
Making B+-Trees Cache Conscious in Main Memory

Jun Rao
Columbia University

junr@cs.columbia.edu

Kenneth A. Ross∗

Columbia University

kar@cs.columbia.edu

Abstract

Previous research has shown that cache behavior is im-
portant for main memory index structures. Cache con-
scious index structures such as Cache Sensitive Search
Trees (CSS-Trees) perform lookups much faster than
binary search and T-Trees. However, CSS-Trees are
designed for decision support workloads with relatively
static data. Although B+-Trees are more cache con-
scious than binary search and T-Trees, their utilization
of a cache line is low since half of the space is used
to store child pointers. Nevertheless, for applications
that require incremental updates, traditional B+-Trees
perform well.

Our goal is to make B+-Trees as cache conscious
as CSS-Trees without increasing their update cost too
much. We propose a new indexing technique called
“Cache Sensitive B+-Trees” (CSB+-Trees). It is a
variant of B+-Trees that stores all the child nodes of any
given node contiguously, and keeps only the address of
the first child in each node. The rest of the children can
be found by adding an offset to that address. Since only
one child pointer is stored explicitly, the utilization of
a cache line is high. CSB+-Trees support incremental
updates in a way similar to B+-Trees.

We also introduce two variants of CSB+-Trees.
Segmented CSB+-Trees divide the child nodes into
segments. Nodes within the same segment are stored
contiguously and only pointers to the beginning of each
segment are stored explicitly in each node. Segmented
CSB+-Trees can reduce the copying cost when there is
a split since only one segment needs to be moved. Full

∗This research was supported by a David and Lucile
Packard Foundation Fellowship in Science and Engineering,
by an NSF Young Investigator Award, by NSF grant number
IIS-98-12014, and by NSF CISE award CDA-9625374.

CSB+-Trees preallocate space for the full node group
and thus reduce the split cost. Our performance studies
show that CSB+-Trees are useful for a wide range of
applications.

1 Introduction

1

10

100

1000

10000

1980 1985 1990 1995 2000

pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

CPU Performance (60%/yr)
DRAM Performance (10%/yr)

Figure 1: CPU-memory Performance Imbalance

As random access memory gets cheaper, it be-
comes increasingly affordable to build computers
with large main memories. The recent “Asilomar
Report” ([BBC+98]) predicts: “Within ten years, it
will be common to have a terabyte of main memory
serving as a buffer pool for a hundred-terabyte
database. All but the largest database tables will
be resident in main memory.” But main memory
data processing is not as simple as increasing the
buffer pool size. An important issue is cache be-
havior. The traditional assumption that memory
references have uniform cost is no longer valid given
the current speed gap between cache access and
main memory access. [ADW99] studied the perfor-
mance of several commercial database management
systems in main memory. The conclusions they
reached is that a significant portion of execution
time is spent on second level data cache misses and
first level instruction cache misses. Further more,
CPU speeds have been increasing at a much faster
rate (60% per year) than memory speeds (10% per
year) as shown in Figure 1. So, improving cache
behavior is going to be an imperative task in main
memory data processing.

Index structures are important even in main

 

 

Permission to make digital or hard copies of part or all of this  
work or personal or classroom use is granted without fee  
provided that copies are not made or distributed for profit or  
commercial advantage and that copies bear this notice and the  
full citation on the first page. To copy otherwise, to republish, to  
post on servers, or to redistribute to lists, requires prior specific  
permission and/or a fee. 
MOD 2000, Dallas, TX USA 
© ACM 2000 1-58113-218-2/00/05 . . .$5.00 

 

475



memory database systems. Although there are no
disk accesses, indexes can be used to reduce overall
computation time without using too much extra
space. Index structures are useful for single value
selection, range queries and indexed nested loop
joins. With a large amount of RAM, most of the
indexes can be memory resident. In our earlier
work [RR99], we studied the performance of main
memory index structures and found that B+-Trees
are more cache conscious than binary search trees
and T-Trees [LC86]. We proposed a new index
structure called “Cache-Sensitive Search Trees”
(CSS-Tree) that has even better cache behavior
than a B+-Tree. CSS-Trees augment binary search
by storing a directory structure on top of the
sorted list of elements. CSS-Trees avoid storing
child pointers explicitly by embedding the directory
structure in an array sequentially, and thus have
a better utilization of each cache line. Although
this approach improves the searching speed, it
also makes incremental updates difficult since the
relative positions between nodes are important. As
a result, we have to batch updates and rebuild the
CSS-Tree once in a while.

In this paper, we introduce a new index structure
called the “Cache-Sensitive B+-Tree” (CSB+-Tree)
that retains the good cache behavior of CSS-Trees
while at the same time being able to support
incremental updates. A CSB+-Tree has a structure
similar to a B+-Tree. Instead of storing all the child
pointers explicitly, a CSB+-Tree puts all the child
nodes for a given node contiguously in an array and
stores only the pointer to the first child node. Other
child nodes can be found by adding an offset to
the first-child pointer. This approach allows good
utilization of a cache line. Additionally, CSB+-
Trees can support incremental updates in a way
similar to B+-Trees.

CSB+-Trees need to maintain the property that
sibling nodes are contiguous, even in the face of
updates. We call a set of sibling nodes a node
group. There are several ways to keep node groups
contiguous, all of which involve some amount of
copying of nodes when there is a split. We present
several variations on the CSB+-Tree idea that differ
in how they achieve the contiguity property. The
simplest approach is to deallocate a node group
and allocate a new larger node group on a split.
“Segmented” CSB+-Trees reduce the update cost
by copying just segments of node groups. “Full”
CSB+-Trees pre-allocate extra space within node
groups, allowing easier memory management and
cheaper copying operations.

