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Abstract 

Query optimizers in current database systems are 
designed to pick a single efficient plan for a 
given query based on current statistical 
properties of the data. However, different subsets 
of the data can sometimes have very different 
statistical properties. In such scenarios it can be 
more efficient to process different subsets of the 
data for a query using different plans. We 
propose a new query processing technique called 
content-based routing (CBR) that eliminates the 
single-plan restriction in current systems. We 
present low-overhead adaptive algorithms that 
partition input data based on statistical properties 
relevant to query execution strategies, and 
efficiently route individual tuples through 
customized plans based on their partition. We 
have implemented CBR as an extension to the 
Eddies query processor in the TelegraphCQ 
system, and we present an extensive 
experimental evaluation showing the significant 
performance benefits of CBR. 

1. Introduction 
The conventional approach to query optimization is to 
pick a single efficient plan for a query, based on statistical 
properties of the data along with other factors such as 
system conditions. In many application domains, different 
partitions of the overall data accessed by a query may 
have very different statistical properties. For example, 
statistical properties of the observations collected by 
different sensors in a sensor network environment may be 
very different [14]. In such cases it can be more efficient 
to process the different partitions using different plans. In 
this paper we propose a new general-purpose query 

processing technique called content-based routing (CBR) 
that eliminates the single-plan restriction in current 
systems. CBR automatically identifies tuple classes—
partitions of the input data that differ in relevant statistical 
properties—and processes the query using multiple plans, 
each of which is customized for an individual tuple class. 
CBR is low-overhead and it is adaptive, revisiting its 
decisions as changes in data characteristics are detected. 

Adaptive approaches to query optimization have 
received a great deal of attention recently, with a focus on 
handling data properties and system conditions that may 
change while a query is running, e.g., [2, 8, 9, 10, 18, 28]. 
Our problem is different: We do not focus on adapting a 
single plan as data characteristics change, but rather on 
detecting classes of data characteristics that can be used to 
route different data to different plans. Note that even 
Eddies [2], which can potentially adapt at the tuple 
granularity, still uses a single plan for (nearly) all tuples at 
any point of time. 

Our CBR algorithms are implemented as an extension 
to Eddies [2]. However, our approach applies to any query 
processing environment where the data movement can be 
modeled as streams, e.g., stream systems, regular database 
systems using iterators [19], and "pull" systems like 
acquisitional query processors [25]. An Eddy processes a 
query by routing input stream tuples through operators 
specific to that query. Without CBR, an Eddy makes 
routing decisions based on the selectivity of each operator 
over all tuples the operator has processed recently. Tuples 
are not differentiated based on content, so all tuples from 
the same stream source are routed identically. We denote 
this type of routing as source-based routing (SBR). 

When CBR is added to Eddies, correlations between 
tuple content and operator selectivity are detected, and 
they are exploited during routing to eliminate tuples 
sooner, reduce latency, and improve overall system 
throughput relative to SBR. Next we motivate CBR using 
two examples. 

Example 1.1. Figure 1(a) is an intrusion detection query 
for an enterprise network [6, 29]. The lookup table T may 
contain addresses of subnetworks in the enterprise that are 
exposed to the public Internet. The byte sequences 
represent patterns common to a specific type of network 
attack [6]. Figure 1(b) shows an Eddy for this query with 
three filter operators–O1, O2, and O3–corresponding to the 
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three conditions, over an incoming stream S of network 
packets. Operator O1 performs a prefix-based join on the 
destination address attribute of incoming S tuples with T. 
Operators O2 and O3 perform the 100-byte and 256-byte 
sequence matches respectively. 

Let ci denote the current average processing cost per 
tuple for operator Oi, and let σi, 0 ≤ i ≤ 1, denote the 
current expected selectivity of Oi.1 Suppose the following 
conditions hold for the example: c3 > c1 > c2 and σ3 > σ1 > 
σ2. Given these statistics, the Eddy's routing will converge 
to the ordering O2, O1, O3, i.e., most tuples will follow 
this route as shown in Figure 1(b). 

Now suppose the monitored attack is underway on a 
subnetwork whose prefix is not in T. (The subnetwork 
may be secured separately by a firewall.) In this case, σ2 
and σ3 will be very high, and σ1 will be very low for 
packets (tuples) coming from the attacker(s). So, O1, O2, 
O3 will be the most efficient ordering for processing these 
“attack packets”. For other packets, O2, O1, O3 will remain 
the best ordering as before. Since an attack happens 
typically from some group of compromised hosts, CBR 
can distinguish between the attack and non-attack packets 
based on the source address, and use the appropriate 
ordering (Figure 1(c)). Without CBR, the Eddy will 
continue using the O2, O1, O3 ordering, limiting 
performance. □ 

Example 1.2. Consider the following query over a 
distributed sensor network in a large warehouse building: 
SELECT * FROM sensors

WHERE light < 1000 lux
2
AND temperature > 20ºC;

To answer this query, data must be acquired from sensors. 
However acquiring readings from sensors is a power-
consuming operation. Since sensors are power-
constrained, one of the main goals of acquisitional 
systems is to minimize power consumed by data 
acquisitions [14]. Note however, that sensors that are 
placed close to windows receive more natural light and 
likely report higher temperatures than sensors located in 
                                                           
1 Cost is the time spent by the operator processing the tuple. Selectivity 
refers to the fraction of input tuples passed by the operator. 
2 A value of 1 Lux corresponds to moonlight, 400 Lux to a bright office, 
and 100,000 Lux to full sunlight. 

interior rooms. Therefore, for those sensors close to 
windows, the probability that the predicate on light will 
fail may be higher than that for the temperature predicate. 
On the other hand, for sensors that are placed in interior 
locations, the probability that the predicate on light will 
fail may be lower than that for the temperature predicate. 
Therefore, instead of using a single fixed order for 
evaluating the two predicates across all sensors, we may 
want to use CBR: use different operator evaluation orders 
depending on the sensor location. For each sensor 
location, CBR chooses an operator evaluation order that 
evaluates the most selective operator first. On average, 
CBR will reduce the number of predicates evaluated per 
sensor and the number of data acquisitions required, 
resulting in significant power consumption savings in this 
setting. □ 

1.1. Contributions and Outline of Paper 

Implementing CBR using Eddies introduces several 
challenges that we address in this paper: 

•••• In Section 3 we define classifier attributes, an important 
concept in CBR. 

