
Abstract
One of the most common operations in analytic query processing is
the application of an aggregate function to the result of a relational
join. We describe an algorithm for computing the answer to such a
query over large, disk-based input tables. The key innovation of our
algorithm is that at all times, it provides an online, statistical esti-
mator for the eventual answer to the query, as well as probabilistic
confidence bounds. Thus, a user can monitor the progress of the
join throughout its execution and stop the join when satisfied with
the estimate’s accuracy, or run the algorithm to completion with a
total time requirement that is not much longer than other common
join algorithms. This contrasts with other online join algorithms,
which either do not offer such statistical guarantees or can only
offer guarantees so long as the input data can fit into core memory.

1 Introduction
One promising approach to data management for analytic process-
ing is online aggregation [9][10] (OLA). In OLA, the DBMS tries
to quickly discover enough information to immediately give an
approximate answer to a query over an aggregate function such as
COUNT, SUM, AVERAGE, and STD_DEV. As more information is
discovered, the estimate is incrementally improved. A primary goal
of any system performing OLA is providing some sort of statistical
guarantees on result quality, usually in the form of statistical confi-
dence bounds [2]. For example, at a given moment, the system
might say, “0.32% of the banking transactions were fraudulent,
with 0.027% accuracy at 95% confidence.” A few seconds later,
the accuracy guarantee might be 0.013%. If the user is satisfied
with the accuracy or determines from the initial results that the
query is uninteresting, then computation can be terminated by a
mouse click, saving valuable human time and computer resources. 

In practice, one of the most significant technical difficulties in
OLA is relational join processing. In fact, join processing is even
more difficult in OLA than in traditional transaction processing sys-
tems. In addition to being computationally efficient, OLA join algo-
rithms must have meaningful and statistically-justified confidence
bounds. The current state-of-the-art for join processing in OLA is
the ripple join family of algorithms, developed by Haas and Heller-

stein [6]. However, there is one critical drawback with the ripple
join and others that have been proposed for OLA:

All existing join algorithms for OLA (including the ripple join) are
unable to provide the user with statistically meaningful confidence
bounds as well as efficiency from start-up through completion, if
the total data size is too large to fit into main memory. 

This is unfortunate, because a ripple join may run out of memory in
a few seconds, but a sort-merge join or hybrid hash join [17] may
require hours to complete over a very large database. Using current
technology, if the user is unsatisfied with the ripple join’s accuracy,
the only option is to wait until an exact answer can be computed.

It turns out to be exceedingly difficult to design disk-based join
algorithms that are amenable to the development of statistical guar-
antees. The fundamental problem is that OLA join algorithms must
rely on randomness to achieve statistical guarantees on accuracy.
However, randomness is largely incompatible with efficient disk-
based join processing. Efficient disk-based join algorithms (such as
the sort-merge join and hybrid hash join) rely on careful organiza-
tion of records into blocks, so that when a block is loaded into
memory, all of its records are used for join processing before the
block is unloaded from memory. This careful organization of
records is the antithesis of randomness, and makes statistical analy-
sis difficult. This is the reason, for example, why Luo et al.’s scal-
able version of the ripple join algorithm can no longer maintain any
statistical guarantees as soon as it runs out of memory [13].

Previously, Haas and Hellerstein have asserted that the lack of an
efficient, disk-based OLA join algorithm is not a debilitating prob-
lem, because often the user is sufficiently happy with the accuracy
of the estimate that the join is stopped long before the buffer mem-
ory is exhausted [10]. While this argument is often reasonable,
there are many cases where convergence to an answer will be very
slow, and buffer memory could be exhausted long before a suffi-
ciently accurate answer has been computed. Convergence can be
slow under a variety of conditions, including: if the join has high
selectivity; if a select-project-join query has a relational selection
predicate with high selectivity; if the attributes queried over have
high skew; if the query contains a group-by clause with a large
number of groups; if the query contains a group-by clause and the
group cardinalities are skewed; or if the database records or key
values are large (for example, long character strings) and so they
quickly consume the available main memory. This last situation
motivates our work, since we are interested in an application which
must join multi-kilobyte jpeg images that are large enough to con-
sume considerable memory, but small enough that the time to read
an image from disk is still dominated by the cost of moving the disk
head to read the image. Thus, it is desirable to combine the I/O effi-
ciency of classic join algorithms like the sort-merge join or hybrid
hash join [17] with the confidence bounds provided by OLA. 
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Our Contributions
In this paper, we develop a new join algorithm for OLA that is spe-
cifically designed to be amenable to statistical analysis and  provide
out-of-core efficiency at the same time. Our algorithm is called the
SMS join (which stands for Sort-Merge-Shrink join). The SMS join
represents a contribution to the state-of-the-art in several ways:

•The SMS join is totally disk-based, yet it maintains statistical con-
fidence bounds from start-up through completion.

•Because the first phase of the SMS join consists of a series of
hashed ripple joins, the SMS join is essentially a generalization of
the ripple join. If a satisfactory answer can be computed in the
few seconds before the join runs out of core memory, the SMS
join is equivalent to a ripple join. 

•Despite the fact that it maintains statistical guarantees, the SMS
join is competitive with traditional join algorithms such as the
sort-merge join. Our prototype implementation of the SMS join is
not significantly slower than our own sort-merge join implemen-
tation. Given this, we argue that if the SMS join is used to answer
aggregate queries, online statistical confidence bounds can be
maintained with little or no additional cost compared to tradi-
tional join algorithms.

Paper Organization
The remainder of the paper is organized as follows. Section 2 gives
some background on the problem of developing out-of-core joins
for OLA. Section 3 gives an overview of the SMS join, and the next
three Sections describe the details of the algorithm. Our bench-
marking is described in Section 7, and the paper is concluded in
Section 8. The paper’s appendix discusses statistical considerations.

2 Disk-Based Joins for OLA: Why So Difficult?

2.1 A Review of the Ripple Join Algorithm
We begin with a short review of the ripple join family of algo-
rithms, which constitute the state-of-the-art in join algorithms for
OLA [6].