We compare the various CSB+-Tree methods
with B+-Trees and CSS-Trees, both analytically
and experimentally. We demonstrate that Full
CSB+-Trees dominate B+-Trees in terms of both
search and update times, while requiring slightly
more space than B+-Trees. Other CSB+-Tree
variants that take substantially less space than B+-
Trees also outperform B+-Trees when the workload
has more searches than updates.

It is now well accepted that many applications
can benefit from having their data resident in a
main memory database. Our results are significant
for main memory database performance because
index operations are frequent. Full CSB+-Trees
are the index structure of choice in terms of time
performance for all workloads. For applications
with workloads where there are more searches
than updates, the other CSB+-Tree variants also
outperform B+-Trees. Such applications include
on-line shopping where the inventories are queried
much more often than changed, and digital libraries,
where the frequency of searching for an article is
higher than that of adding an article.

The rest of this paper is organized as follows.
In Section 2 we survey related work on cache
optimization. In Section 3 we introduce our
new CSB+-Tree and its variants. In Section 4
we compare the different methods analytically.
In Section 5 we present a detailed experimental
comparison of the methods. We conclude in
Section 6.

2 Related Work

2.1 Cache Memories and Cache
Conscious Techniques

Cache memories are small, fast static RAM memo-
ries that improve program performance by holding
recently referenced data [Smi82]. A cache can be
parameterized by capacity, block (cache line) size
and associativity, where capacity is the size of the
cache, block size is the basic transferring unit be-
tween cache and main memory, associativity deter-
mines how many slots in the cache are potential
destinations for a given address reference. Typical
cache line sizes range from 32 bytes to 128 bytes.

Memory references satisfied by the cache, called
hits, proceed at processor speed; those unsatisfied,
called misses, incur a cache miss penalty and have to
fetch the corresponding cache block from the main
memory. Modern architectures typically have two
levels of cache (L1 and L2) between the CPU and
main memory. While the L1 cache can perform

476



at CPU speed, the L2 cache and main memory
accesses normally introduce latencies in the order of
10 and 100 cycles respectively. Cache memories can
reduce the memory latency only when the requested
data is found in the cache. This mainly depends
on the memory access pattern of the application.
Thus, unless special care is taken, memory latency
will become an increasing performance bottleneck,
preventing applications from fully exploiting the
power of modern hardware.

Some previous work on cache conscious tech-
niques were summarized in [RR99]. Recently,
[BMK99] proposed to improve cache behavior by
storing tables vertically and by using a more cache
conscious join method.

2.2 Cache Optimization on Index
Structures

B+-Trees. We assume that the reader is familiar
with the B+-Tree index structure [Com79]. In
[RR99] an analysis of the search time for B+-Trees
in a main-memory system was performed. The
search times were not as good as CSS-Trees because
at least half of each B+-Tree node is taken up by
pointers rather than keys. Compared with CSS-
Trees, B+-Trees utilize fewer keys per cache line,
resulting in more cache accesses and more cache
misses.

On the other hand, B+-Trees have good incre-
mental performance. Insertion and deletion are
relatively efficient, and the requirement that nodes
be half full bounds the size and depth of the tree.

In a main memory system, a cache line is the basic
transferring unit (same as a page in a disk-based
system). As observed in [RR99, CLH98], B+-Trees
with node size of a cache line have close to optimal
performance.

CSS-Trees. CSS-Trees were proposed in [RR99].
They improve on B+-Trees in terms of search per-
formance because each node contains only keys,
and no pointers. Child nodes are identified by
performing arithmetical operations on array offsets.
Compared with B+-Trees, CSS-Trees utilize more
keys per cache line, and thus need fewer cache
accesses and fewer cache misses.

The use of arithmetic to identify children requires
a rigid storage allocation policy. As argued in
[RR99], this kind of policy is acceptable for static
data updated in batches, typical of a decision-
support database. However, there is no efficient
means to update CSS-Trees incrementally; the
whole index structure must be rebuilt.

Other Pointer Elimination Techniques.
[TMJ98] proposed a Pointer-less Insertion Tree
(PLI-Tree). A PLI-Tree is a variant of a B+-Tree. It
allocates nodes in a specific order so that child nodes
can be found through arithmetic calculations. As a
result, PLI-Trees don’t have to store child pointers
explicitly. However, PLI-Trees are designed for
append-only relations, such as backlogs where data
is inserted in transaction timestamp order. All
insertions are done in the rightmost leaf only and
node splitting never occurs.

In [Ker89], the author mapped a binary search
tree to an array in an unconventional way, calling
the resulting structure a Virtual Tree (V-Tree).
V-Trees can use a simple search procedure that
uses implicit search information rather than explicit
search pointers. Although V-Trees were shown to
have better search performance (when the paper
was published), they impose an upper bound on the
size of the indices. Also, the maintenance cost starts
to deteriorate when the area set aside for holding
the index is nearly full.

To summarize, pointer elimination is an impor-
tant technique in cache optimization since it in-
creases the utilization of a cache line. The effect
of pointer elimination depends on the relative key
size. Keys of size much larger than the pointer
size may reduce the impact of pointer elimination.
If such is the case, we can put all distinct key
values in a domain and store in place only the IDs
as described in [RR99]. Thus, we assume that
typical keys have the same size as integers. In the
near future, we are going to have 64-bit operating
systems. This means each pointer will be 8 bytes,
instead of 4 bytes. Potentially, pointers can take
more space than data. So pointer elimination will
be even more important in the future. However,
removing pointers completely often introduces some
restrictions. For example, PLI-Trees require data
to be inserted in order and CSS-Trees and V-Trees
don’t support incremental updates very well. As we
will see shortly, we use a partial pointer elimination
technique in CSB+-Trees. By doing this, we avoid
introducing new restrictions while at the same time
being able to optimize cache behavior.

