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Testing SQL Queries: A Challenge

 Complex SQL queries hard to get right
 Question: How to check if an SQL query is 

correct?
Formal verification is not applicable since we do 

not have a separate specification and an 
implementation

State of the art solution: manually generate test 
databases and check if the query gives the 
intended result

 Often misses errors
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Generating Test Data: Prior Work

 Automated Test Data generation
 Based on database constraints, and SQL query

 Agenda [Chays et al., STVR04]
 Reverse Query Processing [Binning et al., ICDE07] takes desired query 

output and generates relation instances
 Handle a subset of Select/Project/Join/GroupBy queries

 Extensions of RQP for performance testing
 guarantees cardinality requirements on relations and intermediate query 

results

 None of the above guarantee anything about detecting errors 
in SQL queries

 Question: How do you model SQL errors?
 Answer: Query Mutation
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Mutation Testing
 Mutant: Variation of the given query

Mutations model common programming errors, like 
 Join used instead of outerjoin (or vice versa)
 Join/selection condition errors

 < vs. <=, missing or extra condition
 Wrong aggregate (min vs. max)

Mutant may be the intended query
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Mutation Testing of SQL Queries

 Traditional use of mutation testing has been to check 
coverage of dataset
 Generate mutants of the original program by modifying the program in 

a controlled manner
 A dataset kills a mutant if query and the mutant give different results 

on the dataset 
 A dataset is considered complete if it can kill all non-equivalent 

mutants of the given query

 Our goal: generating dataset for testing query
 Test dataset and query result on the dataset are shown to human, who 

verifies that the query result is what is expected given this dataset
 Note that we do not need to actually generate and execute mutants
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Related Work

 Prior work: 
Tuya and Suarez-Cabal [IST07], Chan et al. [QSIC05] defined 

a class of SQL query mutations
Shortcoming: do not address test data generation
More recently (and independent of our work) de la Riva et 

al [AST10] address data generation using constraints, with 
the Alloy solver

 Do not consider alternative join orders, No completeness results,  
Limitations on constraints
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Our Contributions
 Principled approach to test data generation for given query
 Define class of mutations: 

 Join/outerjoin
 Selection condition
 Aggregate function

 Algorithm for test data generation that kills all non-equivalent 
mutants in above class for a (fairly large) subset of SQL.

 Under some simplifying assumptions 
 With the guarantee that generated datasets are small and 

realistic, to aid in human verification of results
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Killing Join Mutants: Example 1
 Example 1: Without foreign key constraints

 Schema: r(A), s(B)

 To kill this mutant: ensure that for some r tuple there is no matching s 
tuple

 Generated test case: r(A)={(1)}; s(B)={}
 Basic idea, version 1 [ICDE 2010] 

– run query on given database, 
– from result extract matching tuples for r and s
– delete s tuple to ensure no matching tuple for r

 Limitation: foreign keys, repeated relations
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 Example 2: Extra join above mutated node
Schema: r(A,B), s(C,D), t(E)

 To kill this mutant we must ensure that for an r tuple there 
is no matching s tuple, but there is a matching t tuple

 Generated test case: r(A,B)={(1,2)}; s(C,D)={}; t(E)={(2)}

Killing Join Mutants: Example 2
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 Example 3: Equivalent mutation due to join
Schema: r(A,B), s(C,D), t(E)

Note: right outer join this time
Any result with a r.B being null will be removed by join with t
Similarly equivalence can result due to selections

Killing Join Mutants: Example 3
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 teaches        instructor 
is equivalent to teaches      instructor if there is a 
foreign key from teaches.ID to instructor.ID

BUT: teaches        σ dept=CS(instructor)
is not equivalent to 
 teaches        σ dept=CS(instructor) 

Key idea: have a teaches tuple with an instructor not 
from CS

Selections and joins can be used to kill mutations

Killing Join Mutants: Example 4
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Killing Join Mutants: Equivalent Trees

 Space of join-type mutants: includes mutations of join 
operator of a single node for all trees equivalent to given 
query tree