We will describe the ripple join in the context of answering the
query: “Find the total sales per office for the years 1980-2000” over
the database tables EMP (OFFICE, START, END, NAME) and
SALES (YEAR, EMP_NAME, TOT_SALES). SQL for this query
is given below:

SELECT SUM (s.TOT_SALES), e.OFFICE, s.YEAR
FROM EMP e, SALES s
WHERE e.NAME = s.EMP_NAME AND s.YEAR BETWEEN 

e.START AND e.END AND s.YEAR BETWEEN 1980 
AND 2000

GROUP BY e.OFFICE, s.YEAR

To answer this query, a ripple join will scan the two input relations
EMP and SALES in parallel, using a series of operations known as
sampling steps. At the beginning of each sampling step, a new set

of records of size nEMP is loaded into memory from the input rela-
tion EMP. These new records from EMP are joined with all of the
records that have been encountered thus far from the second input
relation, SALES. This is depicted as the addition of region 6 to Fig-
ure 1 (b) from Figure 1 (a). Next, the roles of EMP and SALES rela-
tions are swapped: nSALES new input records are retrieved from
SALES, and joined with all existing records from EMP (shown as
the addition of region 7 in Figure 1 (c)). Finally, both the estimate
for the answer to the query and the statistical confidence interval for
the estimate’s accuracy are updated to reflect the new records from
both relations, and then output to the user via an update to the
graphical user interface. The estimate and bounds are computed by
associating a normally distributed random variable N with the rip-
ple join; on expectation, the ripple join will give a correct estimate
for the query, and the error of the estimate is characterized by the

variance of N, denoted by . A key requirement of the ripple join
is that all input relations must be clustered randomly on disk, so that
there is absolutely no correlation between the ordering of the
records on disk and the contents of the records. Even the slightest
correlation can invalidate the statistical properties of the join, lead-
ing to inaccurate estimates and confidence bounds.

The ripple join is actually a family of algorithms and not a single
algorithm, since the technique does not specify exactly how the
new records read during a sampling step are to be joined with exist-
ing records. This can be done using an index on one or both of the
relations, or in the style of a nested-loops join, or using a main-
memory hash table to store the processed records. 

In their work, Haas and Hellerstein showed that the hashed ver-
sion of the ripple join generally supports the fastest convergence to
an accurate answer [6]. To perform a hashed ripple join, a single,
main memory hash table is used to hold records from both relations.
When a new record from input relation EMP is read from an input
relation, it is added to the table by hashing the key(s) that the input
relations are joined on. Any record s from the other input relation
SALES which matches e will be in the same bucket, and the records
can immediately be joined.

Haas and Hellerstein’s work demonstrated that other types of
ripple joins are usually less efficient than the hashed ripple join. A
nested-loops ripple join gives very slow convergence, and is
expectedly even slower to run to completion than the traditional
(and often very slow) nested-loops join. The reason for this is that
since the ripple join is symmetric, each input relation must serve as
the inner relation in turn, leading to redundant computation in order
to maintain statistics and confidence intervals, compared with even
a traditional nested-loops join. An indexed ripple join can be faster
than a nested-loops ripple join, but since random clustering of the
input relations is an absolute requirement for estimation accuracy,
the index used must be a secondary index, and an indexed ripple
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Figure 1: Performing sampling steps during a ripple join.
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Figure 2: Progression of the first pass of symmetric version of
the hybrid hash join.
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join is essentially nothing more than a slower version of the tradi-
tional indexed, nested-loops join. Thus, it still requires at least one
or two disk seeks per input record to perform an index lookup to
join each record. At 10ms per seek using modern hardware, this
equates to only 360,000 records processed per hour per disk.

2.2 OLA and Out-Of-Core Joins
While it is very fast in main memory, the hashed ripple join
becomes unusable as soon as the central hash table becomes too
large to fit into main memory. The problem is that when a large
fraction of the hash table must be off-loaded to disk, then each addi-
tional record encountered from the input file will require one or two
random disk head movements in order to add it to the hash table,
join it with any matching, previously-encountered records, and then
update the output statistics. Again, at 10ms per seek using modern
hardware, this equates to only a few hundred thousand records pro-
cessed per hour per disk.

Furthermore, designing a join algorithm that can operate effi-
ciently from disk as well as provide tight, meaningful confidence
bounds is a difficult problem. Consider hybrid hash join [17] over a
query of the form:

SELECT expression (e, s)
FROM EMP e, SALES s
WHERE predicate (e, s)

where predicate is a conjunction containing the clause e.k = s.k. A
hybrid hash join would operate by first scanning the first input rela-
tion EMP, hashing all of EMP’s records on the attribute EMP.k to a
set of buckets that are written out to disk as they are constructed,
except for a single, “special” bucket that is pinned in main memory.
After hashing EMP, the second relation SALES is then scanned and
hashed on the attribute SALES.k. Any records from SALES that
hash to the “special” pinned bucket are joined immediately, and the
results are output online. All other records are written to disk. In a
second pass over the buckets from both EMP and SALES, all match-
ing buckets are joined, and resulting records are output as they are
produced.

One could very easily imagine performing a ripple-join-like
symmetric variation on the hybrid hash join, where the first passes
through both SALES and EMP are performed concurrently, and all
additions to the “special” pinned bucket are joined immediately and
used to produce an estimate to the query answer. If a hash function
is used which truly picks a random subset of the records from each
relation to fall in the special pinned buckets, then the resulting join
is amenable to statistical analysis. As the relation EMP is scanned, a
random set of records from EMP will be chosen by the hash func-
tion. Because any matching records from SALES will be pinned in
memory, any records from EMP chosen by the hash function can
immediately be joined with all records encountered thus far from
SALES. If the join attribute is a candidate key of the EMP relation,
the set of records chosen thus far from EMP is a true random sample

of EMP, and this set is independent from the set of all records that
have been read from SALES. Thus, a statistical analysis very simi-
lar to the one used by Haas [7], Haas et al. [8] and Haas and Heller-
stein [6] can be used to describe the accuracy of the resulting
estimator. The progression of the join with enough memory to
buffer four records from each input relation is shown in Figure 2.

