

Content-Based Routing: Different Plans for Different Data

 Pedro Bizarro† Shivnath Babu‡ David DeWitt† Jennifer Widom‡

 †University of Wisconsin ‡Stanford University
 Madison, WI, USA Stanford, CA, USA
 {pedro, dewitt}@cs.wisc.edu {shivnath, widom}@cs.stanford.edu

Abstract

Query optimizers in current database systems are
designed to pick a single efficient plan for a
given query based on current statistical
properties of the data. However, different subsets
of the data can sometimes have very different
statistical properties. In such scenarios it can be
more efficient to process different subsets of the
data for a query using different plans. We
propose a new query processing technique called
content-based routing (CBR) that eliminates the
single-plan restriction in current systems. We
present low-overhead adaptive algorithms that
partition input data based on statistical properties
relevant to query execution strategies, and
efficiently route individual tuples through
customized plans based on their partition. We
have implemented CBR as an extension to the
Eddies query processor in the TelegraphCQ
system, and we present an extensive
experimental evaluation showing the significant
performance benefits of CBR.

1. Introduction
The conventional approach to query optimization is to
pick a single efficient plan for a query, based on statistical
properties of the data along with other factors such as
system conditions. In many application domains, different
partitions of the overall data accessed by a query may
have very different statistical properties. For example,
statistical properties of the observations collected by
different sensors in a sensor network environment may be
very different [14]. In such cases it can be more efficient
to process the different partitions using different plans. In
this paper we propose a new general-purpose query

processing technique called content-based routing (CBR)
that eliminates the single-plan restriction in current
systems. CBR automatically identifies tuple classes—
partitions of the input data that differ in relevant statistical
properties—and processes the query using multiple plans,
each of which is customized for an individual tuple class.
CBR is low-overhead and it is adaptive, revisiting its
decisions as changes in data characteristics are detected.

Adaptive approaches to query optimization have
received a great deal of attention recently, with a focus on
handling data properties and system conditions that may
change while a query is running, e.g., [2, 8, 9, 10, 18, 28].
Our problem is different: We do not focus on adapting a
single plan as data characteristics change, but rather on
detecting classes of data characteristics that can be used to
route different data to different plans. Note that even
Eddies [2], which can potentially adapt at the tuple
granularity, still uses a single plan for (nearly) all tuples at
any point of time.

Our CBR algorithms are implemented as an extension
to Eddies [2]. However, our approach applies to any query
processing environment where the data movement can be
modeled as streams, e.g., stream systems, regular database
systems using iterators [19], and "pull" systems like
acquisitional query processors [25]. An Eddy processes a
query by routing input stream tuples through operators
specific to that query. Without CBR, an Eddy makes
routing decisions based on the selectivity of each operator
over all tuples the operator has processed recently. Tuples
are not differentiated based on content, so all tuples from
the same stream source are routed identically. We denote
this type of routing as source-based routing (SBR).

When CBR is added to Eddies, correlations between
tuple content and operator selectivity are detected, and
they are exploited during routing to eliminate tuples
sooner, reduce latency, and improve overall system
throughput relative to SBR. Next we motivate CBR using
two examples.

Example 1.1. Figure 1(a) is an intrusion detection query
for an enterprise network [6, 29]. The lookup table T may
contain addresses of subnetworks in the enterprise that are
exposed to the public Internet. The byte sequences
represent patterns common to a specific type of network
attack [6]. Figure 1(b) shows an Eddy for this query with
three filter operators–O1, O2, and O3–corresponding to the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

757

three conditions, over an incoming stream S of network
packets. Operator O1 performs a prefix-based join on the
destination address attribute of incoming S tuples with T.
Operators O2 and O3 perform the 100-byte and 256-byte
sequence matches respectively.

Let ci denote the current average processing cost per
tuple for operator Oi, and let σi, 0 ≤ i ≤ 1, denote the
current expected selectivity of Oi.1 Suppose the following
conditions hold for the example: c3 > c1 > c2 and σ3 > σ1 >
σ2. Given these statistics, the Eddy's routing will converge
to the ordering O2, O1, O3, i.e., most tuples will follow
this route as shown in Figure 1(b).