•••• In Section 4 we present algorithms to automatically and 
efficiently learn classifier attributes, to partition the 
underlying data into tuple classes, and to route tuples 
from these classes optimally through the operators in an 
Eddy. 

•••• In Section 5 we discuss the adaptive nature of our 
algorithms to handle changes in input data properties 
and system conditions while the query is running. 

•••• Finally, in Section 6 we present an extensive 
experimental evaluation of CBR using a prototype 
implementation in TelegraphCQ. Our results show good 
performance improvements over not using CBR. 

2. Related Work 
Work related to CBR can be grouped into four categories: 
exploiting correlations among attributes during query 
processing, adaptive query processing, identifying 
correlations in large datasets, and computing complex 
statistical information over data streams. 

Query: “Track packets with destination 
address matching a prefix in table T, 
and containing the 100-byte and 256-
byte sequences “0xa...8” and “0x7...b” 
respectively as subsequences” 
SELECT * FROM packets 
WHERE matches(destination, T) 
AND contains(data, “0xa...8”) 
AND contains(data, “0x7...b”); 

a) 

O1 
O2 
O3 

Figure 1. (a) A Continuous Query; (b) the Eddies approach; and (c) Eddies with Content-Based Routing 

b) c) 
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The work most closely related to CBR is identifying 
conditional plans in an acquisitional query processing 
system [13, 14]. Like CBR, a conditional plan partitions 
the input data and processes each partition with a different 
plan. The approach taken in [14] is to learn a single good 
conditional plan based on an initial training sample of the 
data, and then to use this plan unchanged throughout 
query execution. That initial training is done offline, 
requires a large amount of collected training data, and 
learns the conditional plans using complex decision tree 
building algorithms. On the other hand, CBR uses light-
weight machine learning techniques over the streaming 
tuples that enable a continuously adaptive approach to 
query processing. Thus, CBR does not require previous 
knowledge of the data and is not dependent on previous 
learned models of the world. 

While many adaptive query processing systems have 
been built to date, the most of them use a single plan for 
almost all tuples at any point of time [2, 4, 5, 22, 24, 26]. 
Some of these systems, including Eddies, on which we 
have implemented CBR, process almost all of the input 
tuples using the current best plan, and the remaining 
tuples are processed using other plans to track the 
performance of these plans (to identify plans to change to) 
or to collect run-time statistics [2, 4]. Reference [23] 
describes a technique that combines hash join and merge 
join operators to take advantage of mostly-ordered inputs. 
Tuples following the expected order are routed to the 
merge join, remaining tuples to the hash join. A final 
phase joins tuples across the two operators to produce the 
complete join result. This technique, complementary to 
ours, can be seen as providing adaptivity within a single 
join operator while CBR provides adaptivity in a query 
plan by allowing different join orders. 

There has been some recent work on identifying 
correlations in large datasets. None of this work has been 
used to identify different plans for processing different 
partitions of the data for a query. Reference [21] identifies 
sets of attributes that are correlated. Reference [11] uses 
the lack of correlation (independence) among attributes to 
build compact multi-dimensional histograms. Reference 
[16] uses probabilistic models like Bayesian networks to 
capture the statistical relationship among attributes so as 
to compute cardinalities accurately for intermediate 
results in query plans. 

There has been work on computing complex statistical 
information over data streams, for example, decision trees 
[15], correlated aggregates [17], and histograms [20]. 
None of this work includes computing correlations 
between tuple content and selectivities of operators, 
identifying tuple classes, or finding different plans for 
different subsets of data. 

3. Classifier Attributes 
Our goal is to identify tuple classes where each class has a 
different optimal operator order for processing. CBR 

considers tuples classes that can be distinguished from 
one another based on tuple content, namely, the attributes 
in the tuples. In this context, different tuple classes may 
have different optimal operator orders if the selectivity of 
one or more operators is correlated with the content of one 
or more input attributes. Attributes used to distinguish 
tuple classes are called classifier attributes. Informally, an 
attribute A is called a classifier attribute for an operator O 
if the content of A is correlated with the selectivity of O. 
As illustrated by Example 3.1, CBR is based on 
identifying and exploiting such classifier attributes. 

Example 3.1.  Consider an input stream S processed by 
three operators O1, O2, and O3. Let A be an attribute of 
tuples in S which takes one of three values a, b, or c with 
equal probability. Table 1 shows the respective 
selectivities of O1–O3 for the tuple classes with A=a, A=b, 
and A=c, and the overall selectivity of each operator on S 
tuples. Assuming O1–O3 have the same execution costs, if 
only overall selectivities are considered, then the best 
ordering for S tuples is O1, O2, O3. However, note that the 
selectivity of O2 is correlated with the value of A: the 
selectivity of O2 for A=a and A=b is much lower than O2's 
overall selectivity, and it is much higher for A=c. 
Therefore, for tuples with A=a or A=b, the ordering O2, 
O1, O3 will outperform O1, O2, O3, while O1, O3, O2 will 
outperform O1, O2, O3 for tuples with A=c. 

Value of A σ1 σ2 σ3 
A=a 32% 10% 55% 
A=b 31% 20% 65% 
A=c 27% 90% 60% 

Overall 30% 40% 60% 

Table 1. Content Specific Selectivities □ 

The degree of correlation between two distributions may 
be specified in a number of ways [27]. In this paper we 
use a specification from Information Theory which is 
based on the concept of gain ratio [27], described next. 