However, there are several serious problems with this particular
online join, including:

• Early on, the accuracy of the resulting estimator will be worse
than for a ripple join. This is particularly worrisome, because if
OLA is used for exploratory data analysis, it is expected that
many queries will be aborted early on. Thus, a fast and accurate
estimate is essential. In the case of the symmetric hybrid hash
join, the issue is that the pinned bucket containing records from
EMP will not fill until EMP has been entirely scanned during the
first pass of the join. Contrast this with a ripple join: if we have
enough memory to buffer nEMP records from EMP, then after nEMP
records have been read from EMP, a ripple join will use all nEMP
records immediately to estimate the final answer to the join. On
the other hand, after scanning nEMP records, the symmetric hybrid
hash join would use only around nEMP/|EMP| records to estimate
the final answer. A comparison between the two algorithms after
four records from each input relation have been read is shown in
Figure 3. While the symmetric, hybrid hash join has ignored three
of the four records from each input relation, the ripple join has
fully processed all four.

•If the join attribute is not a candidate key of EMP, then statistical
analysis of the join is difficult. The problem in this case is that the
records chosen by the hash function will not be a random sample
of the records from EMP, since the function will choose all records
with a given key value k. The statistical properties of the join
under such circumstances are exceedingly difficult to analyze.

•Extending the statistical analysis of the symmetric hybrid hash join
to the second phase is difficult as well. From a statistical perspec-
tive, the issue is that each pair of buckets from EMP and SALES
joined during the second phase are not independent, since they
contain records hashed to matching buckets. Taking into account
this correlation is difficult. Furthermore, the records from each
on-disk bucket from SALES have already been used to compute
the estimator associated with the growing region of Figure 2, so
each bucket join is not independent of the initial estimator com-
puted during the hash phase.

3 The SMS Join: An Overview
The difficulties described in the previous Section illustrate why
developing out-of-core joins with statistical guarantees is a daunt-
ing problem. We now give a brief overview of the SMS join, which
is designed specifically to maintain statistically meaningful confi-
dence bounds in a disk-based environment. The SMS join is a gen-
eralization of the ripple join, in the sense that if it is used on a small
data set or if it is terminated before memory has been exhausted,
then it is identical to the ripple join. However, the SMS join contin-
ues to provide confidence bounds throughout execution, even when
it operates from disk. Intuitively, the SMS join is best characterized
as a disk-based sort-merge join, with several important characteris-
tics that differentiate it from the classic sort-merge join.

3.1 Preliminaries
In our description of the SMS join, we assume two input relations,
EMP and SALES, which are joined using the generic query:

SELECT expression (e, s)
FROM EMP as e, SALES as s
WHERE predicate (e, s)
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Figure 3: Comparison of a symmetric hybrid hash join and a
ripple join, with enough memory to buffer four records from
each input relation.
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While we restrict our discussion to the case of two input relations,
the SMS join can easily be extended to handle a larger number. Just
as in the case of the ripple join, in order to provide our statistical
confidence bounds, we will require that input relations EMP and
SALES are clustered in a statistically random fashion on disk. We
assume that predicate is a conjunction of boolean expressions, one
of which is an equality check of the form (e.k = s.k), so that a classi-
cal hash join or sort-merge join could be used over the attribute k,
which we subsequently refer to as the key. In our discussion, we
also assume that expression is SUM or COUNT; AVERAGE queries
can be handled by treating the query as a ratio of a SUM and a
COUNT query. Since the associated confidence bounds must simul-
taneously take into account the potential for error in both queries,
one of several methods must be chosen to combine the estimates.
One method suggested by Luo et al. is the use of Bonferroni’s ine-
quality [8].

In general, we will assume that B blocks of main memory are
available for buffering input records while computing the join. For
simplicity, we assume that additional main memory (in addition to
those B blocks) is available for buffering output records, computing
required statistics, and so on. We will use the notation |EMP| and
|SALES| to denote the size of the EMP and SALES input relations
(in blocks) respectively.

3.2 Three Phases of the SMS Join
Given these preliminaries, the SMS join has three phases:

(1) The sort phase of the SMS join corresponds to a modified ver-
sion of the sort phase of a sort-merge join. In this phase, the two
input relations EMP and SALES are read in parallel and sorted into
runs. The process of reading in and sorting each pair of runs from
EMP and SALES is treated as a series of hashed ripple joins, each of

which is used to provide a separate estimate for the final result of
the join. Using the techniques of Haas and Hellerstein, the estimate
from the ith ripple join can be characterized by a normally distrib-
uted random variable Ni. As described subsequently, all of the esti-
mators can be combined to form a single running estimator N,
where on expectation N provides the correct estimate for the query
result. The sort phase of the SMS join is illustrated in Figure 4 (a)
through (e).

(2) The merge phase of the SMS join corresponds with the merge
phase of a sort-merge join. Just as in a sort-merge join, the merge
phase pulls records from the runs produced during the sort phase,
and joins them using a lexicographic ordering.

The key difference between the SMS join and the sort-merge
join is that in the SMS join, the sort phase runs concurrently with
(and sends information to) the shrinking phase of the join. 

(3) The shrinking phase of the SMS join is performed concurrently
with the merge phase. Conceptually, the merge phase of the SMS
join divides the data space into four regions, shown in Figure 4 (f)

through (h). If  and  refer to the subsets of EMP and
SALES that have been merged thus far, then as depicted in Figure

4, the four regions of the data space are (EMP - )  (SALES -

), (EMP - )  ,   (SALES - ),

and   . Assuming that expression is SUM or COUNT,
then the final answer to our query is simply the sum of expression
over each of these four regions. 