Now suppose the monitored attack is underway on a
subnetwork whose prefix is not in T. (The subnetwork
may be secured separately by a firewall.) In this case, σ2
and σ3 will be very high, and σ1 will be very low for
packets (tuples) coming from the attacker(s). So, O1, O2,
O3 will be the most efficient ordering for processing these
“attack packets”. For other packets, O2, O1, O3 will remain
the best ordering as before. Since an attack happens
typically from some group of compromised hosts, CBR
can distinguish between the attack and non-attack packets
based on the source address, and use the appropriate
ordering (Figure 1(c)). Without CBR, the Eddy will
continue using the O2, O1, O3 ordering, limiting
performance. □

Example 1.2. Consider the following query over a
distributed sensor network in a large warehouse building:
SELECT * FROM sensors

WHERE light < 1000 lux
2
AND temperature > 20ºC;

To answer this query, data must be acquired from sensors.
However acquiring readings from sensors is a power-
consuming operation. Since sensors are power-
constrained, one of the main goals of acquisitional
systems is to minimize power consumed by data
acquisitions [14]. Note however, that sensors that are
placed close to windows receive more natural light and
likely report higher temperatures than sensors located in

1 Cost is the time spent by the operator processing the tuple. Selectivity
refers to the fraction of input tuples passed by the operator.
2 A value of 1 Lux corresponds to moonlight, 400 Lux to a bright office,
and 100,000 Lux to full sunlight.

interior rooms. Therefore, for those sensors close to
windows, the probability that the predicate on light will
fail may be higher than that for the temperature predicate.
On the other hand, for sensors that are placed in interior
locations, the probability that the predicate on light will
fail may be lower than that for the temperature predicate.
Therefore, instead of using a single fixed order for
evaluating the two predicates across all sensors, we may
want to use CBR: use different operator evaluation orders
depending on the sensor location. For each sensor
location, CBR chooses an operator evaluation order that
evaluates the most selective operator first. On average,
CBR will reduce the number of predicates evaluated per
sensor and the number of data acquisitions required,
resulting in significant power consumption savings in this
setting. □

1.1. Contributions and Outline of Paper

Implementing CBR using Eddies introduces several
challenges that we address in this paper:

•••• In Section 3 we define classifier attributes, an important
concept in CBR.

•••• In Section 4 we present algorithms to automatically and
efficiently learn classifier attributes, to partition the
underlying data into tuple classes, and to route tuples
from these classes optimally through the operators in an
Eddy.

•••• In Section 5 we discuss the adaptive nature of our
algorithms to handle changes in input data properties
and system conditions while the query is running.

•••• Finally, in Section 6 we present an extensive
experimental evaluation of CBR using a prototype
implementation in TelegraphCQ. Our results show good
performance improvements over not using CBR.

2. Related Work
Work related to CBR can be grouped into four categories:
exploiting correlations among attributes during query
processing, adaptive query processing, identifying
correlations in large datasets, and computing complex
statistical information over data streams.

Query: “Track packets with destination
address matching a prefix in table T,
and containing the 100-byte and 256-
byte sequences “0xa...8” and “0x7...b”
respectively as subsequences”
SELECT * FROM packets
WHERE matches(destination, T)
AND contains(data, “0xa...8”)
AND contains(data, “0x7...b”);

a)

O1
O2
O3

Figure 1. (a) A Continuous Query; (b) the Eddies approach; and (c) Eddies with Content-Based Routing

b) c)

758

The work most closely related to CBR is identifying
conditional plans in an acquisitional query processing
system [13, 14]. Like CBR, a conditional plan partitions
the input data and processes each partition with a different
plan. The approach taken in [14] is to learn a single good
conditional plan based on an initial training sample of the
data, and then to use this plan unchanged throughout
query execution. That initial training is done offline,
requires a large amount of collected training data, and
learns the conditional plans using complex decision tree
building algorithms. On the other hand, CBR uses light-
weight machine learning techniques over the streaming
tuples that enable a continuously adaptive approach to
query processing. Thus, CBR does not require previous
knowledge of the data and is not dependent on previous
learned models of the world.