Finally, we don’t address concurrency control and
recovery in this paper. We’d like to investigate the
impact of these issues on main memory indexing in
the future.

3 Cache Sensitive B+-Trees

Our goal is to obtain cache performance close to
that of CSS-Trees, while still enabling the efficient

477



incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B+-Trees with One
Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-
based B+-Tree to improve I/O performance.

2see Section 5 for further discussion of how leaf nodes can
be implemented.

it uses less space. Figure 2 shows a CSB+-Tree of
order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
first child pointers. All the nodes within a node
group are physically adjacent to each other. In
this example, a node group can have no more than
three nodes within it. Note that grouping is just a
physical ordering property, and does not have any
associated space overhead.

2     3

25   

30

5     7 12   13 16   19 20   22 24   25 27   30 31   33 36   39

3     13   19

22

33

7     

Figure 2: A CSB+-Tree of Order 1

3.1.1 Operations on a CSB+-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if

478



K was the third key in the node, we would find the
child using a C statement: child = first child +
3, where child and first child are pointers to
nodes. There are several ways to search efficiently
within a node; we defer further discussion until
Section 3.1.2.

Insertion. Insertion into a CSB+-Tree is also
similar to that of a B+-Tree. A search on the
key of the new entry is performed first. Once the
corresponding leaf entry is located, we determine if
there is enough room in the leaf node. If there is, we
simply put the new key in the leaf node. Otherwise,
we have to split the leaf node.

When a leaf is split, there are two cases depending
on whether the parent node has space for a new key.
Suppose the parent node p has enough space. Let
f be the first-child pointer in p, and let g be the
node-group pointed to by f . We create a new node
group g′ with one more node than g. All the nodes
from g are copied into g′, with the node in g that
was split resulting in two nodes within g′. We then
update the first child pointer f in p to point to g′,
and de-allocate g.

A more complicated case arises when the parent
node p is full and itself has to split. Again, let
f be the first-child pointer in p, and let g be the
node-group pointed to by f . In this case, we have
to create a new node group g′ and redistribute the
nodes in g evenly between g and g′. Half the keys of
p are transferred to a new node p′, whose first-child
pointer is set to g′. To achieve this split of p into p
and p′, the node-group containing p must be copied
as in the first case above, or, if that node group is
also full, we need to recursively split the parent of p.
The parent node will then repeat the same process.

When there is a split, CSB+-Trees have to create
a new node group whereas B+-Trees only need to
create a new node. Thus when there are many
splits, maintaining a CSB+-Tree could be more
expensive (we’ll talk about how to reduce this cost
in Section 3.2). On the other hand, CSB+-Trees
have the benefit of being able to locate the right
leaf node faster. Potentially, we can reserve more
space in a node group to reduce copying. We shall
elaborate on this idea in Section 3.3.

Deletion. Deletion can be handled in a way
similar to insertion. In practice, people choose to
implement the deletion “lazily” by simply locating
the data entry and removing it, without adjust-
ing the tree as needed to guarantee 50% occu-
pancy [Ram97]. The justification for lazy deletion
is that files typically grow rather than shrink.

3.1.2 Searching within a Node

The most commonly used piece of code within all
operations on a CSB+-Tree is searching within a
node. (The same is true for B+-Trees.) So it’s
important to make this part as efficient as possible.
We describe several approaches here.

The first approach, which we call the basic
approach, is to simply do a binary search using a
conventional while loop.

We can do much better than this approach
through code expansion: As observed in [RR99],
code expansion can improve the performance by
20% to 45%. Thus, our second approach is to un-
fold the while loop into if-then-else statements
assuming all the keys are used. If we pad all the
unused keys (keyList[nKeys..2d-1]) in a node
with the largest possible key (or the largest key in
the subtree rooted at this node), we are guaranteed
to find the right branch. This approach avoids
arithmetic on counter variables that are needed in
the basic approach.

There are many possible unfoldings that are not
equivalent in terms of performance. For example,
consider Figure 3 that represents an unfolding of the
search for a node with up to 9 keys. The number in
a node in Figure 3 represents the position of the key
being used in an if test. If only 5 keys were actually
present, we could traverse this tree with exactly 3
comparisons. On the other hand, an unfolding that
put the deepest subtree at the left instead of the
right would need 4 comparisons on some branches.
We hard code the unfolded binary search tree in
such a way that the deepest level nodes are filled
from right to left. Since keys in earlier positions
have shorter paths, this tree favors the cases when
not all the key positions are filled. We call this
second approach the uniform approach because we
use a hard-coded traversal that is uniform no matter
how many keys are actually present in a node.

1

2

3

4

5

6

7

8

9

Figure 3: A Binary Search Tree with 9 Keys
The uniform approach could perform more com-

parisons than optimal. Consider Figure 3 again. If
we knew we had only five valid keys, we could hard-
code a tree that, on average, used 2.67 comparisons
rather than 3. Our third approach is thus to hard-
code all possible optimal search trees (ranging from

479



1 key to 2d keys). If we put all the hard-coded
versions in an array of function pointers, we can
call the correct version by indexing via the actual
number of keys being used. Although this method
avoids unnecessary comparisons, it introduces an
extra function call, which can be expensive. Some
C extensions (e.g., gcc) allow branching to a pointer
variable that can be initialized via a program label.
This trick allows us to inline the search code and
jump to the beginning of the appropriate part and
thus avoid the function call, paying just the cost
of an extra array lookup and an extra jump at the
end. This approach, however, increases the code
size, which could be a problem when d is large. We
call this approach the variable approach because the
intra-node search method depends on the number
of keys present.

