» Nodes are the sites where databases are
located

* Edge from N; to N; if

— There is an item X whose primary copy is
located at N; and which is replicated at N;
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Strongly Acyclic Copy graph

* CRR96 showed: Problem: cycle from T1 to T1
— Assume data ownership

model @

— Assume each db uses 2PL
— Allow arbitrary execution
of copier transactions,
— then the overall execution is
1-copy serializable if and @

only if the undirected image
of the copy graph has no

cycles Problem: two different

paths from T1 to T3
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Combining OLTP and OLAP

« A special case has been widely used, where
copy graph is a star

« Have one site which has the primary copy
for all items (OLTP node)

Other sites just run read-only queries
(OLAP nodes)

Eg RBSS’02, PA’04
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Acyclic Copy Graph

« BKRSS99 introduced algorithms that work
if directed copy graph has no cycle

« Key idea: ensure that copiers update nodes
in a consistent order
— Based on a tree
— Or using timestamps

— Could also be done with totally ordered
multicast to carry each txn’s copiers
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Use of Sl in Replication

 Because Sl is now so common (Oracle,
PostgreSQL), there is recently a lot of
interest in replication using Sl rather 2PL

* SW’00 shows how to ensure 1-SR using
ticket or graph techniques

« WK’05, LKPJ’05 show how to get 1-SI
— Without data ownership hypothesis
— Using totally-ordered multicast
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Combining local Sl to 1-SI

» Assume each txn runs at a single site
» Then reading is determined by consistent snapshot
» But how to test for concurrent writes?

* Solution: deliver writeset info to other sites within
the txn
— But defer actually applying them

* Important to use db info so conflicts are checked
at tuple not table granularity
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Extensions

» LKPJ’05 also deals with many practical
issues such as handling message failures,
preventing deadlocks, detecting some
conflicts early using the local Sl properties

 Overall message: they get quite scalable
performance
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Relaxed Currency

 1-SR allows read-only queries which run on
out-of-date values

— Some applications want limits on how old data
might be

» RBSS’02 allows app to specify bound on
staleness

* GLRG’04 provides SQL extension
— And builds checks into query optimisation

1ITB Jan 2006 Transactions Lectures by Alan Fekete 29

Relaxed Consistency

« 1-SRand 1-SI both require all items read by txn T to come from a
consistent view

— This is easy if each txn runs at a single site

— Butitis hard if txn’s reads can be spread around, for performance or
because replication is not total

« Some applications may be willing to see data which were valid at
slightly different times
« Much theory about controlling timing of updates to limit divergence of
data values
— Esp work on real-time databases
* GLRG’04 introduced SQL syntax to capture apps requirements

— Focus on allocating reads to sites, rather than controlling divergence of
sites
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Future Work

 Replication across WANS

— Order-enforcing group communication costs
are very high here

* Limited divergence (QoS guarantees)

— Integrating system mechanisms with
application requirements
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