 Datasets should kill mutants across all such trees

Query 
Tree 1

Query 
Tree 2

Query 
Tree 3
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Equivalent Trees and Equivalence 
Classes of Attributes

 Whether query conditions written as
A.x = B.x AND B.x = C.x or as
A.x = B.x AND A.x = C.x

should not affect set of mutants generated
 Solution: Equivalence classes of attributes
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Assumptions
 A1, A2: Only primary and foreign key constraints; foreign 

key columns not nullable
 A3: Single block SQL queries; no nested subqueries
 A4: Expr/functions: Only arithmetic exprs
 A5: Join/selection predicates : conjunctions of {expr 

relop expr}
 A6: Queries do not explicitly check for null values using IS 

NULL
 A7: In the presence of full outer join, at least one 

attribute from each of its inputs present in the select 
clause (and A8 for natural join: see paper)
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Data Generation in 2 Steps

 Step 1: Generation of constraints

Constraints due to the schema

Constraints due to the query

Constraints to kill a specific mutant

 Step 2: Generation of data from constraints

Using solver, currently CVC3
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Running Example : University Schema (Book)

SELECT *

FROM crse, dept, teaches

WHERE crse.dept_name = dept.dept_name 

AND  crse.course_id = teaches.course_id

Relations:  

crse(course_idcourse_id, dept_name, credits)

dept(dept_name, building, budget)   

teaches(instructor_id, course_id, semester,acadyear)
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Data Generation Algorithm - Overview

 procedure generateDataSet(query q)
 preprocess query tree
 generateDataSetForOriginalQuery()
 killEquivalenceClasses()
 killOtherPredicates()
 killComparisonOperators()
 killAggregates()
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Preprocess Query Tree

• Build Equivalence Classes from join 
conditions
– A.x = B.y and B.y = C.z then

Equivalence class:  A.x, B.y and C.z

• Foreign Key Closure
– A.x -> B.y and B.y -> C.z then A.x -> C.z

• Retain all join/selection predicates other 
than equijoin predicates
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Dataset for Original Query
 Generate datatype declarations for CVC3
     DATATYPE COURSE_ID = BIO101 | BIO301 | BIO399 | CS101 | 

    CS190 | CS315 | CS319 | CS347 | CS630 | CS631 | CS632 | 
    EE181 | FIN201 | HIS351 | MU199 | PHY101 END;

     CREDITS : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 1 AND x < 5);
 Array of tuples of constraint variables, per relation
    CRSE_TupleType: TYPE = [COURSE_ID, DEPT_NAME, CREDITS];

    O_CRSE: ARRAY INT OF CRSE_TupleType;

    TEACHES_TupleType: TYPE = [INSTRUCTOR_ID, COURSE_ID, 
                             SEMESTER, ACADYEAR];

    O_TEACHES: ARRAY INT OF TEACHES_TupleType

O_CRSE[1].0 is a constraint variable corresponding to COURSE_ID 
of the first tuple
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Dataset for Original Query
 One or more constraint tuples from array, for each occurrence 

of a relation 
O_CRSE_INDEX_INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);

O_DEPT_INDEX_INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);

O_TEACHES_INDEX_INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);

– More than 1 tuple required for aggregation, repeated occurrences 
 or to  ensure f.k. Constraints

 Equality conditions between variables based on equijoins
ASSERT (O_CRSE[1].1 = O_DEPT[1].0) ;

ASSERT O_CRSE[1].0 = O_TEACHES[1].