3.2 Segmented Cache Sensitive B+-Trees

Consider a cache-line of 128 bytes. Each node in a
CSB+-Tree can have a maximum of 30 keys. This
means every node can have up to 31 children. A
node group then has a maximum size of 31 ∗ 128 ≈
4KB. So every time a node split, we need to
copy about 4KB of data to create a new node
group. If the cache line were to get larger in future
architectures, splitting a node would become more
expensive.

One way to address this issue is to modify the
node structure so that less copying takes place
during a split. We divide the child nodes into
segments and store in each node the pointers to
each segment. Each segment forms a node group
and only child nodes in the same segment are stored
contiguously. For the sake of simplicity, we discuss
only the two segment case in the rest of this section.

Our first thought is to fix the size of each segment.
We start filling nodes in the first segment. Once
the first segment is full, we begin to put nodes in
the second segment. Now, if a new node falls in
the second segment, we only need to copy nodes in
the second segment to a new segment and we don’t
need to touch the first segment at all. However,
if the new node falls in the first segment (and it’s
full), we have to move data from the first segment
to the second one. Assuming random insertion, in
the above example, the average data copied during
a split will be reduced to 1

2 (1
2 + 3

4 )∗4KB = 2.5KB.
Another approach is to allow each segment to

have a different size. During the bulkload, we
distribute the nodes evenly into the two segments.
We also keep the size of each segment (actually, the
size of the first segment is enough). Every time a

new node is inserted, we only create a new segment
for the segment the new node belongs to. We then
update the size of the corresponding segment. In
this approach, exactly one segment is touched on
every insert (except when the parent also needs to
split, in which case we have to copy both segments).
If a new node is equally likely to fall into either
segment, the amount of data to be copied on a split
is 1

2 ∗ 4KB = 2KB. As we can see, this approach
can further reduce the cost of copying. In the rest
of the paper, this approach is the segmented CSB+-
Tree we are referring to. A segmented CSB+-Tree
(order 2) with two segments is shown in Figure 4
(we put only 2 keys per leaf node though).

2     3

3 7 13 19 3325 30

22

5     7 12   13 16   19 20   22 24   25 27   30 31   33 36   39

Figure 4: SCSB+-Tree of Order 2 with 2 Segments

All tree operations can be supported for seg-
mented CSB+-Trees in a similar way to unseg-
mented CSB+-Trees. However, finding the right
child within each node is more expensive than the
unsegmented case since now we have to find out
which segment the child belongs to.

3.3 Full CSB+-Trees

During a node split in a CSB+-Tree, we deallocate a
node group (say of size s) and allocate a node group
of size s+ 1. As a result, we pay some overhead for
allocating and deallocating memory. If we were to
pre-allocate space for a full node group whenever a
node group is created, then we can avoid the bulk
of the memory allocation calls. We need to allocate
memory only when a node group (rather than a
node) overflows. We call the variant of CSB+-Trees
that pre-allocates space for full node groups full
CSB+-Trees.

In full CSB+-Trees, node splits may be cheaper
than for CSB+-Trees, even if one ignores the saving
of the memory allocation overhead. In a CSB+-
Tree, when a node splits, we copy the full node
group to a new one. In a full CSB+-Tree, we can
shift part (on average, half) of the node group along
by one node, meaning we access just half the node
group. Further, since the source and destination
addresses for such a shift operation largely overlap,

480



Method Branching Total Key Cache Misses Extra Comparisons
Factor Comparisons per Node

Full CSS-Trees m+ 1 log2 n
log2 n

log2 (m+1)
0

Level CSS-Trees m log2 n
log2 n
log2 m

0

B+-Trees m
2 log2 n

log2 n
log2 m−1 0

CSB+-Trees m− 1 log2 n
log2 n

log2 (m−1)
0

CSB+-Trees (t segments) m− 2t+ 1 log2 n
log2 n

log2 (m−2t+1) log2 t

Full CSB+-Trees m− 1 log2 n
log2 n

log2 (m−1) 0

Table 1: Search Time Analysis

the number of cache lines accessed is bounded by
s. In modern architectures, a cache write miss
often requires loading the corresponding cache line
into the cache (a read miss) first before writing the
actual data. On average, full CSB+-Trees touch
0.5s nodes on a split, whereas CSB+-Trees touch
2s (s reads and s writes). Perfectly balanced 2-
segment CSB+-Trees and 3-segment CSB+-Trees
will touch s and 0.67s nodes respectively.

Thus we would expect full CSB+-Trees to out-
perform CSB+-Trees on insertions. On the other
hand, pre-allocation of space means that we are
using additional space to get this effect. This is
a classic space/time trade-off.

4 Time and Space Analysis

In this section, we analytically compare the time
performance and the space requirement for different
methods. In particular, we want to compare B+-
Trees, CSS-Trees and CSB+-Trees. To simplify the
presentation, we assume that a key, a child pointer
and a tuple ID all take the same amount of space
K. We let n denote the number of leaf nodes
being indexed, c denote the size of a cache line in
bytes, and t denote the number of segments in a
segmented CSB+-Tree. The number of slots per
node is denoted by m, which can be derived using
m = c

K . We assume each node size is the same
as the cache line size. Those parameters and their
typical values are summarized in Figure 5.