Let R be a random sample of tuples processed by an 
operator O. (In this paper we assume all operators are 
filters; an extension to non-filter operator is discussed in 
Section 4.5.) Let σ be the overall selectivity of O for 
tuples in R. Each tuple in R belongs to one of two classes: 
tuples that O passes and tuples that O drops. The entropy 
[27] of R, which is an information-theoretic metric used to 
capture the information content of R, is defined as: 

 ∑
=

−=
c

1i
i2i plogp)R(Entropy  (1) 

where c is the number of classes in R and pi is the fraction 
of R belonging to class i. In our case c=2, corresponding 
to the tuples passed and dropped by O, so p1=σ and 
p2=1 – σ respectively. Therefore: 

)1(log)1(log)R(Entropy 22 σ−σ−−σσ−=  (2) 

Let A be an attribute of tuples in R. Let v1,v2,…,vd be the 
distinct values of A in R. The information gain of A with 
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respect to R, which represents the increase in information 
about R gained by knowledge of A, is defined as [27]: 

∑
=

−=
d

1i
i

i )R(Entropy
R
R

)R(Entropy)A,R(InfoGain  (3) 

Here, Ri is the subset of R with A=vi, and |R| (|Ri|) is the 
number of tuples in R (Ri). Gain ratio is a normalized 
representation of information gain [27]: 

 ∑
=

−=
d

1i

i
2

i

R
R

log*
R
R

)A(mationSplitInfor  (4) 

 
)A(mationSplitInfor

)A,R(InfoGain)A,R(GainRatio =  (5) 

Gain ratio is used widely in decision-tree learning 
algorithms (e.g., ID3 [27]) to determine the attribute that 
best classifies a given data set. Since classifier attributes 
serve a similar purpose in our case, our formal definition 
of a classifier attribute is based on gain ratio. 

Definition 3.1 (Classifier Attribute) An attribute A is a 
classifier attribute for an operator O if for any large 
random sample R of tuples processed by O, we have 
GainRatio(R,A) > γ, for some threshold γ. □ 

Example 3.2. We revisit Example 3.1. Let Table 1 now 
represent the selectivities computed from random samples 
R1, R2, and R3 of tuples processed by operators O1, O2, and 
O3 respectively. Since A takes one of values a, b, or c with 
equal probability, the samples will contain tuples with 
A=a, A=b, and A=c in roughly equal proportion. We can 
use Equations (2) – (5) to compute the gain ratio of 
attribute A with respect to R1, R2, and R3: 
GainRatio(R1, A) = 0.33, GainRatio(R2, A) = 0.63, and 
GainRatio(R3, A) = 0.37. Notice that GainRatio(R2, A) 
dominates the others because of the strong correlation 
between the selectivity of O2 and the content of A. □ 

Our definition of classifier attributes extends to classifier 
attribute sets where the selectivity of an operator is 
correlated with a set of attributes instead of with any 
single attribute in that set. That is, tuple classes in the 
input may be determined by a set of attributes instead of a 
single attribute. We do not consider classifier attribute 
sets in this paper; instead we focus on single-attribute 
classifiers. Note however that CBR considers multiple 
single-attribute classifiers when making routing decisions. 
While some of our techniques extend directly to classifier 
attribute sets, we defer a detailed exploration of this issue 
to future work. 

4. Learning Routes Automatically 
We are now ready to consider the problem of learning 
good content-based routes automatically for the CBR 
framework introduced in Section 3. We will consider a 
single input stream S with tuples having attributes C1, C2, 
…, Ck that are processed by operators O1, O2, …, On, and 

describe our Content-Learns algorithm to learn good 
content-based routes automatically in this setting. For now 
we will consider all operators O1, O2, …, On, and for each 
operator, we consider all attributes C1, C2, …, Ck as 
potential classifier attributes for CBR. In Section 4.4 we 
will present heuristics to prune the space of attributes and 
operators that we consider for CBR. Content-Learns 
consists of two continuous, concurrent steps: 
1. Optimization: In this step, for each operator Ol ∈ O1, 

…,On, if one or more attributes in C1,…,Ck are 
classifier attributes for Ol, then we keep track of the 
best classifier attribute for Ol. Informally, we identify 
the attribute in C1,…,Ck based on whose content we 
can make the best routing decisions with respect to Ol. 
The operator-attribute combinations identified during 
optimization are used for CBR by the routing step as 
described in Section 4.2. Details of the optimization 
step are described in Section 4.1. 

2. Routing: In this step we perform CBR using the 
current operator-attribute combinations identified by 
the optimization step. If the selectivity of operator Ol 
is not correlated with the contents of any attribute, 
then we do not use any Ol-attribute combination but 
instead make routing decisions regarding Ol using the 
selectivity of Ol alone. Our routing algorithm for CBR 
is described in Section 4.2. 

4.1. The Optimization Step of Content-Learns 

The goal of optimization is, for each operator Ol ∈ O1, 
…,On, to identify the best classifier attribute for Ol in 
C1,…,Ck. We cycle through the operators in a round-robin 
fashion, so each operator is considered periodically. When 
we consider operator Ol, which we call profiling Ol, we 
identify the best classifier attribute for Ol. To identify the 
classifier attributes for Ol, we have to measure the gain 
ratio of C1,…,Ck based on a random sample of tuples 
processed by Ol; recall Section 3. To collect this random 
sample R when Ol is profiled, the Eddy routes a fraction 
of input tuples to Ol before they are routed to any other 
operator, and notes whether Ol dropped each such tuple or 
not. (Note that we profile operators using tuples straight 
from the input stream. However, in some scenarios it may 
make sense to profile tuples after they have been filtered 
by some operators. We can extend our profiling to track 
such conditional selectivities as in [4] which we intend to 
do as future work.) 

Our profiling technique requires the specification of 
two parameters: a probability P for sampling an input 
tuple so that it will be routed first to Ol, and a sample size 
to fix |R|. Once R has been collected, we can compute 
GainRatio(R, Cj) for each Cj ∈ C1,…,Ck, to determine the 
classifier attributes for Ol. If there are two or more such 
attributes, then the attribute with maximum gain ratio is 
the best classifier attribute for Ol. Details of our 
implementation for profiling O are outlined next. 