Just as in a classical sort-merge join, the merge phase of the SMS
join allows us to compute the value of expression(e, s) for the latter

three joins exactly (note that in the case of (EMP - ) 
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 and   (SALES - ), this value will always be
zero). However, in the classical sort-merge join, the region corre-

sponding to (EMP - )  (SALES - ) in Figure 4 would
be ignored. Because the goal of the SMS join is to produce a run-
ning estimate for the eventual query answer, the value for expres-

sion (e, s) over (EMP - )  (SALES - ) will be
continually estimated by the shrinking phase of the join algorithm.

The specific task of the shrinking phase is handling the removal
of records from the sort phase ripple join estimators, and updating
the estimator N corresponding to the value of expression(e, s) over

the join (EMP - )  (SALES - ). Records that are con-
sumed by the merge phase must be removed from each Ni that con-
tributes to N so that we ensure that each of the four regions depicted
in Figure 4 (f) through (h) remain disjoint. As long as this is the
case, the value of expression(e, s) over each of the four regions can
simply be summed up to produce a single estimate for the eventual
query result.

We now describe each of the phases of the SMS join in more detail.

4 The Sort Phase
The sort phase of the SMS join is very similar to the first phase of a
sort-merge join. The phase is broken into a series of steps, where at
each step a subset of each input relation of total size small enough
to fit in main memory is read from disk, sorted, and then written
back to disk. Despite the similarity, some changes will be needed to
provide an online estimate for the eventual answer to our query.

4.1 The Basic Algorithm
Pseudo-code for the sort phase of the SMS join is given above in
Algorithm 1. During each step of the sort phase, a subset of the
blocks from each input relation are first read in parallel, and joined
in memory using a hashed ripple join. After the blocks from each
relation have consumed all of the available buffer memory, the
records of each subset (called a “run”) are then sorted on the join

attribute(s). The operation of the sort phase is visualized above in
Figure 4 (a) through (e).

As shown in Figure 4, if the input relations are large, the sort
phase will require a series of ripple joins to produce all of the neces-
sary runs. Once the sorting is complete for the ith ripple join, the (i
+ 1)th ripple join begins by reading in the next set of blocks from
each input relation. Since the main memory buffer is totally con-
sumed with the sorted records from the previous ripple join, we
must make room for this next set of blocks. Thus, the sorted records
from the previous ripple join are written back at the same time that
the records from the next ripple join are processed. The writing-
back and reading-in are carefully interleaved (as depicted in Figure
5) since we wish the join to proceed smoothly, rather than with a
series of delays caused by the need to write a long run of pages.
Such delays should be avoided because they will translate into time
periods where the estimate of the eventual answer to the join (and
the associated confidence bounds) cannot be updated. 

4.2 Statistical Analysis
We now address the problem of providing online estimates for the
eventual answer to the query during the sort phase of the SMS join,
along with statistical guarantees on the accuracy of that estimate.

We can characterize the estimate provided by each of the indi-
vidual sort phase estimators by any of a number of methods, includ-
ing the analysis provided by Haas and Hellerstein [6]. While each
individual estimate is an unbiased estimate for the eventual answer
to the join, the problem we face is significantly different than that
faced by Haas and Hellerstein: we have many sort-phase ripple join
estimators. The question is: How can these estimates be combined
in a meaningful way, so as to produce a single estimator that is bet-
ter than any of its constituent parts?

Let Ni be a random variable characterizing the estimate provided
by the ith ripple join. The technique that we use is to associate a

weight wi with each individual estimate, where . Then,

after n sort-phase ripple joins, the random variable 

is itself an unbiased estimator for the eventual query answer. The
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While EMPi
Write nEMP blocks from EMPi to disk
Write nSALES blocks from SALESi to disk
Read nEMP blocks from EMP into EMPi + 1 
Read nSALES blocks from SALES into SALESi + 1
Join the new blocks from SALES with EMPi + 1
Join the new blocks from EMP with SALESi + 1

Sort EMPi+1 and SALESi+1 
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Figure 5: Interleaving of reads and writes during the sort
phase. The first run is read from the input relation and sorted
(a). Next, a small subset of the sorted run is written out, and a
small subset of the next run is read in (b). Finally, the remain-
der of the run is written out, and the next run is completely
read in (c).
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reason that we weight each ripple join is that a new ripple join that
has just begun is likely to have a larger degree of inaccuracy, and
should not be weighted identically to one that has completed. Also,
during the shrinking phase of the SMS join, the various ripple joins
can shrink at different rates, and will all have differing variances.
The weights will be chosen so as to maximize the accuracy of our
estimate.

To compute the accuracy of N, we need to characterize the vari-
ance of N. In general, the formula for the variance is:

The covariance appears because the various ripple join estimators
are not independent: if a tuple is used during the ith ripple join, then
it cannot be used during the jth ripple join. However, it turns out
that in practice, the covariance is almost always negative (see the
detailed analysis presented in the appendix). This leaves us with
two options:

(1) We can take the covariance into account during the SMS join,
which may provide tighter confidence bounds, or

(2) We can simply ignore the covariance. While this may result in
the SMS join understating the accuracy of its estimate, it sim-
plifies the implementation of the join somewhat, and also pro-
vides the join with something of a safety net on its confidence
bounds (an often-overlooked fact is that all practical confidence
bounds are themselves estimates since they rely on estimates of
the variance terms; see Haas and Hellerstein [6], Section 5.2.2).

In the remainder of the paper, we will take the second approach.
However, the interested reader can browse the outline of our analy-
sis of the true variance of N presented in the appendix of the paper.
It would be a relatively straightforward task to modify our algo-
rithms to take into account the covariance given in the appendix
(specifically, the book-keeping described in Section 6 would need
to be altered to store the covariance terms).

If we simply ignore the covariance terms, then we can easily
apply the analysis of Haas and Hellerstein to characterize each Ni as

a normally distributed random variable with variance . By the
rule for a normal sum distribution, we then know that the variable N

is then itself normally distributed, with a variance of .

Confidence intervals for N can then be computed using standard
methods [18].

The purpose of weighting each wi is to maximize the accuracy of
our answer. This is done by minimizing the variance of the variable
N, which is accomplished by solving the following:

minimize  over w1, w2, ..., wn 

subject to 

This problem can be solved using Lagrangian multipliers, which

gives the solution .