Parameter Typical Value

K 4 bytes
n 107

c 64 bytes
t 2
m = c

K
16

Figure 5: Parameters and Their Typical Values

Table 1 shows the branching factor, total number
of key comparisons, number of cache misses and
number of additional comparisons of searching for

each method. B+-Trees have a smaller branching
factor than CSS-Trees since they need to store child
pointers explicitly. CSB+-Trees have a branching
factor close to CSS-Trees as fewer child pointers are
stored explicitly. This leads to different number of
cache misses for each of the methods. The larger the
branching factor of a node, the smaller the number
of cache misses. For each additional segment in
CSB+-Trees, the branching factor is reduced by 2
since we have to use one slot to store child pointers
and another to store the size of the additional
segment. Also, when there are multiple segments
in CSB+-Trees, we need to perform additional
comparisons to determine which segment the child
belongs to. The numbers for B+-Trees and CSB+-
Trees assume that all the nodes are fully used. In
practice, typically a B+-Tree node is about 70%
full [Yao78] and we have to adjust the branching
factor accordingly.

Method Accessed Cache Typical Values
Lines in a Split (cache lines)

B+-Trees 2 2
CSB+-Trees (m− 1) ∗ 2 30

CSB+-Trees (m−2t+1)∗2
t 13

(t segments)
Full CSB+-Trees m−1

2 7.5

Table 2: Split Cost Analysis

Table 2 shows the expected number of cache lines
that need to be accessed during a split. Full CSB+-
Trees have a smaller number since the source and
destination overlap for copies. Note that the split
cost is just part of the total insertion cost. Another
part is the search cost for locating the right leaf
node. The split cost is relatively independent of the
depth of the tree since most of the splits happen on
the leaves only. However, as the tree gets bigger, the
search cost will increase in proportion to the depth
of the tree. Although CSB+-Trees have higher split
cost than B+-Trees, the total insertion cost will
depend on the size of the tree.

Table 3 lists the space requirements of the various

481



Method Internal Typical Leaf Node Typical
Node Space Value Space Value

B+-Trees 4nc
0.7(m−2)(0.7m−2)

28.4 MB 2nc
0.7(m−2)

130.6 MB

CSB+-Trees 2nc
0.7(m−2)(0.7m−1) 12.8 MB 2nc

0.7(m−2) 130.6 MB

CSB+-Trees (t segments) 2nc
0.7(m−2)(0.7(m−2t)−0.3) 16.1 MB 2nc

0.7(m−2) 130.6 MB

Full CSB+-Trees 2nc
(0.7)2(m−2)(0.7m−1)

18.3 MB 2nc
(0.7)2(m−2)

186.6 MB

Table 3: Space Analysis

algorithms, assuming all nodes are 70% full [Yao78].
We measure the amount of space taken by internal
nodes and leaf nodes separately. We assume that
each leaf node includes 2 sibling pointers. The
internal space is calculated by multiplying 1

q−1

(where q is the branching factor) by the leaf space.
We do not include CSS-Trees in this comparison
because CSS-Trees can never be “partially” full.

5 Experimental Results

We perform an experimental comparison of the
algorithms on two modern platforms. The time we
measured is the wall-clock time. We summarize our
experiments in this section.

Experimental Setup. We ran our experiments
on an Ultra Sparc II machine (296MHz, 1GB RAM)
and a Pentium II (333MHz, 128M RAM) personal
computer.3 The Ultra machine has a <16k, 32B,
1> (<cache size, cache line size, associativity>)
on-chip cache and a <1M, 64B, 1> secondary
level cache. The PC has a <16k, 32B, 4> on-
chip cache and a <512k, 32B, 4> secondary level
cache. Both machines are running Solaris 2.6.
We implemented all the methods including CSS-
Trees, B+-Trees, CSB+-Trees, segmented CSB+-
Trees, and Full CSB+-Trees in C. B+-Trees, CSB+-
Trees, segmented CSB+-Trees and Full CSB+-Trees
all support bulkload, search, insertion and deletion.
We implemented “lazy” deletion since it’s more
practically used. CSS-Trees support only bulkload
and search.

We choose keys to be 4-byte integers. For
longer data types, we can put all distinct values
in an order-preserving domain [Eng98] and use
domain IDs as the keys. We also assume a TID
and a pointer each takes four bytes. All keys
are chosen randomly within the range from 1 to
10 million. The keys for various operations are
generated randomly in advance to prevent the key
generating time from affecting our measurements.
We repeated each test three times and report the

3We omit the results for Pentium PC since they are
similar to that for Ultra Sparc.

minimal time. When there are duplicates, the
leftmost match is returned as the search result.

The Ultra Sparc processors provide two counters
for event measurement [Inc99]. We used perfmon, a
tool provided by Michigan State University [Enb99],
to collect certain event counts and then calculate
the number of secondary level cache misses.

Implementation Details. As shown in [RR99],
choosing the cache line size to be the node size is
close to optimal for B+-Trees. Thus we choose Ultra
Sparc’s cache line size to be the node size for all
the searching methods. CSS-Trees have 16 keys per
node. For B+-Trees, each internal node consists of
7 keys, 8 child pointers, and the number of keys
used. Each internal node for CSB+-Trees consists
of 14 keys, a first child pointer, and the number
of keys used. Full CSB+-Trees have the same
node structure as CSB+-Trees. We implemented
segmented CSB+-Trees with 2 segments and 3
segments. The 2-segment one has 13 keys and
2 child pointers per internal node whereas the 3-
segment one has 12 keys and 3 child pointers per
internal node (we use 1 byte to represent the size of
each segment). For a 64-byte node size, it doesn’t
make sense to have more than 3 segments per node.