760



 

Let Dj denote the domain of potential classifier 
attribute Cj. For each Cj we choose a partitioning function 
fj that partitions Dj into d partitions. If Cj is a discrete-
valued attribute, we choose a hash function that maps any 
v ∈ Dj to one of d buckets. If Cj is a continuous-valued 
attribute, we maintain running estimates of max(Dj) and 
min(Dj) and use a range-partitioning function to map any 
v ∈ Dl into one of d partitions. Without loss of generality, 
let v1,v2,…,vd denote the d partitions of each domain. 
(Note that, e.g., partition v1 of domain D1 is not the same 
as partition v1 of domain D2.) 

Content-Learns maintains the following run-time data 
structures, as shown in Figure 2: 

 
Figure 2. Run-time Data Structures 

1. Classifier Attribute Matrix, CA[]. CBR keeps an 
array that, for each operator Ol, stores the attribute 
index of the best classifier attribute, i.e., the attribute 
with highest gain ratio for Ol. If Ol has no classifier 
attributes, CBR assigns CA[l] = -1. CBR recomputes 
CA[l] after R random sample tuples are used to profile 
operator Ol. In Figure 2, the classifier attribute for 
operator 3 (marked in gray) is attribute 1. 

2. Tuples In, In[] and Tuples Out, Out[] Matrices: 
These matrices track which tuples in which partitions 
of all attributes pass (increments both  In[] and Out[] 
entries) or fail (increments only In[] entries) the 
operator being profiled. For each one of the R random 
sample tuples, k entries are updated in each one of 
these matrices. The entries to be updated are (j,i), with 
j =1,…,k, and vi=fj(t.Cj). 

3. Detailed Selectivities Matrix, S[]. Each column in 
this matrix stores the running selectivities for an Ol–Cj 
operator–classifier-attribute pair. Entries in the matrix 
are updated at two different times: 
(i) Run-time: Each time a tuple passes or fails an 

operator, one entry in this matrix is updated.3 For a 

                                                           
3 The formula used to update selectivity after a tuple is known to pass or 
fail an operator is: selectivity = selectivity * α + pass * (1- α), where 

tuple t being processed by Ol, the column to update 
in the matrix is l, and the row is vi=fj(t.Cj), with j 
being the index of the classifier attribute for Ol, 
i.e., j =CA[l]. 

(ii) Initialization: After completing profiling operator 
Ol and finding its classifier attribute Cj, CBR 
updates Ol’s column: S[l,i]←Out[j,i]/In[j,i], with 
i=1,..,d. If In[j,i]=0, then S[l,i]←W[l], where W[l] 
is the overall selectivity of operator Ol as described 
next. 

4. Overall Operator Selectivities, W[]. This matrix (not 
shown in Figure 2) is non-CBR specific information 
and it is kept both by CBR and by the non-CBR 
implementation in TelegraphCQ. W[l] tracks the 
recent overall selectivity of operator Ol over all tuples 
processed by Ol. 

Once we have collected the random sample R of tuples 
processed by operator Ol while profiling Ol, we can 
compute GainRatio(R,Cj) (Equation (5)) for all Cj ∈ 
C1,…,Ck using matrices I and O. From Equation (2), 
Entropy(R) depends only on the overall selectivity of Ol 
over R, which is the number of output tuples over all 
tuples profiled: ( ) R]i,j[Outd

1i∑ =
 for any j. 

Similarly, Entropy(Ri) in Equation (3) for 
InfoGain(R,Cj) depends only on I and O. Finally, |Ri| in 
Equations (3) and (4) for InfoGain(R,Cj) and 
SplitInformation (Cj) is equal to In[j,i]. 

So far we have seen how the classifier attributes for Ol 
can be determined by profiling Ol. If there are one or 
more such attributes, then the attribute with maximum 
gain ratio, denoted Cmax, is the best classifier attribute for 
Ol. Even though Cmax is the best classifier for Ol, using the 
Ol-Cmax combination for CBR may not improve overall 
performance. (Details of using operator-attribute 
combinations during routing are given in Section 4.2.) 
The reason it may not improve performance is that we 
may already be using some other operator-attribute 
combinations for CBR. The additional benefit that Ol-Cmax 
gives in this context may be lower than the extra routing 
overhead that it incurs. We use a simple yet accurate 
technique to estimate the overall benefit of adding Ol-Cmax 
for CBR in the current context. We simply start using Ol-
Cmax for CBR alongside the other operator-attribute 
combinations being used already, and measure the overall 
performance with and without Ol-Cmax. We characterize 
overall performance in terms of the rate at which the Eddy 
can process input tuples, which can be measured at 
negligible overhead. If the overall performance improves 
when we start using Ol-Cmax for CBR, then we stick with 
it until the next time Ol is profiled. (Just before we start 
profiling an operator Ol, we stop using any Ol-attribute 
combination being used for CBR.) Otherwise, we stop 
                                                                                              
selectivity is a percentage between 0 and 100, pass is 100 if the tuple 
passes the operator or 0 if it is dropped, and α = 0.95. 
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using Ol-Cmax. In either case, we move on to profile the 
next operator in our round-robin schedule. Note that after 
computing gain ratio values for C1,…,Ck while profiling 
Ol, we may realize that Ol has no classifier attributes. 
Then, we move directly to profile the next operator. 

4.2. The Routing Step of Content-Learns 

In this section we describe how we extend the original 
Eddy routing algorithm to incorporate the operator-
attribute combinations identified in the optimization step 
for CBR. This algorithm routes tuples to operators 
according to a probability that is inversely proportional to 
the operators' selectivities (stored in matrix W in our 
implementation). We call this algorithm Source-Based 
Routing (SBR).4 

When an Eddy using Content-Learns has to route a 
tuple t to one of operators O1,…,On, the Eddy routes t to 
the operator with minimum value σ, where σ is defined as 
follows for an operator Ol: 

• If Ol is tagged with classifier attribute Cj, then σ is the 
expected selectivity of Ol for tuples t' with 
fj(t'.Cj)=fj(t.Cj), which is equal to S[l,i] where fj(t.Cj)=vi 
and j=CA[l]. (We have used the same notation as in 
Section 4.1.) 