4.3 Of Aspect Ratios and Performance Hiccups
In order to ensure a smooth increase of the estimation accuracy that
allows the statistical information given to the user to be constantly
updated as the sort phase progresses, one requirement is that the
processing of all of the input relations during the sort phase join
should finish at precisely the same time. This is the reason for the

calculations of the first few lines of Algorithm 1, which together
guarantee that every time we begin the next iteration of the loop of
line (6), the same fraction of each input relation has been processed. 

Why would it be a problem if we find ourselves in a situation
where EMP has been totally processed and organized into runs,
while SALES has only been half processed (or vice versa)? The
issue is that if one relation were completely processed while the
other was not, there would be a “hiccup” where the estimate and
accuracy could not be updated as the remainder of the other relation
was sorted into runs as a prelude to the merge phase of the join.

This is one of the reasons that we do not consider the possibility
of altering the relative rate at which the various input relations are
processed, or “aspect ratio,” of the sort phase, as was suggested by
Haas and Hellerstein in their work on the ripple join. The aspect
ratio of the individual ripple joins could be altered by incorporating
the adaptive techniques described by Haas and Hellerstein into lines
(10) and (11); but these techniques should only be applied locally,
to each individual ripple join.

5 The Merge Phase of the SMS Join
After the sort phase completes, the merge phase is invoked. The
merge phase of the SMS join is similar to the merge phase of a sort-
merge join. Let the function qval(e, s) evaluate to expression(e, s) if
predicate(e, s) is true; otherwise, qval(e, s) is zero. At all times, the
merge phase of the join maintains the value:

In order to process additional tuples, the merge phase repeatedly
pulls tuples off of the sort-phase runs and joins them. Just as in a
classical sort-merge join, two sets of records  and

 are pulled off of the head of each run produced by the

sort phase, such that for all  and , e.k = s.k. Assuming
that the aggregate function in question is SUM or COUNT, the merge
phase then computes the value:

Given v and total, then the value of qval applied to ( ) 

( ) is total = v + total.
However, unlike in a classical sort-merge join, the merge phase

of the SMS join is assigned one additional task: it must ask the
shrinking phase of the join to compute an estimate over the remain-
ing portion of the data space. At the same time that the merge phase
is executed, the shrinking phase is charged with maintaining the
estimator for the aggregate value associated with the region (EMP -

)  (SALES - ). This estimator is combined with
total to produce the current estimate after each pair of key values
has been merged. 

In order to produce the current estimate, the merge phase asks
the concurrent shrinking phase to remove E and S from the compu-

tation of the estimator associated with (EMP - )  (SALES -

) via the function called shrink(k, |EMP - |, |SALES -

|), where k is the newly removed key value. The latter two
arguments denote the number of records remaining in what is left of
EMP and SALES after E and S have been removed. shrink then
returns the value and variance of a random variable , which
estimates the sum of qval over the portion of the data space that has
not yet been merged. Given this information, at all times during the
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merge phase the current estimate for the answer to the query is total
+ , and the variance of this estimate is Var( ). 

6 The Shrinking Phase of the SMS Join
As the portion of the data space associated with the merge phase
grows, the task of the shrinking phase is to update the estimator N

associated with the region (EMP - )  (SALES - ) by
incrementally updating each of the estimators N1, N2, ..., Nn, to
reflect the fact that records are constantly being removed from the
portion of the data space by the merge. Updating N to reflect the

continual loss of the records to the sets  and  is equiv-
alent to removing these records from each of the ripple joins,
recomputing the statistics associated with each individual ripple
join, and then recombining the estimators N1, N2, ..., Nn (as
described in Section 4.2) to produce a new estimator associated
with the reduced portion of the data space. The shrinking phase sys-
tematically undoes the work accomplished during the sort phase by
removing records from each of the sort phase ripple joins. 

6.1 Sufficient Statistics for the Shrinking Phase
In order to perform this task, the shrinking phase needs access to
very specific information about each of the individual sort phase
ripple joins. To understand which statistics must be maintained in
order to adjust N correctly, recall that as the merge and shrinking
phases begin, the estimator N is associated with the result of the
entire join EMP  SALES. N is computed by taking many sets of
mutually exclusive samples from EMP and SALES, joining those
samples to compute each Ni (using a series of ripple joins), and
combining join results as described in Section 2. 

When the merge phase begins, keys are removed one at a time
from both EMP and SALES, in lexicographic order. For example,
imagine that the smallest key in the data set has the value 1. The
first step undertaken by the merge phase will be the removal of all
records with key value 1 from both EMP and SALES. Thus, the
shrinking phase must have access to statistics sufficient to recom-
pute N over (EMP - {all records with key value 1})  (SALES -
{all records with key value 1}). We will use the notation 
to denote this recomputed N. If the next key value is 2, then the next
step undertaken by the merge phase is removal of all records with
key value 2 to compute . Thus, the shrinking phase should
also have access to statistics sufficient to recompute the value of N
over the smaller relations (EMP - {all records with key value 1 or
2})  (SALES - {all records with key value 1 or 2}). 

Just as N is computed as a combination of the individual estima-
tors N1, N2, ..., Nn,  for the key value k is computed as a

combination of the individual estimators , , ...,

 using exactly the same method. Since each estimator
 is defined by its mean and variance  and

 respectively, it follows that to perform the computations
required during the shrinking phase, we need to access these two
statistics for , .

6.2 The Sort Phase Revisited
Obviously, it is impractical to re-read each of the runs from disk
every time that shrink() is called in order to compute . To

avoid the necessity of re-reading each of the runs, we will instead

compute each  and  during the sort phase of the

join, at the same time that each run is in memory. 