While many adaptive query processing systems have
been built to date, the most of them use a single plan for
almost all tuples at any point of time [2, 4, 5, 22, 24, 26].
Some of these systems, including Eddies, on which we
have implemented CBR, process almost all of the input
tuples using the current best plan, and the remaining
tuples are processed using other plans to track the
performance of these plans (to identify plans to change to)
or to collect run-time statistics [2, 4]. Reference [23]
describes a technique that combines hash join and merge
join operators to take advantage of mostly-ordered inputs.
Tuples following the expected order are routed to the
merge join, remaining tuples to the hash join. A final
phase joins tuples across the two operators to produce the
complete join result. This technique, complementary to
ours, can be seen as providing adaptivity within a single
join operator while CBR provides adaptivity in a query
plan by allowing different join orders.

There has been some recent work on identifying
correlations in large datasets. None of this work has been
used to identify different plans for processing different
partitions of the data for a query. Reference [21] identifies
sets of attributes that are correlated. Reference [11] uses
the lack of correlation (independence) among attributes to
build compact multi-dimensional histograms. Reference
[16] uses probabilistic models like Bayesian networks to
capture the statistical relationship among attributes so as
to compute cardinalities accurately for intermediate
results in query plans.

There has been work on computing complex statistical
information over data streams, for example, decision trees
[15], correlated aggregates [17], and histograms [20].
None of this work includes computing correlations
between tuple content and selectivities of operators,
identifying tuple classes, or finding different plans for
different subsets of data.

3. Classifier Attributes
Our goal is to identify tuple classes where each class has a
different optimal operator order for processing. CBR

considers tuples classes that can be distinguished from
one another based on tuple content, namely, the attributes
in the tuples. In this context, different tuple classes may
have different optimal operator orders if the selectivity of
one or more operators is correlated with the content of one
or more input attributes. Attributes used to distinguish
tuple classes are called classifier attributes. Informally, an
attribute A is called a classifier attribute for an operator O
if the content of A is correlated with the selectivity of O.
As illustrated by Example 3.1, CBR is based on
identifying and exploiting such classifier attributes.

Example 3.1. Consider an input stream S processed by
three operators O1, O2, and O3. Let A be an attribute of
tuples in S which takes one of three values a, b, or c with
equal probability. Table 1 shows the respective
selectivities of O1–O3 for the tuple classes with A=a, A=b,
and A=c, and the overall selectivity of each operator on S
tuples. Assuming O1–O3 have the same execution costs, if
only overall selectivities are considered, then the best
ordering for S tuples is O1, O2, O3. However, note that the
selectivity of O2 is correlated with the value of A: the
selectivity of O2 for A=a and A=b is much lower than O2's
overall selectivity, and it is much higher for A=c.
Therefore, for tuples with A=a or A=b, the ordering O2,
O1, O3 will outperform O1, O2, O3, while O1, O3, O2 will
outperform O1, O2, O3 for tuples with A=c.

Value of A σ1 σ2 σ3
A=a 32% 10% 55%
A=b 31% 20% 65%
A=c 27% 90% 60%

Overall 30% 40% 60%

Table 1. Content Specific Selectivities □

The degree of correlation between two distributions may
be specified in a number of ways [27]. In this paper we
use a specification from Information Theory which is
based on the concept of gain ratio [27], described next.

Let R be a random sample of tuples processed by an
operator O. (In this paper we assume all operators are
filters; an extension to non-filter operator is discussed in
Section 4.5.) Let σ be the overall selectivity of O for
tuples in R. Each tuple in R belongs to one of two classes:
tuples that O passes and tuples that O drops. The entropy
[27] of R, which is an information-theoretic metric used to
capture the information content of R, is defined as:

 ∑
=

−=
c

1i
i2i plogp)R(Entropy (1)

where c is the number of classes in R and pi is the fraction
of R belonging to class i. In our case c=2, corresponding
to the tuples passed and dropped by O, so p1=σ and
p2=1 – σ respectively. Therefore:

)1(log)1(log)R(Entropy 22 σ−σ−−σσ−= (2)

Let A be an attribute of tuples in R. Let v1,v2,…,vd be the
distinct values of A in R. The information gain of A with