A leaf node in a B+-Tree consists of 6 <key,
TID> pairs, a forward and a backward pointer,
and the number of entries being used. For CSB+-
Trees, all the nodes in a node group are stored
contiguously. So, we don’t really need to store
sibling pointers for all the middle nodes in a group.
For the first node and last node in a group, we
need to store a forward pointer and a backward
pointer respectively. As a result, we can squeeze 7
<key, TID> pairs in a leaf node. This optimization
improves CSB+-Tree’s insertion performance by
10% and also reduces the amount of space needed.

For each method, we have three versions of the
implementation corresponding to the basic, uniform
and variable approaches described in Section 3.1.2.
We use #ifdef in the code for the different code
fragments among the versions. As a result, a lot of
the code can be shared in the implementation.

During the bulkload, the higher level internal

482



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 1000 10000 100000 1e+06 1e+07

tim
e(

s)

entries in the leaf

B+ (basic)
CSB+ (basic)
B+ (variable)

CSB+ (variable)
B+ (uniform)

CSB+ (uniform)
CSS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 1000 10000 100000 1e+06 1e+07

tim
e(

s)

entries in the leaf

B+ (basic)
CSB+ (basic)
B+ (variable)

CSB+ (variable)
B+ (uniform)

CSB+ (uniform)
CSS

(a) Sun’s CC (b) GNU’s gcc

Figure 6: 200K Searches after Bulkload

nodes have to be filled with the largest keys in each
subtree. We make this process more efficient by
propagating the largest value in each subtree all the
way up using the unused slots in each node. When
building the higher level nodes, the last node could
have only one child left from the lower level. In this
case, we have no keys to put in the higher node.
We address this problem by borrowing a key (and
also the corresponding child) from the left sibling
of the higher node. We implemented search and
deletion iteratively to avoid unnecessary function
calls. Insertion is still implemented recursively
because of the difficulty of handling splits.

We implemented a simplified memory manager.
Space is allocated from a large memory pool.
Deallocated space is linked to a free pool. The space
from the free pool could be used for other purposes
although we didn’t make use of it. We also didn’t
try to coalesce the free space since we expect this is
done only occasionally and the cost is amortized.

Since cache optimization can be sensitive to com-
pilers [SKN94], we chose two different compilers:
one is Sun’s native compiler CC and the other is
GNU’s gcc. We used the highest optimization level
of both compilers. Since we can’t get the address
of a label in Sun’s CC, we use function arrays in the
variant version for Sun’s compiler. For gcc, we use
its C extension of “Label as Values” [Pro99] and
thus can eliminate the function calls.

Our implementations are specialized for a node
size of 64 bytes. We use logical shifts in place
of multiplication and division whenever possible.
All the nodes are aligned properly according to
the cache line size. Again, this is done on all the
methods we are testing.

Results. In the first experiment, we want
to compare the “pure” searching performance of
various methods. We vary the number of keys in
the leaf nodes during bulkloading. We measure
the time taken by 200,000 searches. For B+-Trees

and CSB+-Trees, we use all the slots in the leaf
nodes and all the slots except one in the internal
nodes. We tested all three versions of B+-Trees and
CSB+-Trees. Figure 6(a) and 6(b) show the result
using Sun’s CC and gcc respectively. CSS-Trees
are the fastest. Besides having a larger branching
factor, CSS-Trees can put 8 <key, TID> pairs in
the leaf nodes since it assumes the leaves are kept
in a sorted array. CSB+-Trees perform slightly
worse than CSS-Trees. B+-Trees are more than
25% slower than CSB+-Trees. Among the three
versions we tested, the uniform approach performs
the best for both compilers. The variable approach
using Sun’s CC is actually a little bit worse than
the basic one. This is because of the overhead
introduced by functions calls. When function call
overhead is removed, as shown in Figure 6(b), the
variable version performs better than the basic one.
However, the variable version is still worse than the
uniform version. There are two reasons. First,
there is an extra jump instruction in the variable
version. Second, when the nodes are almost full,
the variable version uses almost the same number
of comparisons as the uniform version. Since the
pattern among the versions is the same across all
tests, we only present the result of the uniform
version (using Sun’s CC) in the remaining sections.

In our next experiment, we test the individual
performance of search, insertion and deletion when
the index structure stabilizes. To simulate that,
we first bulkload 0.4 million entries followed by
inserting 3.6 million new entries. We then perform
up to 200,000 operations of each kind and measure
their time. Figure 7 shows the elapsed time and the
number of secondary level of cache misses.