To do this, we make the following modification to Algorithm 1.
After the ith runs EMPi and SALESi from EMP and SALES have
been read into memory and joined via a ripple join, but before the
runs have been written back to disk, both are sorted in reverse order
according to EMP.k and SALES.k. Then Algorithm 2 is executed.
The execution of this algorithm is shown pictorially in Figure 7.
Essentially, this algorithm operates exactly as a normal ripple join
does, except that it operates over sets of records with the same key
values, and it operates in reverse order. Two aspects of the algo-
rithm bear some further discussion.

(1) First, we point out that strictly speaking, the sums computed in
lines (11) and (12) of Algorithm 2 are not really a mean and a vari-
ance of , or any other estimator (hence the “ ” in

 and ). The computation of these values is

shown pictorially in Figure 7. In fact, it is impossible during the sort
phase to actually compute the mean and the variance of ,
since we do not know the number of records in the data set that
have a key value greater than k until the merge phase of the join

executes. However, the two sums  and  will

allow us to compute the mean and variance of  at a later

time, when it is actually needed (see Section 6.3 below).

(2) Second, if there are a large number of distinct key values in the
database and/or a large number of runs needed to perform the join,
then storing each sum computed during lines (11) and (12) of Algo-
rithm 2 may require more memory than is available. However, we
do not actually need to store these statistics for every key value,
since the statistics are used only to periodically present an estimate
to the user. Thus, when we process the first run during the sort
phase, we chose an acceptably small set of key values to compute
statistics for. This is done by hashing each key value, and then
moding the result by a value m. m is computed by first getting a
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rough estimate for the duration of the shrinking phase of the join in
seconds (which is roughly equivalent to the time required to read
both input relations from disk), and then dividing this number by
the number of records in the larger input relation. This process will
yield enough information to update the current estimate approxi-
mately every second during the join’s shrinking phase.

6.3 Computing 
Given that we compute and store these statistics, we now discuss
how they are used to compute each  after the call

shrink(k,  = |EMP - |,  = |SALES - |)
made by the merge phase of the join.

Assuming that we are estimating the result to a SUM or COUNT

query, then estimating  and  given 

and  is fairly straightforward. Let  =

 and let  = 1. Then:

and

All  pairs computed in this way are then

used to compute the value of the variable  using exactly the
same optimization method used during the sort phase of the join.
This variable is then returned to the merge phase of the join which,
as described in Section 5, makes use of total +  as an unbi-
ased estimator for the eventual query answer. The variance of this
estimator is Var( ), and this variance can be used to com-
pute confidence bounds using standard methods [18].

7 Benchmarking

7.1 Overview
In this Section, we give some experimental results detailing the
accuracy and efficiency of the SMS join. Using the C++ program-
ming language, we have implemented and tested three different
algorithms for processing of a relational join of the form:

SELECT SUM (SALES.VALUE)
FROM EMP, SALES
WHERE EMP.KEY = SALES.KEY AND EMP.PRED

The three methods that we implemented and tested are as follows:

•The SMS join. The SMS join was implemented exactly as
described in this paper.

•A hashed, paged ripple join. We also implemented a hashed ripple
join. However, because we wish to test our algorithms over very
large databases, we developed a simple extension to the hashed
ripple join that includes the ability to page hash buckets in and out
of memory as needed, when the hash table used to buffer records
becomes full.

•A sort-merge join. We also implemented a classical, two-phase
sort-merge join [17]. Since in this work we are interested prima-
rily in aggregate queries, our sort-merge join does not write any
output records to disk; rather, an aggregation operator is applied
directly to any record pairs matching the join predicate, and only a
running total is maintained. The sort-merge join is tested prima-

1. In this expression,  is the traditional notation used to
denote the relational selection operator. Note that this is unrelated

to the quantity !
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rily as a sanity check to verify that the SMS join does not require
an inordinately long time to run to completion.

7.2 Data Generation
We have tested the various join algorithms over many different data
sets, but for brevity we will describe and discuss the results from
only two of those data sets in this paper:

•The normal data set. In this particular synthetically-generated data
set, two 20GB relations are included. Records in both EMP and
SALES are 1KB in size, resulting in around 20 million records in
each data set. Records from EMP are generated so that each record
from EMP will match with 5 records from SALES on average; the
actual number of matches is normally distributed with a standard
deviation of 40%. The value of the VALUE attribute for the
SALES relation is generated so that the attribute is correlated over
all SALES records with the same key. For each set of records
from SALES with the same key, the values for this attribute are
normally distributed; the mean of the distribution is itself ran-
domly chosen, and the variance is 25%.

•The zipf data set. In the zipf data set, both EMP and SALES are
again 20GB in size, but this time records are 100B in size, and so
the total number of records in each relation is 200 million. Keys in
the EMP relation are generated using a zipfian distribution; the
most common key appears 10,000 times, the least common key
appears one time, and the parameter of the zipf distribution is 0.3.
The number of matches of each key from EMP with keys in
SALES is distributed using a zipfian distribution as well. The
value of the SALES.VALUE parameter is generated as described
above for the normal data set.

7.3 Experiments
All experiments were performed on a set of Linux workstations,
having 2GB of RAM and a 2.2GHz clock speed. Each machine was
equipped with two 80GB 15,000 RPM Seagate SCSI disks. We
have benchmarked these disks and determined that they have a
sequential read/write rate of 35 to 50 MB/sec, and a worst-case seek
time of 10ms. 64KB data pages were used. For each experiment,
the input data were stored on one disk, and all intermediate results
such as sorted runs were stored on the second disk. Each algorithm
was allowed 10,000 disk pages of internal buffer memory to create

Figure 8: Comparison of the confidence bounds produced by the SMS join, as compared to a hash ripple join operating in a paged
environment. In each plot, three lines are shown. The outer two are the lower and upper confidence bounds, respectively. The inner
line is the estimate at the given time. The plots are shown from the point where the SMS join runs out of memory.
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its runs or store a hash table; additional memory was allowed to
hold smaller, in-memory structures. A separate LRU buffer man-
ager was used under the hashed ripple join implementation. This
LRU manager was allowed to manage 10,000 pages of swap space.