• If Ol is not tagged with a classifier attribute, then σ is 
W[l], the expected overall selectivity of Ol, which is the 
same value as used by the SBR algorithm. 

Intuitively, for operators that have a classifier attribute, 
CBR uses the content-specific selectivity of the operator 
while making routing decisions. The content-specific 
selectivity is available from the selectivity matrix for the 
operator. For operators that do not have a classifier 
attribute, CBR uses the overall selectivity of the operator 
across all tuples as done by SBR. 

4.3. Overheads and Benefits of CBR 

There are two forms of overhead associated with CBR: 
the routing overhead of evaluating content-based 
conditions while making routing decisions, and the 
learning overhead of learning and maintaining good 
routes automatically. The routing overhead was designed 
to be very low, as it is incurred each time a tuple is routed 
by the Eddy. The learning overhead is amortized across a 
large number of tuples as this overhead is incurred once 
after |R| sample tuples are observed. Section 6.8 presents 
experiments where the overheads of CBR can be observed 
to be very low. 

The benefit of CBR comes from finding routes that 
drop tuples sooner. As such, the benefit of CBR is 
proportional to the percentage of time that a query spends 

                                                           
4 We call this algorithm Source-Based Routing because without looking 
at the content, an Eddy treats all tuples coming from the same source the 
same way. 

evaluating operators. In Section 6.7 we explore the 
performance of CBR while varying operator costs. 

4.4. Pruning Operators and Attributes 

So far we considered all attributes and all operators as 
potential candidates for CBR. We now describe some 
heuristics to prune this space. These heuristics often 
reduce the learning overhead of CBR significantly 
without any noticeable effect on the quality of content-
based routes. 

CBR applies when optimal operator orderings differ 
across input tuple classes. If an operator is very cheap or 
very selective relative to the other operators, or both, then 
its position will mostly remain unchanged across the 
orderings. This intuition translates into an effective 
pruning heuristic where we do not consider very 
inexpensive or very selective operators for CBR. 
Similarly, we can ignore operators that are very expensive 
or not very selective with respect to the other operators 
because their position is likely to remain unchanged 
across those orderings as well. 

Similar to pruning operators, there are some effective 
heuristics to prune the attributes considered for CBR. For 
example, we can ignore monotonically increasing (or 
decreasing) attributes such as timestamps or sequential 
identifiers which typically are generated synthetically. 
Discrete-valued attributes with large domains, e.g., a 
comments string attribute, may be ignored. (It is advisable 
to ignore long attributes as classifier attributes for CBR to 
keep routing overhead low.) While it is not hard to detect 
such attributes automatically, the required information 
often is available from the schema definitions. 

4.5. CBR for Non-Filter Operators 

We have focused so far on filter operators that either pass 
or drop an input tuple. This class does not capture, for 
example, non-foreign-key join operators, limiting the 
scope of our techniques. However, our techniques apply 
to non-filter operators with one simple modification. We 
have used the filter property of an operator only to 
compute entropy in Equation (2) which contributed to the 
gain ratio value used to identify classifier attributes. The 
two-class notion of passed and dropped tuples is 
meaningless for non-filter operators whose “selectivity”–
the expected number of tuples produced per input tuple–
can be any non-negative real number. Our real purpose 
here is to quantify the skew in content-specific operator 
selectivities with respect to the overall selectivity. Gain 
ratio is one proven technique to quantify this skew. There 
are other techniques, e.g., variance, which apply to non-
filter operators. Therefore, our techniques for CBR apply 
to non-filter operators provided the gain-ratio-based test 
for classifier attributes is replaced by an appropriate test 
that applies to non-filter operators. 
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5. Adaptivity 
Since the Eddies architecture has been designed to support 
adaptive processing, a relevant question to ask is how our 
extensions to support CBR in Eddies affect adaptivity. 
Adaptivity refers to the ability of the system to find an 
efficient plan quickly for the new data and system 
characteristics when these change. The changes in the 
data stream characteristics that can affect routing 
decisions are changes in operator selectivities and changes 
in correlations between attributes and operators’ 
selectivities. 

CBR increases both the learning overhead and the 
routing overhead of Eddies. Fundamentally, reducing run-
time overhead is at odds with improving adaptivity [9]. 
The approach we have adopted in this paper is to keep 
run-time overhead as low as possible while being as 
adaptive as the SBR routing policy in TelegraphCQ. 

To be as adaptive as SBR, CBR keeps the operator 
selectivity matrix W up to date. Note that W is common 
across both policies. In exchange, CBR settles for slower 
adaptivity with respect to changes in classifier attributes 
by profiling only one operator at a time. This design 
decision may fail to detect a new correlation if the 
classifier attribute for an operator changes between two of 
its profiling phases. However, in spite of this decision, 
CBR is designed to never be less adaptive than SBR. 
Example 5.1 illustrates why. 

Example 5.1: CBR as adaptive as SBR. Consider that 
CBR finds Cj to be the classifier attribute for Ol. Then, 
when routing tuple t, CBR assumes the selectivity of Ol to 
be S[l,i], with vi=fj(t.Cj). However, it may be the case that 
the correlation between Cj and Ol no longer holds since Ol 
was last profiled due to one of two reasons: 
• No attribute is correlated with Ol. If this is the case, 

then the selectivity of Ol is given by W[l] and not S[l,i]. 
However, if Cj is not actually correlated to Ol, then all 
entries S[l,i], with i=1,…,d will quickly converge to 
W[l] (because CBR updates entries in S[] as frequently 
as those in W[]). 