For searching, CSB+-Trees perform better than
B+-Trees as expected. CSB+-Trees better utilize
each cache line and thus have fewer cache misses
than B+-Trees as verified by our cache measure-
ment. The larger the number of searches, the wider

483



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 40 60 80 100 120 140 160 180 200

tim
e(

s)

number of search (X 1000)

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

0

100

200

300

400

500

600

700

20 40 60 80 100 120 140 160 180 200

se
co

nd
ar

y 
le

ve
l c

ac
he

 m
is

se
s 

(X
 1

00
0)

number of search (X 1000)

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

Search

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 40 60 80 100 120 140 160 180 200

tim
e(

s)

number of deletion (X 1000)

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

0

100

200

300

400

500

600

700

800

20 40 60 80 100 120 140 160 180 200

se
co

nd
ar

y 
le

ve
l c

ac
he

 m
is

se
s 

(X
 1

00
0)

number of deletion (X 1000)

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

Delete

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 40 60 80 100 120 140 160 180 200

tim
e(

s)

number of insertion (X 1000)

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

0

200

400

600

800

1000

1200

1400

1600

20 40 60 80 100 120 140 160 180 200

se
co

nd
ar

y 
le

ve
l c

ac
he

 m
is

se
s 

(X
 1

00
0)

number of insertion (X 1000)

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

Insert

(a) Time (b) Secondary Level Cache Misses

Figure 7: 200K Operations on a Stabilized Index Structure

the gap between the two. Segmented CSB+-Trees
fall between CSB+-Trees and B+-Trees. There
are two reasons why segmented CSB+-Trees search
slower than CSB+-Trees. First, the branching fac-
tor for segmented CSB+-Trees is less since we have
to record additional child pointers. This causes
segmented CSB+-Trees to have slightly more cache
misses than CSB+-Trees. Second, extra compar-
isons are needed to choose the right segment during
tree traversal. Nevertheless, 2-segment CSB+-Trees
perform almost as well as CSB+-Trees. Full CSB+-
Trees perform a little bit better than CSB+-Trees
and have fewer cache misses. We suspect this is
because the nodes in full CSB+-Trees are aligned
in a way that reduces the number of conflict cache
misses. Unfortunately, we can’t distinguish between
a conflict miss and a capacity miss using the current
counter events.

The delete graph is very similar to that of search.
This is because in “lazy” deletion, most of the time
is spent on locating the correct entry in the leaf.

Delete takes a little bit more time than search since
we may have to walk through several leaf nodes to
find the entry to be deleted.

CSB+-Trees are worse than B+-Trees for inser-
tion. The insertion cost has two parts, one is the
search cost and the other is the split cost. The split
cost of CSB+-Trees includes copying a complete
node group, whereas that of B+-Trees is creating
a single new node. In our test, we observe there
are about 50,000 splits (one every four inserts).4

As a result, CSB+-Trees take more time to insert
than B+-Trees. Segmented CSB+-Trees reduce the
split cost. Now the copying unit is a segment.
When nodes are relatively evenly distributed across
segments, the copying cost is reduced. That’s
why we see 2-segment CSB+-Tree performing better
than CSB+-Trees. The 3-segment CSB+-Tree is
no better than the 2-segment one. The reason
is that it’s hard to distribute fewer than 12 keys

4This is consistent with the estimate of the average
number of splits per insertion ( 1

1.386d
) in [Wri85].

484



0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

percentage of search

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

s)

percentage of search

B+-Tree
CSB+-Tree

SCSB+-Tree (2 seg)
SCSB+-Tree (3 seg)

CSB+-Tree (full)

(a) 4 million data (b) 16 trillion data (estimate)
Figure 8: Varying Workload on a Stabilized Index Structure

evenly among 3 segments. Large segments take
more time to copy and are more likely to be selected
for insertion. Additionally, more segments means
extra comparisons during the search. An important
issue is that while the split cost is relatively fixed
(since most of the splits are on the leaves), the
search cost depends on the size of the tree. The
larger the data set, the higher the search cost. So
the insertion cost will be different (favoring CSB+-
Trees) when the indexed data is much larger.

Full CSB+-Trees perform insertion much faster
than CSB+-Trees. This observation was predicted
in Section 3.3. What’s even more interesting is that
full CSS-Trees are even better than B+-Trees on
insert. The number of cache misses doesn’t explain
the difference since full CSB+-Trees have more
cache misses. It’s likely that the explanation is that
the allocation overhead for full CSB+-Trees is lower.
B+-Trees have to allocate a new node on every split
while full CSB+-Trees make an allocation only when
a node group is full.

Our last experiment tests the overall performance
of all the methods. We first build the same
stabilized tree as in the previous experiment and
then perform 200,000 operations on it. We vary
the percentage of searches and fix the ratio between
inserts and deletes to be 2:1. The result is shown
in Figure 8(a). Full CSB+-Trees perform the best
across the board. However, it uses somewhat more
space than other methods. At the left end, B+-
Trees perform better than all but Full CSB+-Trees.
As more and more searches are performed, the cost
of all the CSB+-Trees decreases much faster than
B+-Trees. CSB+-Tree starts to perform better than
B+-Tree when more than 45% of the operations are
searches. 2-segment CSB+-Tree is better than both
CSB+-Tree and B+-Tree when the percentage of
searches is between 25% and 90%.

To see how the cost of the methods scales with
data size, we estimate the cost of all the methods
under a much larger data set. The search cost

increases in proportion to the data size, while the
split cost remains roughly the same. We separate
the time in Figure 8(a) into two parts: search and
split. We then scale the search time proportionally
and combine it with the unchanged split time.
Figure 8(b) shows the result when the search cost
is doubled (corresponding to 16 Trillion of leaf
entries). As we can see, all variants of CSB+-Trees
win across the board. Note that we’re not claiming
that trillions of data items is realistic for main
memory in the near future. The point of Figure 8(b)
is to show the limiting behavior, and to illustrate
that as the data gets bigger, the performance of
the various CSB+-Trees improves relative to B+-
Trees due to the increased dependence of overall
performance on search time.