We began our experiments by running the aggregate query
described above over both data sets using our sort-merge join
implementation. We observed a running time of 40 minutes to com-
plete the join over the normal data set, and a running time of 1 hour
and 6 minutes to complete the join over the zipf data set. As
expected, the vast majority of time required by the sort-merge join
was spent in reading and writing pages to and from disk.

Next, we ran our implementation of the SMS join to completion
over the same data. The SMS join required 41 minutes to com-
pletely join the normal data set, and one hour, 10 minutes to join the
zipf data set. A 95% confidence was selected as input to the SMS
join. The confidence bounds produced during both of these runs are
plotted as a function of time in Figure 8.

Finally, we ran the paged ripple join implementation on the data
sets until the elapsed time matched the time required by the SMS
join to complete its joins. The confidence bounds produced by the
hashed ripple join are also plotted as a function of time in Figure 8.
Again, a 95% threshold was chosen as a parameter to the algorithm.

7.4 Discussion and Future Work
Clearly, our experiments show that the SMS join far outperforms
the hashed ripple join if the user wishes to continue running the join
past the time that the amount of data read is too large to fit into
main memory. In our experiments, “out-of-memory” threshold
occurred in around 15 seconds; past this time, both algorithms are
running from disk. All plots are sized so that the height from top to
bottom of the plot is approximately equal to the width of the confi-
dence interval at the time that main memory is exhausted. Also, we
observed that although both of the data sets were synthetically pro-
duced and reasonably well-behaved, the amount of main memory
available was not enough to achieve extremely tight bounds without
resorting to using the disk. After the main memory was exceeded,
the confidence interval was still several percent off the aggregate
value in both cases. For many applications, we conjecture that this
bound will not be tight enough. This strongly argues for use of an
algorithm like the SMS join that can run efficiently from disk and
still maintain confidence bounds.

However, this is not to imply that the SMS join is a panacea. We
have performed similar experiments on other data sets. One clear
negative result that we have observed from our experience is that it
is a simple matter to synthetically produce data that defeat the sta-
tistical analysis used by the SMS join. Specifically, if the data are
extremely skewed so that one record e from EMP joins with mil-
lions of records from SALES, the SMS join may give confidence
bounds that are tightly clamped around a bad estimate. By defini-
tion, this single record e can only be present in one of the ripple
joins used by the SMS join to estimate the final query result. The
estimate produced by that particular join will in turn be “out-voted”
by the other joins when the estimates are combined, leading to the
potential for a great deal of inaccuracy. This particular problem
with sampling over joins is well-understood [1]. The classic ripple
join will suffer in this instance as well: due to a sample size that is
limited by the amount of main memory, the regular ripple join will
never see the record e, and it will have a correspondingly inaccurate
result. 

Dealing with this particular problem will be an important area
for future work. One idea is to use a variation on bifocal sampling
[5] during the sort phase of the SMS join. Frequent key values
could be identified during the first pass, and statistical information
buffered about the characteristics of the records associated with
such key values. It may be possible to store enough information so

that when a match is found in any of the various runs, the ripple join
estimators can all be updated accordingly. 

8 Related Work
Online aggregation was first proposed by Hellerstein, Haas, and
Wang [10]. This work eventually grew into the UC Berkeley Con-
trol project [9], which resulted in the development of the ripple join
[6]. This work has its roots in a large body of earlier work that was
concerned with using sampling to answer aggregate queries; the
most well-known early papers are by Hou et al. [11][12]. While that
early work was concerned with how to use a random sample, the
most well-known work considering how to perform random sam-
pling is due to Olken and Rotem [15][16].

Our goal in this work is in developing an efficient, disk-based
join algorithm that gives its initial results early, and uses those
results to continuously estimate the final result of the query.
Though no previous work has considered this from a statistical
point of view, some other, recent work has considered the problem
of developing non-blocking disk-based join algorithms
[3][4][13][14].   

9 Conclusions
In this paper, we have introduced the SMS join, which is a join
algorithm suitable for online aggregation. The SMS join provides
an online estimate and associated statistical guarantees on the esti-
mate accuracy from start-up through completion. The key innova-
tion of the SMS join is that it is the first join algorithm to achieve
such statistical guarantees with little or no loss in performance com-
pared with off-line alternatives (like the sort-merge join or the
hybrid hash join), even if the input tables are too large to fit in
memory. Given that the SMS join combines statistical guarantees
with efficiency in a disk-based environment, it would be an excel-
lent choice for computing the value of an aggregate function over
the result of a relational join.
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Appendix
In this appendix, we compute formulas for the weighted sum of
variances of individual estimators and the covariance terms dis-
cussed in Section 4.2. Note that our analysis methodology differs
somewhat from the analogous analysis given by Haas and Heller-
stein [6], in that we use an exact, finite-population analysis, rather
than a large-sample, infinite population analysis. 

We consider the general problem of computing the following
aggregate over the cross-product of two finite relations R, and S:

where  is the value of the aggregate function applied to tuple t.
Note that this is the most general aggregate of the type SUM we can
compute over the cross-product, and it can easily be used to imple-
ment any join by incorporating the join and selection predicates in
the computation of , i.e., we can define  to be 0 for tuples not
in the join. While this formula is compact and matches the intuition,
it is not very useful in the analysis. It can be rewritten as:

by observing that, to get the tuples in the cross-product, we com-
bine all tuples  in R with all tuples  in S. We will switch
between  and  whenever convenient.