• Another attribute is correlated with Ol. If this is the 
case, then we have an argument for more aggressive 
content-based routing statistics tracking (e.g., profiling 
multiple operators simultaneously as done in [3]), not 
less. In any case, given that Cj is not correlated with Ol, 
all entries S[l,i], with i=1,…,d will still quickly 
converge to W[l]. □ 

The assumption behind the current CBR design is that 
operators’ selectivities change more frequently than the 
correlations between operators and tuple content. As such, 
selectivity is tracked continuously (quick to detect 
changes) while profiling is performed only for a sample of 
the tuples (slower to detect changes). For example in the 
real-life dataset that we worked with we observed changes 
in selectivity from 1% to 96% in one operator while the 

best classifier attribute for that operator stayed the same 
(Section 6.6). 

6. Experimental Results 
We now describe an experimental evaluation of our CBR 
techniques using a prototype implementation in 
TelegraphCQ [9]. We evaluate the CBR prototype using 
both synthetic and real life datasets. The synthetic dataset 
is used to evaluate CBR by varying parameters hard to 
control in a real-life dataset: skew, selectivity, and 
aggregate selectivity. The real-life dataset is used to 
evaluate CBR’s adaptivity and performance under varying 
operator costs and overhead. 

6.1. Datasets 

The prototype implementation of CBR was evaluated with 
both a synthetic and a real-life dataset, described below: 
• Stream-Star: We created a synthetic benchmark, 

Stream-Star, based on a star schema. Instead of a 
central fact table, we used a data stream S.5 Our 
experiments use N-way join queries of the following 
form which join incoming S tuples with N dimension 
tables d1, d2, …, dN: 
SELECT * FROM stream S, d1, d2, …, dN
WHERE s.fkd1 = d1.pk // Operator Op1
AND s.fkd2 = d2.pk // Operator Op2
…
AND s.fkdN = dN.pk; // Operator OpN

Each stream consisted of 100,000 tuples. Depending on 
the query, between two and eight dimension tables 
containing 10,000 tuples each are used. Stream S 
contains tuples with a single classifier attribute, attrC, 
which is correlated with the selectivities of all 
operators. (We note that in the real-life dataset 
described next, different operators can have different 
correlated attributes and these correlations can change, 
appear, or disappear with time. CBR worked equally 
well in both settings.). Our stream generator is able to 
produce tuples with any kind of non-independence 
between the classifier attribute attrC and the selectivity 
of the join operators. For example, it can generate a 
stream with the characteristics shown in Table 1. 

• Lab: The Lab dataset is a trace of readings from 54 
sensors in the Intel Research, Berkeley Lab. The 
readings were taken between end of February and 
beginning of April of 2004. The schema consists of one 
single stream, sensors. Tuples in the stream have 
attributes light, humidity, temperature, voltage, 
sensorID, and timestamp information (year, month, 
day, hour, minute, and second) [14]. We cleansed this 

                                                           
5 A star schema was chosen for two reasons: (i) queries over streams 
normally refer to one single stream source that joins with zero or more 
local tables; and (ii) data stream applications have streams that represent 
facts, e.g., traffic information, which then join with dimensions, e.g., 
speed sensors and cars. 
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dataset by removing tuples with missing values or 
impossible values (e.g., negative humidity) that 
sometimes happen when the sensor batteries run low. 
There are 2.2 million records in the cleansed dataset. 
For this dataset the readings are sent to TelegraphCQ in 
generation order, as they would if the tuples were being 
collected from the sensors in real-time. 

6.2. Algorithms, Metrics, and Default Values 

Section 4.2 described most of the details of our 
implementation of CBR in TelegraphCQ, Content-Learns 
(Learns in the figures), and the non-content-based SBR 
algorithm in TelegraphCQ. To illustrate the differences 
between the learning overhead and the routing overhead 
of CBR, in the Stream-Star experiments we include a 
routing algorithm called Content-Knows (Knows in the 
figures) which does not need to learn classifier attributes 
automatically. Instead, Content-Knows is a theoretical 
bound that simulates a routing policy that is “told” which 
attribute is the best classifier for each operator and what is 
the best routing order for each class. 

In addition to the running time, we also use the 
number of routing calls as a performance metric. The 
number of routing calls shows a clear picture of the 
quality of the routing algorithm: a bad routing algorithm 
will miss opportunities to route a tuple to the most 
selective operator, e.g., a tuple may be routed several 
times before being dropped. In addition, the improvement 
in routing calls due to using Content-Learns instead of 
SBR acts as a ceiling in the improvement we can expect 
in total running time. 

Unless otherwise stated, the default values used in the 
experiments are the ones listed in Table 2. 

Parameter Defaults Comment 
P 6% Tuple sampling probability 
|R| 150 tuples Sample size to compute GainRatio 
d 24 Number of buckets in hash partitions

Confidence 95% Confidence intervals in graphs 

Table 2. Defaults used in experiments and graphs 

6.3. Varying Skew 

In this section we use the Stream-Star dataset to show 
how CBR performs in the presence of skew among the 
content-specific selectivities of operators. We set the 
stream to have as many tuple classes as joins. (Each tuple 
class is identified by a unique value of attribute attrC.) 
Skew was created by setting the selectivity of one 
operator to A, and setting the selectivity of the all other N-
1 operators to B, as shown in Table 3. 

A was varied from 5% to 95% with B varying 
accordingly such that the overall aggregate selectivity 
remained constant at 5%. (Section 6.4 reports experiments 
where selectivities are chosen randomly and Section 6.5 
reports experiments where the aggregate selectivity is 
varied.) There were 8 other attributes in tuples in the 

stream not correlated with the selectivities of the 
operators. Thus, Content-Learns must learn that, among 
all these attributes, attrC is the best classifier attribute for 
all operators. The N-way join query was run for two, four, 
six, and eight join operators. Due to space constraints, we 
only show results for two and six joins in Figure 3 and 
Figure 4. 

 Op1 Op2 … OpN 
Class 1 A B … B 
Class 2 B A … B 

… … … … … 
Class N B B … A 

Table 3. Selectivities for class/operator pairs 
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Figure 3. Improvement with varying skew (2 joins) 
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Figure 4. Improvement with varying skew (6 joins) 

Note that when A<B (negative skew), a good routing 
policy should exploit the selectivity skew by routing 
tuples first to the lower selectivity operator corresponding 
to A. When A>B, a good routing algorithm will avoid the 
operator with selectivity A and route tuples through all the 
other operators first. 

