
Generating Test Data for Killing
SQL Mutants:

 A Constraint-based Approach

CSE Department, IIT Bombay

Shetal Shah, S. Sudarshan, Suhas Kajbaje,
Sandeep Patidar, Bhanu Pratap Gupta, Devang Vira

Presented By: Sunny Raj Rathod

2

Outline
● Motivation
● Mutation Testing
● Related Work
● Contributions
● Extensions
● Implementation[XDa-TA]
● Experiments
● Future Work

3

Testing SQL Queries: A Challenge

 Complex SQL queries hard to get right
 Question: How to check if an SQL query is

correct?
Formal verification is not applicable since we do

not have a separate specification and an
implementation

State of the art solution: manually generate test
databases and check if the query gives the
intended result

 Often misses errors

4

Generating Test Data: Prior Work

 Automated Test Data generation
 Based on database constraints, and SQL query

 Agenda [Chays et al., STVR04]
 Reverse Query Processing [Binning et al., ICDE07] takes desired query

output and generates relation instances
 Handle a subset of Select/Project/Join/GroupBy queries

 Extensions of RQP for performance testing
 guarantees cardinality requirements on relations and intermediate query

results

 None of the above guarantee anything about detecting errors
in SQL queries

 Question: How do you model SQL errors?
 Answer: Query Mutation

5

Mutation Testing
 Mutant: Variation of the given query

Mutations model common programming errors, like
 Join used instead of outerjoin (or vice versa)
 Join/selection condition errors

 < vs. <=, missing or extra condition
 Wrong aggregate (min vs. max)

Mutant may be the intended query

6

Mutation Testing of SQL Queries

 Traditional use of mutation testing has been to check
coverage of dataset
 Generate mutants of the original program by modifying the program in

a controlled manner
 A dataset kills a mutant if query and the mutant give different results

on the dataset
 A dataset is considered complete if it can kill all non-equivalent

mutants of the given query

 Our goal: generating dataset for testing query
 Test dataset and query result on the dataset are shown to human, who

verifies that the query result is what is expected given this dataset
 Note that we do not need to actually generate and execute mutants

7

Related Work

 Prior work:
Tuya and Suarez-Cabal [IST07], Chan et al. [QSIC05] defined

a class of SQL query mutations
Shortcoming: do not address test data generation
More recently (and independent of our work) de la Riva et

al [AST10] address data generation using constraints, with
the Alloy solver

 Do not consider alternative join orders, No completeness results,
Limitations on constraints

8

Our Contributions
 Principled approach to test data generation for given query
 Define class of mutations:

 Join/outerjoin
 Selection condition
 Aggregate function

 Algorithm for test data generation that kills all non-equivalent
mutants in above class for a (fairly large) subset of SQL.

 Under some simplifying assumptions
 With the guarantee that generated datasets are small and

realistic, to aid in human verification of results

9

Killing Join Mutants: Example 1
 Example 1: Without foreign key constraints

 Schema: r(A), s(B)

 To kill this mutant: ensure that for some r tuple there is no matching s
tuple

 Generated test case: r(A)={(1)}; s(B)={}
 Basic idea, version 1 [ICDE 2010]

– run query on given database,
– from result extract matching tuples for r and s
– delete s tuple to ensure no matching tuple for r

 Limitation: foreign keys, repeated relations

10

 Example 2: Extra join above mutated node
Schema: r(A,B), s(C,D), t(E)

 To kill this mutant we must ensure that for an r tuple there
is no matching s tuple, but there is a matching t tuple

 Generated test case: r(A,B)={(1,2)}; s(C,D)={}; t(E)={(2)}

Killing Join Mutants: Example 2

11

 Example 3: Equivalent mutation due to join
Schema: r(A,B), s(C,D), t(E)

Note: right outer join this time
Any result with a r.B being null will be removed by join with t
Similarly equivalence can result due to selections

Killing Join Mutants: Example 3

12

 teaches instructor
is equivalent to teaches instructor if there is a
foreign key from teaches.ID to instructor.ID

BUT: teaches σ dept=CS(instructor)
is not equivalent to
 teaches σ dept=CS(instructor)