In order to model the weighted combination of the ripple join
estimators described in the paper, let ,...,  and ,...,  be
random partitioning of R and S. We simplify the presentation by
assuming that each partition is exactly the same size: | | = |R| / n
and | | = |S| / n (though the analysis can be extended to arbi-
trarily-sized partitions). To model the random partitioning of R and
S, we introduce two families of random variables:  and .

 takes value 1 if  and 0 otherwise.  is similarly
defined. Since the partitioning of R and S is performed indepen-
dently, the random variables  and  are always indepen-
dent. With this, Ni, the ith ripple join estimator, is:

where  makes the correction for the size of  and . 
The overall estimate N is simply the weighted sum over all Ni:

Note that our analysis applies to the situation when some of the n
joins have not completed, because we can let wi = 0 for any join that
has not been run. We now show that N is an unbiased estimator of
Q, the aggregate over the join, and we analyze the variance of N.
The following properties of each variable  are useful for the

theoretical development (similar properties hold for ):

                                      E[ ] = 1/ n                   

Note that we expressed the cases using the Kronecker delta symbol
that takes the value 1 if both arguments are the same, 0 if they are
not. The most important property of  is the fact that:

To see why Equation 6 holds, we use the fact that the expectation of
the 0, 1 random variables is the probability that the condition on
which they depend holds. Furthermore, we notice that: (a) when

 and , the two random variables are identical so the
expected value of the product is the expected value of one of them;
(b) when  but  the same tuple has to be in two dif-

ferent partitions, but this never happens; (c) when  and
 the result is the probability that two particular tuples are in

the partition i; this is simply the probability that  is in  multi-

plied by the probability that  is in , given that  is in ;
since a position in both  and R is decided, the conditional proba-

bility is ; (d) when  and  we
have a similar situation as in the previous case, but we do not
occupy a position in .

Now we can prove: 
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which follows directly from linearity of expectation, Equation 5
and independence of X and Y. Since N is a linear combination of
Ni’s, it is unbiased as well.

The variance of N can be expressed in terms of the variance and
covariance of Ni’s:

where  and  simply refer to the first and second terms,
respectively. To compute these two quantities, we compute the
inner formulas:

       

              

       

           

           

           

And similarly:

 

          

           

      

           

           

           

Going from the second to the third equality in the expressions for
both  and  can be achieved by replacing the expression in
Equation 6 for the expectations and using the simplification rule in

Equation 7 for expressions containing . The derivation is tedious
but straightforward (not reproduced here due to lack of space).

In Section 4.2, we argued that it is safe to simply ignore  dur-
ing computation of confidence bounds. Clearly, there is no reason
that  could not be incorporated into the computation of the
bounds. However, we now give some intuition as to why it will usu-
ally be safe (and perhaps even desirable) to ignore . Consider
the expression for . We observe that, using Cauchy-Schwartz
inequality (that is, the triangle inequality on vector spaces), the sec-

ond large term dominates ; thus, their sum is negative. The

same thing happens with the third term and . Even though the

last large term dominates , the difference between the other two

terms and  is likely to dominate since it is likely
larger by . From this observation, we would expect 
to be negative in most cases. 

For an example of the effect of simply ignoring , we plot 
in relation to  for a COUNT(*) equi-join of relations R
and S in which the join attributes of R and S both have a zipfian dis-
tribution, with zipf coefficient 1. We consider the case where R and
S are both partitioned into 100 individual ripple joins, each with
identical weight. Figure 9 plots  versus  with respect
to the number of ripple joins that have been processed thus far (for
example, the value 50 on the x-axis means that 50 out of the 100
individual joins have been processed). The plot depicts two differ-
ent cases: where the two join attributes are perfectly correlated (the
most frequent value in R is also the most frequent in S), and when
they are totally independent. In both cases, the covariance is
strongly negative, indicating that the only effect of ignoring  is

to underestimate the accuracy of the resulting estimate after around
40 of the 100 joins have completed. While this may seem like a
drawback of considering , it may actually be a benefit. As men-
tioned in Section 5.2, the true variance of our estimate can only be
computed exactly after the join has been completed; it must be esti-
mated at all other times. Our initial analysis of the variance of the
natural variance estimator shows that it may be very easy to under-
estimate Var(N), leading to overly-aggressive bounds. Ignoring 
may be a useful way to provide a built-in safety mechanism which
protects against this. We will explore this issue in future work.

Var N( ) wi
2
Var Ni( )

i

n

∑ wi wjCov Ni Nj,( )
j i≠

n

∑
i

n

∑+=

QV QC+= (9)

QV QC

QV wi
2
Var Ni( )

i
n∑ wi

2
E Ni

2[ ] E Ni[ ]2–[ ]
i
n∑= =

wi
2
  Q

2
– n

4
 

t ′S S∈
∑

  t ′R R   ∈
∑

tS S∈
∑

tR R    ∈
∑+





i

n

∑=

E XtR i,  Xt ′R i,[ ] E YtS i,  Yt′S i,[ ] ftR tS,  ft ′R t ′S, )

n 1–( ) wi
2

i
n∑

R 1–( ) S 1–( )
---------------------------------------- n 1 R S––+( )Q

2[=

+ R S n–( )  ftR tS,tS S    ∈∑( )2

tR R    ∈∑
+ S R n–( )  ftR tS,tR R    ∈∑( )

2

tS S    ∈∑
+ n 1–( ) R S ft

2 ]
t R S×    ∈∑

QC wi wjCov Ni Nj,( )
j i≠
n∑i

n∑=

wi wjj i≠
n∑  

i
n∑= E NiNj[ ] E Ni[ ]E Nj[ ]–[ ]

wi wj
j i≠

n

∑  Q
2

– n
4

 
t ′S S∈
∑

t ′R R  ∈
∑

tS S∈
∑

tR R  ∈
∑+





i

n

∑=

E XtR i,   Xt′R j,[ ] E YtS i,   Yt ′R j,[ ] ftR tS,  ft ′R t ′S, )

1 wi
2

i
n∑–

R 1–( ) S 1–( )
---------------------------------------- R S 1–+( )Q

2[=

 – R S  ftR tS,tS S    ∈∑( )2

tR R    ∈∑
 – S R  ftR tS,tR R    ∈∑( )

2

tS S    ∈∑
+ R S ft

2 ]
t R S×    ∈∑

QV QC

δ

QC

QC

QC
QC

R Q
2

S Q
2

Q
2

R S+( )Q
2

R  or S QC

QC QV
QV QC+

Figure 9: Effect of ignoring the covariance. The top two lines
depict the case where the join attributes are perfectly corre-
lated; the bottom two depict the perfectly independent case.
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