Overall, the higher the skew between A and B, 
especially when A<B, the greater the extent by which 
Content-Learns outperforms SBR. At most, Content-
Learns outperforms SBR by performing 67.8% fewer 
routing calls (with eight operators and the largest skew). 
Across all experiments, when A<B, Content-Learns 
required on average 26.9% fewer routing calls and when 
A>B, Content-Learns required 10.2% fewer routing calls. 
That is, it is more useful to know which operator is 
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different by being more selective than it is to know which 
operator is different for being less selective. This happens 
because more selective operators will appear earlier in 
operator orderings affecting more tuples and having 
greater performance impact than less selective operators 
that appear later in the operator order. 

6.4. Varying Selectivities 

In Section 6.3, the choice of selectivities made routing 
tuples to operators difficult for SBR because all operators 
appeared to be equally selective. Each operator had 
selectivity A for one class of tuples and B for all other 
classes. Thus, in all cases, to SBR, all operators appeared 
to have a selectivity of (A + B * (N-1))/N, for the N-way 
join query. 

We continue to use the Stream-Star dataset in the 
following experiments. Each query was run against 50 
different streams. Attribute attrC was correlated with the 
selectivities of the operators. However, this time we 
assigned random selectivities to each operator. As before, 
we included additional attributes (constants, sequences, 
and foreign keys) whose content was not correlated with 
any of the selectivities of the operators. Figure 5 shows 
that Content-Learns is very effective at learning the right 
classifier; out of the 16 million routing calls, Content-
Learns used the wrong classifier only 6.4% of the time. 

Breakdown of routing calls:
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Figure 5. Breakdown of routing calls 
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Figure 6. Improvement with random selectivities 

Figure 6 shows the improvement of Content-Learns over 
SBR both in terms of routing calls and total execution 

time. Note that the larger the number of operators 
involved, the more opportunities are available for 
improvement. 

6.5. Varying Aggregate Selectivity 

In Section 6.3 the overall aggregate selectivity was kept at 
5%. In Section 6.4 the operator selectivities were 
randomly selected without any guarantee on the aggregate 
selectivity. On average, the aggregate selectivity was 8% 
across all streams. This section explores the space of 
aggregate selectivities from 5% to 35%. For this 
experiment, we ran a 6-way join query over Stream-Star 
with the operators having random selectivities under the 
restriction that the overall aggregate selectivity was kept 
at some pre-determined value. The aggregate selectivity is 
varied in Figure 7. Each point in the plot represents the 
average improvement of CBR over SBR for 50 streams of 
100,000 tuples each. 
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Figure 7. Improvement with varying aggregate 

selectivity (6 joins) 

6.6. Adaptivity Experiments 

In this and subsequent sections, we will use the real-life 
Lab dataset. In the Lab dataset the best classifier attributes 
for operators change, appear, and disappear as time 
progresses. Query Q1 is used to illustrate how CBR 
adapts in the presence of variations of selectivity and 
variations of correlation. 

SELECT * FROM sensors WHERE light>500 (Q1) 

For example, the amount of light varies with the time of 
day in the obvious way: during the day there is more light 
than during the night. However, the predicate that 
evaluates “light>500” may actually be correlated with 
sensorID and not with, say, hours. This happens because 
some sensors are placed in illuminated areas like windows 
or in offices, while others are placed in hallways with less 
human activity and light. Furthermore, if the operator that 
checks if light>500 evaluated to true for, say, sensor 7, at 
12h34pm, then it is very likely that it will evaluate to true 
for the same sensor 1 minute later. During the night, when 
it is dark and when people have left the building, the 
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operator that tests for light will almost always have zero 
selectivity. When that is the case, no attribute can be 
found to be correlated with the operator; that is, if the 
selectivity of an operator is 0% (or 100%), then all 
attributes have zero information gain ratio. 

Figure 8 shows the result of running query Q1 for 
three days and nights of data. The top part of the figure 
shows the selectivity of the predicate; note that during the 
day the selectivity does not reach 100%, thus, some 
sensors are in darker areas than others. In the middle of 
the figure, we show what attribute is most correlated with 
the selectivity of the operator for each moment in time. 
sensorID is almost always the best classifier attribute. 
Sometimes, especially during transitions night-day or day-
night, the attribute hours is the best classifier attribute. In 
three other moments, one of the other attributes was found 
to be the best classifier. In all other periods not covered by 
any of the black lines from “sensorID”, “hours”, and “All 
others”, CBR could not find any attribute correlated with 
the selectivity of the operator (because its selectivity was 
0%). Finally, the lower part of the Figure 8 shows how the 
information gain of attribute sensorID varies with time. 
Although Figure 8 is indicative that data characteristics in 
the stream change dramatically and that CBR is able to 
adapt to them, queries with only one operator (like query 
Q1) do not require good routing policies. 

To evaluate the adaptivity of CBR on the Lab dataset, 
we ran queries like query Q2 below: 

SELECT * FROM sensors (Q2)
WHERE light BETWEEN lowL AND highL
AND temperature BETWEEN lowT AND highT
AND humidity BETWEEN lowH AND highH
AND voltage BETWEEN lowV AND highV;

For each attribute, the parameter lowX was randomly 
chosen from among the lowest 25% values in the 
attribute’s domain and the parameter highX was randomly 
chosen from the highest 25% values in the domain. 

For 50 different random Q2 queries, we obtained on 
average an improvement of 8% in routing calls, 5% in 
total execution time, 7% in time spent evaluating 
operators, and 18% in routing calls needed until a tuple is 
dropped. The results are positive but modest. Two reasons 
explain why CBR does not provide greater improvements: 
(i) There are overheads in TelegraphCQ unrelated to 

routing or operator execution [12], for instance, the IO 
required to get the stream tuples from the network and 
the overhead of queuing those tuples before they get to 
the Eddy. These overheads limit the benefit we can 
obtain from a better routing policy. In Section 6.7 we 
explore operators with higher execution costs and 
show that as operator costs increase, CBR’s 
performance improves. 