Key idea: have a teaches tuple with an instructor not
from CS

Selections and joins can be used to kill mutations

Killing Join Mutants: Example 4

13

Killing Join Mutants: Equivalent Trees

 Space of join-type mutants: includes mutations of join
operator of a single node for all trees equivalent to given
query tree

 Datasets should kill mutants across all such trees

Query
Tree 1

Query
Tree 2

Query
Tree 3

14

Equivalent Trees and Equivalence
Classes of Attributes

 Whether query conditions written as
A.x = B.x AND B.x = C.x or as
A.x = B.x AND A.x = C.x

should not affect set of mutants generated
 Solution: Equivalence classes of attributes

15

Assumptions
 A1, A2: Only primary and foreign key constraints; foreign

key columns not nullable
 A3: Single block SQL queries; no nested subqueries
 A4: Expr/functions: Only arithmetic exprs
 A5: Join/selection predicates : conjunctions of {expr

relop expr}
 A6: Queries do not explicitly check for null values using IS

NULL
 A7: In the presence of full outer join, at least one

attribute from each of its inputs present in the select
clause (and A8 for natural join: see paper)

16

Data Generation in 2 Steps

 Step 1: Generation of constraints

Constraints due to the schema

Constraints due to the query

Constraints to kill a specific mutant

 Step 2: Generation of data from constraints

Using solver, currently CVC3

17

Running Example : University Schema (Book)

SELECT *

FROM crse, dept, teaches

WHERE crse.dept_name = dept.dept_name

AND crse.course_id = teaches.course_id

Relations:

crse(course_idcourse_id, dept_name, credits)

dept(dept_name, building, budget)

teaches(instructor_id, course_id, semester,acadyear)

18

Data Generation Algorithm - Overview

 procedure generateDataSet(query q)
 preprocess query tree
 generateDataSetForOriginalQuery()
 killEquivalenceClasses()
 killOtherPredicates()
 killComparisonOperators()
 killAggregates()

19

Preprocess Query Tree

• Build Equivalence Classes from join
conditions
– A.x = B.y and B.y = C.z then

Equivalence class: A.x, B.y and C.z

• Foreign Key Closure
– A.x -> B.y and B.y -> C.z then A.x -> C.z

• Retain all join/selection predicates other
than equijoin predicates

20

Dataset for Original Query
 Generate datatype declarations for CVC3
 DATATYPE COURSE_ID = BIO101 | BIO301 | BIO399 | CS101 |

 CS190 | CS315 | CS319 | CS347 | CS630 | CS631 | CS632 |
 EE181 | FIN201 | HIS351 | MU199 | PHY101 END;

 CREDITS : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 1 AND x < 5);
 Array of tuples of constraint variables, per relation
 CRSE_TupleType: TYPE = [COURSE_ID, DEPT_NAME, CREDITS];

 O_CRSE: ARRAY INT OF CRSE_TupleType;

 TEACHES_TupleType: TYPE = [INSTRUCTOR_ID, COURSE_ID,
 SEMESTER, ACADYEAR];

 O_TEACHES: ARRAY INT OF TEACHES_TupleType

O_CRSE[1].0 is a constraint variable corresponding to COURSE_ID
of the first tuple

21

Dataset for Original Query
 One or more constraint tuples from array, for each occurrence

of a relation
O_CRSE_INDEX_INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);

O_DEPT_INDEX_INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);

O_TEACHES_INDEX_INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);

– More than 1 tuple required for aggregation, repeated occurrences
 or to ensure f.k. Constraints

 Equality conditions between variables based on equijoins
ASSERT (O_CRSE[1].1 = O_DEPT[1].0) ;

ASSERT O_CRSE[1].0 = O_TEACHES[1].