 Other selection and join conditions become constraints
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Dataset for Original Query (DB Constraints)
 Constraints for primary and foreign keys

f.k. from crse.deptname to dept.dept_name
 ASSERT FORALL i EXISTS j (O_CRSE[i].1 = O_DEPT[j].0);

p.k. on R.A
 ASSERT FORALL i FORALL j (O_CRSE[i].0 = O_CRSE[j].0) => “all 
other attrs equal”

  Why not assert primary key value is distinct (supported by CVC3)?
  Since range is over finite domain, p.k. and f.k. constraints can 

be unfolded
Unfolded constraints:

      f.k : ASSERT O_CRSE[1].1 = O_DEPT[1].0 OR O_CRSE[1].1 = O_DEPT[2].0

     p.k :  ASSERT (O_DEPT[1].0 = O_DEPT[2].0 ) => (O_DEPT[1].1 = O_DEPT[2].1) 
   AND (O_DEPT[1].2 = O_DEPT[2].2) ;
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Helper Functions

• CvcMap
– Takes a rel and attr and returns r[i].pos where
– r is base relation of rel
– pos is the position of attribute attr
– i is an index in the tuple array

• GenerateEqConds(P)
– Generates equality constraints amongst all 

elements of an equivalence class P
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Killing Join Mutants: Equijoin

killEquivalenceClasses() 
 for each equivalence class ec do

Let allRelations := Set of all <rel, attr> pairs in ec
for each element e in allRelations do

 conds := empty set
 Let e := R.a
 S := (set of elements in ec which are foreign keys 

referencing R.a directly or indirectly) UNION R:a
  P := ec - S
 if P:isEmpty() then

continue
 else  … main code for generating constraints (see next 

slide)
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Killing Join Mutants: EquiJoins

 conds.add(generateEqConds(P))
 conds:add(
        “NOT EXISTS i: R[i].a = ” + cvcMap(P[0]))
 for all other equivalence classes oe do

  conds.add(generateEqConds(oe))
 for each other predicate p do

conds:add(cvcMap(p))
 conds.add(genDBConstraints()) /*P.K. and F.K*/
 callSolver(conds)
 if solution exists then

create a dataset from solver output
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Killing Other Predicates

 Create separate dataset for each attribute in 
predicate

 e.g. For Join condition B.x = C.x + 10
 Dataset 1 (nullifying B:x):

 ASSERT NOT EXISTS (i : B_INT) : (B[i].x = C[1].x + 10);

Dataset 2 (nullifying C:x):
 ASSERT NOT EXISTS (i : C_INT) : (B[1].x = C[i].x + 10);
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Comparison Operation Mutations

 Example of comparison operation mutations:

     A < 5 vs. A <= 5 vs. A > 5 vs A >= 5 vs. A=5, vs A <> 5

 Idea: generate separate dataset for three cases (leaving rest of 
query unchanged):

 A < 5
 A = 5
 A > 5

 This set will kill all above mutations
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Aggregation Operation Mutations

 Aggregation operations
 count(A) vs. count(distinct A)
 sum(A) vs sum(distinct A)
 avg(A) vs avg(distinct A)
 min(A) vs max(A)
 and mutations amongst all above operations

 Idea:  given relation r(G, O, A) and query
       select aggop(A) from r group by G
Tuples  (g1, o1, a1), (g1, o2, a1), (g1, o3, a2) , with a1 <> 0 will kill above pairs 
of mutations

 Additional constraints to ensure killing mutations across pairs
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Aggregation Operation Mutants

 Issues:
Database/query constraints forcing A to be unique 

for a given G
Database/query constraints forcing A to be a key
Database/query constraints forcing G to be a key

 Carefully crafted set of constraints, which are 
relaxed to handle such cases
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Completeness Results

 Theorem: For the class of queries, with the space of 
join-type and selection mutations defined in the paper, the 
suite of datasets generated by our algorithm is complete. 
That is, the datasets kill all non-equivalent mutations of a 
given query

 Completeness results for restricted classes of aggregation 
mutations
aggregation as top operation of tree, under some 

restrictions on joins in input
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Complexity

 Number of datasets generated is linear in query size

 Although solving constraints is in general NP-hard, and even 
undecidable with arbitrary constraints, it is tractable in special 
cases. 
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Extensions

  Unintended Joins

  Nested subqueries

  Handling NULLs

  String Constraints

  Distinct

  Others – Set ops, Parameterized Queries, Date-Time, Insert, 
Update, Delete, Disjunctions

Sources : 