(ii) CBR can only obtain improvements when the 
selectivities of the operators are not close to 0% or 
100%. As seen in Figure 8 there are large intervals in 
the dataset where the selectivities of operators stay 

very close to 0% or very close to 100%. The 
selectivity graphs for the other operators (not shown) 
have similar intervals very close to 0% or to 100%. 
For Q2, this happened 57.2% of the time, CBR yields 
improvements only on the other 42.8% of the time. 

6.7. Varying Operator Cost 

In this section we vary the time it takes an operator to 
process a tuple and report the corresponding CBR’s 
performance improvements. There are two motivations 
for exploring the space of higher operator costs: (i) there 
are applications where operator costs can be very high 
(for example, [14] reports operator costs, expressed in 
terms of power consumption, with cost differences of two 
orders of magnitude between operators) and (ii) the 
implementation of TelegraphCQ we used has overheads 
[12] that overshadow operator costs. By increasing the 
operator costs, we decrease the weight of these overheads 
in the overall execution time. 
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Figure 9. Improvement with varying operator cost 

Figure 9 shows the improvement in performance from 
using Content-Learns in queries like Q2. The 
improvement in the number of routing calls remains 

Figure 8. Change in selectivity, best classifiers, and 
gain ratio 
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constant throughout and is shown only for reference. The 
improvement in execution time improves as the operator 
cost increases. The increase in operator cost was obtained 
by running CPU intensive computations every time a 
tuple had to be processed by an operator. 

6.8. Run-time Overhead of CBR 

As mentioned in Section 4.3, CBR has two overheads: 
routing overhead and learning overhead. We instrumented 
the code to determine the time spent by each of these 
overheads. The routing overhead was measured as the 
time taken by the function that performs routing decisions 
(the algorithm of Section 4.2). The learning overhead was 
measured as the time taken for updating the data 
structures described in Section 4.1 together with the time 
spent computing the best classifier attributes for each 
profiled operator. We also instrumented the SBR version 
to report its routing and updating overheads (although 
SBR does not determine classifier attributes, it spends 
time updating statistics as well). Figure 10 reports, per 
routed tuple6, these overheads, in microseconds, for both 
SBR and CBR policies for the experiments of Section 6.4 
(Stream-Star dataset). For both policies, the total 
overhead (routing together with learning and updating 
statistics) was around 4-5% of the total execution time. 

In addition, we also measured the worst case scenario for 
CBR: when the routing policy is irrelevant, as is the case 
for queries with one operator only. If there is just one 
operator, no benefit can be gained from different routing 
policies. Thus, differences in total execution time must be 
from overhead and not from better decisions. For this 
experiment we run query Q1 from Section 6.6 over the 
Lab dataset (without using the operator delays mentioned 
in the previous section) for both CBR and SBR. The 
average over 10 runs of query Q1 shows that, when no 
benefit is possible, CBR is about 0.8% worse than SBR in 
total execution time. 

0

1

2

3

4

5

6

7

8

SBR CBR SBR CBR SBR CBR

Learning/Updating per tuple
Routing per tuple

Microseconds

4 joins 6 joins 8 joins  
Figure 10. Per tuple overhead 

                                                           
6 Per tuple overhead is computed as total overhead divided by the 
number of routing calls. Note that the number of routing calls is equal to 
the number of times the Eddy has to route tuples. 

7. Conclusions 
In this paper we proposed a new concept: assigning 
different query execution plans for subsets of data with 
different statistical properties. As such, we developed a 
new query processing technique called content-based 
routing that eliminates the single-plan restriction in 
current systems. We showed how the adaptive 
architecture of a data stream management system, 
TelegraphCQ, can be extended with content-based routing 
to enable the system to exploit correlations between tuple 
content and operator selectivities. 

Our most important contribution was to show that 
content-based learning and routing can be simultaneously 
inexpensive and adaptive while still achieving significant 
performance improvements. We presented the Content-
Learns algorithm which learns good content-based routes 
automatically, and we showed that the overhead of 
maintaining the extra statistics and computing classifier 
attributes is negligible when compared to a non-CBR 
algorithm. 

Our prototype implementation indicates that CBR can 
improve execution time by up to 35% when compared 
with routing based on operator statistics alone. For all 
queries with more than one operator, CBR yielded better 
results than SBR, both in the number of routing calls as 
well as in absolute running time. In addition, the 
performance comparison between Content-Learns and 
Content-Knows showed that Content-Learns learns 
classifier attributes correctly in real time. 

8. Future Work 
While CBR appears to be a promising approach for query 
processing, many issues remain to be explored: 
• In this paper we considered only operator-attribute 

combinations as the basis for CBR. This approach could 
be extended to consider combinations of operator sets 
(or lists) and attribute sets. The relevance of classifier 
attribute sets was discussed briefly in Section 3. 
Operator sets for CBR are useful in the presence of 
non-commutative operators and also to reduce routing 
overhead. 

• Some run-time parameters in our implementation of 
CBR are not yet learned automatically. These include 
the number of partitions used by the hash functions, the 
sampling rate, and the sample size for computing gain 
ratio. 

• Although our work is not strictly comparable with [13] 
it is useful to contrast some high level design decisions. 
In [13] the goal is to minimize power consumption over 
of a large network of sensors. This is achieved by 
collecting large amounts of data before running queries, 
processing the data with heavy machine learning 
algorithms to learn conditional plans, and distributing 
those plans to sensors. Our work, though not covering 
all sensor acquisitional scenarios, is much more 
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adaptive: it uses lightweight techniques to detect 
correlations and produce the different plans for different 
data (a form of conditional plans) on the fly. An 
interesting avenue of future work is trying to combine 
the light-weight adaptive nature of our techniques with 
the distributed nature and power-consumption 
minimization of acquisitional systems. 
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