 Other selection and join conditions become constraints

22

Dataset for Original Query (DB Constraints)
 Constraints for primary and foreign keys

f.k. from crse.deptname to dept.dept_name
 ASSERT FORALL i EXISTS j (O_CRSE[i].1 = O_DEPT[j].0);

p.k. on R.A
 ASSERT FORALL i FORALL j (O_CRSE[i].0 = O_CRSE[j].0) => “all
other attrs equal”

 Why not assert primary key value is distinct (supported by CVC3)?
 Since range is over finite domain, p.k. and f.k. constraints can

be unfolded
Unfolded constraints:

 f.k : ASSERT O_CRSE[1].1 = O_DEPT[1].0 OR O_CRSE[1].1 = O_DEPT[2].0

 p.k : ASSERT (O_DEPT[1].0 = O_DEPT[2].0) => (O_DEPT[1].1 = O_DEPT[2].1)
 AND (O_DEPT[1].2 = O_DEPT[2].2) ;

23

Helper Functions

• CvcMap
– Takes a rel and attr and returns r[i].pos where
– r is base relation of rel
– pos is the position of attribute attr
– i is an index in the tuple array

• GenerateEqConds(P)
– Generates equality constraints amongst all

elements of an equivalence class P

24

Killing Join Mutants: Equijoin

killEquivalenceClasses()
 for each equivalence class ec do

Let allRelations := Set of all <rel, attr> pairs in ec
for each element e in allRelations do

 conds := empty set
 Let e := R.a
 S := (set of elements in ec which are foreign keys

referencing R.a directly or indirectly) UNION R:a
 P := ec - S
 if P:isEmpty() then

continue
 else … main code for generating constraints (see next

slide)

25

Killing Join Mutants: EquiJoins

 conds.add(generateEqConds(P))
 conds:add(
 “NOT EXISTS i: R[i].a = ” + cvcMap(P[0]))
 for all other equivalence classes oe do

 conds.add(generateEqConds(oe))
 for each other predicate p do

conds:add(cvcMap(p))
 conds.add(genDBConstraints()) /*P.K. and F.K*/
 callSolver(conds)
 if solution exists then

create a dataset from solver output

26

Killing Other Predicates

 Create separate dataset for each attribute in
predicate

 e.g. For Join condition B.x = C.x + 10
 Dataset 1 (nullifying B:x):

 ASSERT NOT EXISTS (i : B_INT) : (B[i].x = C[1].x + 10);

Dataset 2 (nullifying C:x):
 ASSERT NOT EXISTS (i : C_INT) : (B[1].x = C[i].x + 10);

27

Comparison Operation Mutations

 Example of comparison operation mutations:

 A < 5 vs. A <= 5 vs. A > 5 vs A >= 5 vs. A=5, vs A <> 5

 Idea: generate separate dataset for three cases (leaving rest of
query unchanged):

 A < 5
 A = 5
 A > 5

 This set will kill all above mutations

28

Aggregation Operation Mutations

 Aggregation operations
 count(A) vs. count(distinct A)
 sum(A) vs sum(distinct A)
 avg(A) vs avg(distinct A)
 min(A) vs max(A)
 and mutations amongst all above operations

 Idea: given relation r(G, O, A) and query
 select aggop(A) from r group by G
Tuples (g1, o1, a1), (g1, o2, a1), (g1, o3, a2) , with a1 <> 0 will kill above pairs
of mutations

 Additional constraints to ensure killing mutations across pairs

29

Aggregation Operation Mutants

 Issues:
Database/query constraints forcing A to be unique

for a given G
Database/query constraints forcing A to be a key
Database/query constraints forcing G to be a key

 Carefully crafted set of constraints, which are
relaxed to handle such cases

30

Completeness Results

 Theorem: For the class of queries, with the space of
join-type and selection mutations defined in the paper, the
suite of datasets generated by our algorithm is complete.
That is, the datasets kill all non-equivalent mutations of a
given query

 Completeness results for restricted classes of aggregation
mutations
aggregation as top operation of tree, under some

restrictions on joins in input

31

Complexity

 Number of datasets generated is linear in query size

 Although solving constraints is in general NP-hard, and even
undecidable with arbitrary constraints, it is tractable in special
cases.