5.1 Summary

Full CSB+-Trees are better than B+-Tree in all
aspects except for space. When space overhead
is not a big concern, Full CSB+-Tree is the
best choice. When space is limited, CSB+-Trees
and segmented CSB+-Trees provide faster searches
while still able to support incremental updates.
Many applications, such as online shopping and
digital libraries that we described in Section 1,
have many more searches than updates (inserts,
to be more accurate). For those applications,
CSB+-Trees and segmented CSB+-Trees are much
better than B+-Trees. Depending on the workload,
either of the CSB+-Tree variants could be the
best. We summarize the results in Table 4.
Note that the ratings in the table are qualitative
relative judgments. The precise numerical values
for relative performance can be found in the
previous section.

Our experiments are performed for 4-byte keys
and 4-byte child pointers. Theoretically, B+-Trees
will have 30% more cache misses than CSB+-Trees.
As we have seen, our implementation of CSB+-
Trees has achieved most of the benefit. In the

485



B+ CSB+ SCSB+ Full
CSB+

Search slower faster medium faster
Update faster slower medium faster
Space medium lower lower higher
Memory medium higher higher lower
Management
Overhead

Table 4: Feature Comparison

next generation operating systems, if both the key
size and the pointer size double (assuming the same
cache line size), B+-Trees will have 50% more cache
misses than CSB+-Trees and we’d expect more
significant improvement by using CSB+-Trees.

We close the presentation of the experiments by
noting that many of the performance graphs are
architecture dependent. Changes in compiler op-
timization methods or in architectural parameters
may affect the relative performance of the algo-
rithms. Nevertheless, the fundamental reason why
the various CSB+-Trees win is that they are cache
sensitive, getting better utilization of each cache
line. We expect cache sensitivity to be even more
critical as CPU speeds continue to accelerate much
faster than RAM speeds.

6 Conclusion

In this paper, we proposed a new index structure
called a CSB+-Tree. CSB+-Trees are obtained by
applying partial pointer elimination to B+-Trees.
CSB+-Trees utilize more keys per cache line, and
are thus more cache conscious than B+-Trees. Un-
like a CSS-Tree, which requires batch updates, a
CSB+-Tree is a general index structure that sup-
ports efficient incremental updates. Our analytical
and experimental results show that CSB+-Trees
provide much better performance than B+-Trees in
main memory because of the better cache behavior.
As the gap between CPU and memory speed is
widening, CSB+-Trees should be considered as a re-
placement for B+-Trees in main memory databases.
Last but not least, partial pointer elimination is a
general technique and can be applied to other in-
memory structures to improve their cache behavior.

References

[ADW99] Anastassia Ailamaki, et al. DBMSs on
a modern processor: Where does time go. In
Proceedings of the 25th VLDB Conference, 1999.

[BBC+98] Phil Bernstein, et al. The Asilomar report
on database research. Sigmod Record, 27(4), 1998.

[BMK99] Peter A. Boncz, et al. Database architecture
optimized for the new bottleneck: Memory access.
In Proceedings of the 25th VLDB Conference, 1999.

[CLH98] Trishul M. Chilimbi, et al. Improving pointer-
based codes through cache-conscious data place-
ment. Technical report 98, University of Wisconsin-
Madison, Computer Science Department.

[Com79] D. Comer. The ubiquitous B-tree. ACM
Computing Surverys, 11(2), 1979.

[Enb99] Richard Enbody. Permon performance
monitoring tool (available from http://www.cps
.msu.edu/∼enbody/perfmon.html). 1999.

[Eng98] InfoCharger Engine. Optimization for de-
cision support solutions (available from http://
www.tandem.com/prod des/ifchegpd/ifchegpd.htm).
1998.

[HP96] J. L. Hennessy and D. A. Patterson. Computer
Architecture: a quantitative approach. Morgan
Kaufman, San Francisco, CA, 2 edition, 1996.

[Inc99] Sun Microsystems Inc. Ultra sparc user’s man-
ual (available from http://www.sun.com/
microelectronics/manuals/ultrasparc/802-7220-
02.pdf as of oct. 16, 1999). 1999.

[Ker89] Martin L. Kersten. Using logarithmic code-
expansion to speedup index access and mainte-
nance. In Proceedings of 3rd FODO Conference,
pages 228–232, 1989.

[LC86] Tobin J. Lehman, et al. A study of index
structures for main memory database management
systems. In Proceedings of the 12th VLDB Confer-
ence, 1986.

[O’N92] Patrick E. O’Neil. The SB-tree: An index-
sequential structure for high-performance sequen-
tial access. Acta Informatica, 29(3):241–265, 1992.

[Pro99] GNU Project. Gun c compiler manual (avail-
able from http://www.gnu.org/software/gcc/ on-
linedocs/gcc toc.html as of oct. 16, 1999). 1999.

[Ram97] Raghu Ramakrishnan. Database Management
Systems. McGraw-Hill, 1997.

[RR99] Jun Rao and Kenneth A. Ross. Cache conscious
indexing for decision-support in main memory. In
Proceedings of the 25th VLDB Conference, 1999.

[SKN94] Ambuj Shatdal, et al. Cache conscious
algorithms for relational query processing. In
Proceedings of the 20th VLDB Conference, 1994.

[Smi82] Alan J. Smith. Cache memories. ACM
Computing Surverys, 14(3):473–530, 1982.

[TMJ98] Kristian Torp, et al. Efficient differential
timeslice computation. IEEE Transactions on
knowledge and data engineering, 10(4), 1998.

[Wri85] William Wright. Some average performance
measures for the B-tree. Acta Informatica, 21:541–
557, 1985.

[Yao78] Andrew Yao. On random 2-3 trees. Acta
Informatica, 9:159–170, 1978.

486