Extending XData to kill SQL query mutants in the wild

XDa-TA : Automating Grading of SQL Query Assignments

file:///media/sunny/Main1/Advanced_DB/
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Unintended Join Conditions
● Unintended join conditions can be explicitly added by the user in the where clause of the query 

or by using natural joins instead of theta joins.
● Example :

– Schema : 

– student (id, name,dept name)

– course (course id, name, dept name)

– takes (id, course id, sec id, semester, year)

– Query to find the list of all courses taken by a student with id = 1234 is:

SELECT course id,course name FROM student 

INNER JOIN takes on(id) 

INNER JOIN course ON(course id) WHERE student.id = 1234

– Dataset Generated :

– Student (1234, Alice, EE)

– course (CS317, Database Systems, CS)

– takes (1234, CS317, 1, Fall, 2014)
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Constrained Aggregation Operation

● Aggregation Constraints: Example : SUM (r.a) > 20

● CVC3 requires us to specify how many tuples r has.

● Hence, before generating CVC3 constraints we must 
(a) estimate the number of tuples n, required to 

satisfy an aggregation constraint
(b) translate this number n to appropriate number of 

tuples for each base relation so that the input of the 
aggregation contains exactly n tuples.
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Changed Group By Attributes

●Schema : takes (id, course id, sec id, semester, year, section)

●Example : find the number of students taking each course every time it is offered.

SELECT count(id), course id, semester, year FROM takes 
GROUP BY course id, semester, year

● Erroneous query misses out students who have taken the same course in different 
sections.

SELECT count(id), course id, semester, year FROM takes 
GROUP BY course id, semester, year, section

● Example tuples for dataset:
t1 (1234, CS317, 1, Fall, 2014, section 1)
t2 (1234, CS317, 1, Fall, 2014, section 2)
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Handling NULLs
● For text attributes, enumerate a few more values in the enumerated type 
and designate them NULLs.

Example : for an attribute course_id, we enumerate values 
NULL_course_id_1, NULL_course_id_2, etc.

● For numeric values, we model NULLs as any integer in a range of negative 
values that we define to be not part of the allowable domain of that numeric 
value.

● Add constraints forcing those attribute values to take on one of the above 
mentioned special values representing NULL.

● Add constraints to force all other values to be non null.



37

String Constraints

● S1 likeop pattern 
● S1 relop constant
● strlen(S) relop constant
● S1 relop S2

where S1 and S2 are string variables, 

likeop is one of LIKE, ILIKE (case insensitive like),NOT LIKE and 
NOT ILIKE

relop operators are =, <, ≤, >, ≥, <>, and case-insensitive equality 
denoted by =.∼
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String Constraints
• String solver

• String constraint mutation: {=, <>, <, >, ≤, ≥}
(1) S1 = S2 (2) S1 > S2(3) S1 < S2

• LIKE predicate mutation:  {LIKE, ILIKE,NOT LIKE, NOT ILIKE } 
• Dataset 1 satisfying the condition S1 LIKE pattern.
• Dataset 2 satisfying condition S1 ILIKE pattern, 
but not S1 LIKE pattern
• Dataset 3 failing both the LIKE and ILIKE conditions
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XDa-TA

● For each query in an assignment, a correct SQL query is given to the tool, 
which generates datasets for killing mutants of that query.

● Modes:  i) admin mode 

ii) student mode.

● Assignment can be marked as :

1. learning assignment

2. graded assignment.

Source: 
XDa-TA : Automating Grading of SQL Query Assignments
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Performance Results

 University database schema from Database 
System Concepts 6th Ed

 Queries with joins, with varying number of 
foreign keys imposed
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Results for inner join queries
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Results for queries with selections,aggregations
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List of queries, with number of
datasets generated by XData
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Query grading results
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Future Work

 Ongoing work
 Integration with course management systems such as Moodle or 

Blackboard using the Learning Tools Interoperability (LTI) standard

 Future work:
 Handling SQL features not supported currently
 Multiple queries
 Form parameters
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Questions
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Thank You