759

respect to R, which represents the increase in information
about R gained by knowledge of A, is defined as [27]:

∑
=

−=
d

1i
i

i)R(Entropy
R
R

)R(Entropy)A,R(InfoGain (3)

Here, Ri is the subset of R with A=vi, and |R| (|Ri|) is the
number of tuples in R (Ri). Gain ratio is a normalized
representation of information gain [27]:

 ∑
=

−=
d

1i

i
2

i

R
R

log*
R
R

)A(mationSplitInfor (4)

)A(mationSplitInfor

)A,R(InfoGain)A,R(GainRatio = (5)

Gain ratio is used widely in decision-tree learning
algorithms (e.g., ID3 [27]) to determine the attribute that
best classifies a given data set. Since classifier attributes
serve a similar purpose in our case, our formal definition
of a classifier attribute is based on gain ratio.

Definition 3.1 (Classifier Attribute) An attribute A is a
classifier attribute for an operator O if for any large
random sample R of tuples processed by O, we have
GainRatio(R,A) > γ, for some threshold γ. □

Example 3.2. We revisit Example 3.1. Let Table 1 now
represent the selectivities computed from random samples
R1, R2, and R3 of tuples processed by operators O1, O2, and
O3 respectively. Since A takes one of values a, b, or c with
equal probability, the samples will contain tuples with
A=a, A=b, and A=c in roughly equal proportion. We can
use Equations (2) – (5) to compute the gain ratio of
attribute A with respect to R1, R2, and R3:
GainRatio(R1, A) = 0.33, GainRatio(R2, A) = 0.63, and
GainRatio(R3, A) = 0.37. Notice that GainRatio(R2, A)
dominates the others because of the strong correlation
between the selectivity of O2 and the content of A. □

Our definition of classifier attributes extends to classifier
attribute sets where the selectivity of an operator is
correlated with a set of attributes instead of with any
single attribute in that set. That is, tuple classes in the
input may be determined by a set of attributes instead of a
single attribute. We do not consider classifier attribute
sets in this paper; instead we focus on single-attribute
classifiers. Note however that CBR considers multiple
single-attribute classifiers when making routing decisions.
While some of our techniques extend directly to classifier
attribute sets, we defer a detailed exploration of this issue
to future work.

4. Learning Routes Automatically
We are now ready to consider the problem of learning
good content-based routes automatically for the CBR
framework introduced in Section 3. We will consider a
single input stream S with tuples having attributes C1, C2,
…, Ck that are processed by operators O1, O2, …, On, and

describe our Content-Learns algorithm to learn good
content-based routes automatically in this setting. For now
we will consider all operators O1, O2, …, On, and for each
operator, we consider all attributes C1, C2, …, Ck as
potential classifier attributes for CBR. In Section 4.4 we
will present heuristics to prune the space of attributes and
operators that we consider for CBR. Content-Learns
consists of two continuous, concurrent steps:
1. Optimization: In this step, for each operator Ol ∈ O1,

…,On, if one or more attributes in C1,…,Ck are
classifier attributes for Ol, then we keep track of the
best classifier attribute for Ol. Informally, we identify
the attribute in C1,…,Ck based on whose content we
can make the best routing decisions with respect to Ol.
The operator-attribute combinations identified during
optimization are used for CBR by the routing step as
described in Section 4.2. Details of the optimization
step are described in Section 4.1.

2. Routing: In this step we perform CBR using the
current operator-attribute combinations identified by
the optimization step. If the selectivity of operator Ol
is not correlated with the contents of any attribute,
then we do not use any Ol-attribute combination but
instead make routing decisions regarding Ol using the
selectivity of Ol alone. Our routing algorithm for CBR
is described in Section 4.2.