32

Extensions

 Unintended Joins

 Nested subqueries

 Handling NULLs

 String Constraints

 Distinct

 Others – Set ops, Parameterized Queries, Date-Time, Insert,
Update, Delete, Disjunctions

Sources :

Extending XData to kill SQL query mutants in the wild

XDa-TA : Automating Grading of SQL Query Assignments

file:///media/sunny/Main1/Advanced_DB/

33

Unintended Join Conditions
● Unintended join conditions can be explicitly added by the user in the where clause of the query

or by using natural joins instead of theta joins.
● Example :

– Schema :

– student (id, name,dept name)

– course (course id, name, dept name)

– takes (id, course id, sec id, semester, year)

– Query to find the list of all courses taken by a student with id = 1234 is:

SELECT course id,course name FROM student

INNER JOIN takes on(id)

INNER JOIN course ON(course id) WHERE student.id = 1234

– Dataset Generated :

– Student (1234, Alice, EE)

– course (CS317, Database Systems, CS)

– takes (1234, CS317, 1, Fall, 2014)

34

Constrained Aggregation Operation

● Aggregation Constraints: Example : SUM (r.a) > 20

● CVC3 requires us to specify how many tuples r has.

● Hence, before generating CVC3 constraints we must
(a) estimate the number of tuples n, required to

satisfy an aggregation constraint
(b) translate this number n to appropriate number of

tuples for each base relation so that the input of the
aggregation contains exactly n tuples.

35

Changed Group By Attributes

●Schema : takes (id, course id, sec id, semester, year, section)

●Example : find the number of students taking each course every time it is offered.

SELECT count(id), course id, semester, year FROM takes
GROUP BY course id, semester, year

● Erroneous query misses out students who have taken the same course in different
sections.

SELECT count(id), course id, semester, year FROM takes
GROUP BY course id, semester, year, section

● Example tuples for dataset:
t1 (1234, CS317, 1, Fall, 2014, section 1)
t2 (1234, CS317, 1, Fall, 2014, section 2)

36

Handling NULLs
● For text attributes, enumerate a few more values in the enumerated type
and designate them NULLs.

Example : for an attribute course_id, we enumerate values
NULL_course_id_1, NULL_course_id_2, etc.

● For numeric values, we model NULLs as any integer in a range of negative
values that we define to be not part of the allowable domain of that numeric
value.

● Add constraints forcing those attribute values to take on one of the above
mentioned special values representing NULL.

● Add constraints to force all other values to be non null.

37

String Constraints

● S1 likeop pattern
● S1 relop constant
● strlen(S) relop constant
● S1 relop S2

where S1 and S2 are string variables,

likeop is one of LIKE, ILIKE (case insensitive like),NOT LIKE and
NOT ILIKE

relop operators are =, <, ≤, >, ≥, <>, and case-insensitive equality
denoted by =.∼

38

String Constraints
• String solver

• String constraint mutation: {=, <>, <, >, ≤, ≥}
(1) S1 = S2 (2) S1 > S2(3) S1 < S2

• LIKE predicate mutation: {LIKE, ILIKE,NOT LIKE, NOT ILIKE }
• Dataset 1 satisfying the condition S1 LIKE pattern.
• Dataset 2 satisfying condition S1 ILIKE pattern,
but not S1 LIKE pattern
• Dataset 3 failing both the LIKE and ILIKE conditions

39

XDa-TA

● For each query in an assignment, a correct SQL query is given to the tool,
which generates datasets for killing mutants of that query.

● Modes: i) admin mode

ii) student mode.

● Assignment can be marked as :

1. learning assignment

2. graded assignment.

Source:
XDa-TA : Automating Grading of SQL Query Assignments

40

Performance Results

 University database schema from Database
System Concepts 6th Ed

 Queries with joins, with varying number of
foreign keys imposed

41

Results for inner join queries

42

Results for queries with selections,aggregations

43

List of queries, with number of
datasets generated by XData

44

45

Query grading results

46

Future Work

 Ongoing work
 Integration with course management systems such as Moodle or

Blackboard using the Learning Tools Interoperability (LTI) standard

 Future work:
 Handling SQL features not supported currently
 Multiple queries
 Form parameters

47

Questions

48

Thank You