4.1. The Optimization Step of Content-Learns

The goal of optimization is, for each operator Ol ∈ O1,
…,On, to identify the best classifier attribute for Ol in
C1,…,Ck. We cycle through the operators in a round-robin
fashion, so each operator is considered periodically. When
we consider operator Ol, which we call profiling Ol, we
identify the best classifier attribute for Ol. To identify the
classifier attributes for Ol, we have to measure the gain
ratio of C1,…,Ck based on a random sample of tuples
processed by Ol; recall Section 3. To collect this random
sample R when Ol is profiled, the Eddy routes a fraction
of input tuples to Ol before they are routed to any other
operator, and notes whether Ol dropped each such tuple or
not. (Note that we profile operators using tuples straight
from the input stream. However, in some scenarios it may
make sense to profile tuples after they have been filtered
by some operators. We can extend our profiling to track
such conditional selectivities as in [4] which we intend to
do as future work.)

Our profiling technique requires the specification of
two parameters: a probability P for sampling an input
tuple so that it will be routed first to Ol, and a sample size
to fix |R|. Once R has been collected, we can compute
GainRatio(R, Cj) for each Cj ∈ C1,…,Ck, to determine the
classifier attributes for Ol. If there are two or more such
attributes, then the attribute with maximum gain ratio is
the best classifier attribute for Ol. Details of our
implementation for profiling O are outlined next.

760

Let Dj denote the domain of potential classifier
attribute Cj. For each Cj we choose a partitioning function
fj that partitions Dj into d partitions. If Cj is a discrete-
valued attribute, we choose a hash function that maps any
v ∈ Dj to one of d buckets. If Cj is a continuous-valued
attribute, we maintain running estimates of max(Dj) and
min(Dj) and use a range-partitioning function to map any
v ∈ Dl into one of d partitions. Without loss of generality,
let v1,v2,…,vd denote the d partitions of each domain.
(Note that, e.g., partition v1 of domain D1 is not the same
as partition v1 of domain D2.)

Content-Learns maintains the following run-time data
structures, as shown in Figure 2:

Figure 2. Run-time Data Structures

1. Classifier Attribute Matrix, CA[]. CBR keeps an
array that, for each operator Ol, stores the attribute
index of the best classifier attribute, i.e., the attribute
with highest gain ratio for Ol. If Ol has no classifier
attributes, CBR assigns CA[l] = -1. CBR recomputes
CA[l] after R random sample tuples are used to profile
operator Ol. In Figure 2, the classifier attribute for
operator 3 (marked in gray) is attribute 1.

2. Tuples In, In[] and Tuples Out, Out[] Matrices:
These matrices track which tuples in which partitions
of all attributes pass (increments both In[] and Out[]
entries) or fail (increments only In[] entries) the
operator being profiled. For each one of the R random
sample tuples, k entries are updated in each one of
these matrices. The entries to be updated are (j,i), with
j =1,…,k, and vi=fj(t.Cj).

3. Detailed Selectivities Matrix, S[]. Each column in
this matrix stores the running selectivities for an Ol–Cj
operator–classifier-attribute pair. Entries in the matrix
are updated at two different times:
(i) Run-time: Each time a tuple passes or fails an

operator, one entry in this matrix is updated.3 For a

3 The formula used to update selectivity after a tuple is known to pass or
fail an operator is: selectivity = selectivity * α + pass * (1- α), where

tuple t being processed by Ol, the column to update
in the matrix is l, and the row is vi=fj(t.Cj), with j
being the index of the classifier attribute for Ol,
i.e., j =CA[l].

(ii) Initialization: After completing profiling operator
Ol and finding its classifier attribute Cj, CBR
updates Ol’s column: S[l,i]←Out[j,i]/In[j,i], with
i=1,..,d. If In[j,i]=0, then S[l,i]←W[l], where W[l]
is the overall selectivity of operator Ol as described
next.

4. Overall Operator Selectivities, W[]. This matrix (not
shown in Figure 2) is non-CBR specific information
and it is kept both by CBR and by the non-CBR
implementation in TelegraphCQ. W[l] tracks the
recent overall selectivity of operator Ol over all tuples
processed by Ol.

Once we have collected the random sample R of tuples
processed by operator Ol while profiling Ol, we can
compute GainRatio(R,Cj) (Equation (5)) for all Cj ∈
C1,…,Ck using matrices I and O. From Equation (2),
Entropy(R) depends only on the overall selectivity of Ol
over R, which is the number of output tuples over all
tuples profiled: () R]i,j[Outd

1i∑ =
 for any j.

Similarly, Entropy(Ri) in Equation (3) for
InfoGain(R,Cj) depends only on I and O. Finally, |Ri| in
Equations (3) and (4) for InfoGain(R,Cj) and
SplitInformation (Cj) is equal to In[j,i].

So far we have seen how the classifier attributes for Ol
can be determined by profiling Ol. If there are one or
more such attributes, then the attribute with maximum
gain ratio, denoted Cmax, is the best classifier attribute for
Ol. Even though Cmax is the best classifier for Ol, using the
Ol-Cmax combination for CBR may not improve overall
performance. (Details of using operator-attribute
combinations during routing are given in Section 4.2.)
The reason it may not improve performance is that we
may already be using some other operator-attribute
combinations for CBR. The additional benefit that Ol-Cmax
gives in this context may be lower than the extra routing
overhead that it incurs. We use a simple yet accurate
technique to estimate the overall benefit of adding Ol-Cmax
for CBR in the current context. We simply start using Ol-
Cmax for CBR alongside the other operator-attribute
combinations being used already, and measure the overall
performance with and without Ol-Cmax. We characterize
overall performance in terms of the rate at which the Eddy
can process input tuples, which can be measured at
negligible overhead. If the overall performance improves
when we start using Ol-Cmax for CBR, then we stick with
it until the next time Ol is profiled. (Just before we start
profiling an operator Ol, we stop using any Ol-attribute
combination being used for CBR.) Otherwise, we stop

selectivity is a percentage between 0 and 100, pass is 100 if the tuple
passes the operator or 0 if it is dropped, and α = 0.95.

761

using Ol-Cmax. In either case, we move on to profile the
next operator in our round-robin schedule. Note that after
computing gain ratio values for C1,…,Ck while profiling
Ol, we may realize that Ol has no classifier attributes.
Then, we move directly to profile the next operator.

4.2. The Routing Step of Content-Learns

In this section we describe how we extend the original
Eddy routing algorithm to incorporate the operator-
attribute combinations identified in the optimization step
for CBR. This algorithm routes tuples to operators
according to a probability that is inversely proportional to
the operators' selectivities (stored in matrix W in our
implementation). We call this algorithm Source-Based
Routing (SBR).4

When an Eddy using Content-Learns has to route a
tuple t to one of operators O1,…,On, the Eddy routes t to
the operator with minimum value σ, where σ is defined as
follows for an operator Ol:

• If Ol is tagged with classifier attribute Cj, then σ is the
expected selectivity of Ol for tuples t' with
fj(t'.Cj)=fj(t.Cj), which is equal to S[l,i] where fj(t.Cj)=vi
and j=CA[l]. (We have used the same notation as in
Section 4.1.)

• If Ol is not tagged with a classifier attribute, then σ is
W[l], the expected overall selectivity of Ol, which is the
same value as used by the SBR algorithm.

Intuitively, for operators that have a classifier attribute,
CBR uses the content-specific selectivity of the operator
while making routing decisions. The content-specific
selectivity is available from the selectivity matrix for the
operator. For operators that do not have a classifier
attribute, CBR uses the overall selectivity of the operator
across all tuples as done by SBR.

4.3. Overheads and Benefits of CBR

There are two forms of overhead associated with CBR:
the routing overhead of evaluating content-based
conditions while making routing decisions, and the
learning overhead of learning and maintaining good
routes automatically. The routing overhead was designed
to be very low, as it is incurred each time a tuple is routed
by the Eddy. The learning overhead is amortized across a
large number of tuples as this overhead is incurred once
after |R| sample tuples are observed. Section 6.8 presents
experiments where the overheads of CBR can be observed
to be very low.

The benefit of CBR comes from finding routes that
drop tuples sooner. As such, the benefit of CBR is
proportional to the percentage of time that a query spends

4 We call this algorithm Source-Based Routing because without looking
at the content, an Eddy treats all tuples coming from the same source the
same way.

evaluating operators. In Section 6.7 we explore the
performance of CBR while varying operator costs.

4.4. Pruning Operators and Attributes

So far we considered all attributes and all operators as
potential candidates for CBR. We now describe some
heuristics to prune this space. These heuristics often
reduce the learning overhead of CBR significantly
without any noticeable effect on the quality of content-
based routes.

CBR applies when optimal operator orderings differ
across input tuple classes. If an operator is very cheap or
very selective relative to the other operators, or both, then
its position will mostly remain unchanged across the
orderings. This intuition translates into an effective
pruning heuristic where we do not consider very
inexpensive or very selective operators for CBR.
Similarly, we can ignore operators that are very expensive
or not very selective with respect to the other operators
because their position is likely to remain unchanged
across those orderings as well.

Similar to pruning operators, there are some effective
heuristics to prune the attributes considered for CBR. For
example, we can ignore monotonically increasing (or
decreasing) attributes such as timestamps or sequential
identifiers which typically are generated synthetically.
Discrete-valued attributes with large domains, e.g., a
comments string attribute, may be ignored. (It is advisable
to ignore long attributes as classifier attributes for CBR to
keep routing overhead low.) While it is not hard to detect
such attributes automatically, the required information
often is available from the schema definitions.

4.5. CBR for Non-Filter Operators

We have focused so far on filter operators that either pass
or drop an input tuple. This class does not capture, for
example, non-foreign-key join operators, limiting the
scope of our techniques. However, our techniques apply
to non-filter operators with one simple modification. We
have used the filter property of an operator only to
compute entropy in Equation (2) which contributed to the
gain ratio value used to identify classifier attributes. The
two-class notion of passed and dropped tuples is
meaningless for non-filter operators whose “selectivity”–
the expected number of tuples produced per input tuple–
can be any non-negative real number. Our real purpose
here is to quantify the skew in content-specific operator
selectivities with respect to the overall selectivity. Gain
ratio is one proven technique to quantify this skew. There
are other techniques, e.g., variance, which apply to non-
filter operators. Therefore, our techniques for CBR apply
to non-filter operators provided the gain-ratio-based test
for classifier attributes is replaced by an appropriate test
that applies to non-filter operators.

762

5. Adaptivity
Since the Eddies architecture has been designed to support
adaptive processing, a relevant question to ask is how our
extensions to support CBR in Eddies affect adaptivity.
Adaptivity refers to the ability of the system to find an
efficient plan quickly for the new data and system
characteristics when these change. The changes in the
data stream characteristics that can affect routing
decisions are changes in operator selectivities and changes
in correlations between attributes and operators’
selectivities.

CBR increases both the learning overhead and the
routing overhead of Eddies. Fundamentally, reducing run-
time overhead is at odds with improving adaptivity [9].
The approach we have adopted in this paper is to keep
run-time overhead as low as possible while being as
adaptive as the SBR routing policy in TelegraphCQ.

To be as adaptive as SBR, CBR keeps the operator
selectivity matrix W up to date. Note that W is common
across both policies. In exchange, CBR settles for slower
adaptivity with respect to changes in classifier attributes
by profiling only one operator at a time. This design
decision may fail to detect a new correlation if the
classifier attribute for an operator changes between two of
its profiling phases. However, in spite of this decision,
CBR is designed to never be less adaptive than SBR.
Example 5.1 illustrates why.

Example 5.1: CBR as adaptive as SBR. Consider that
CBR finds Cj to be the classifier attribute for Ol. Then,
when routing tuple t, CBR assumes the selectivity of Ol to
be S[l,i], with vi=fj(t.Cj). However, it may be the case that
the correlation between Cj and Ol no longer holds since Ol
was last profiled due to one of two reasons:
• No attribute is correlated with Ol. If this is the case,

then the selectivity of Ol is given by W[l] and not S[l,i].
However, if Cj is not actually correlated to Ol, then all
entries S[l,i], with i=1,…,d will quickly converge to
W[l] (because CBR updates entries in S[] as frequently
as those in W[]).

• Another attribute is correlated with Ol. If this is the
case, then we have an argument for more aggressive
content-based routing statistics tracking (e.g., profiling
multiple operators simultaneously as done in [3]), not
less. In any case, given that Cj is not correlated with Ol,
all entries S[l,i], with i=1,…,d will still quickly
converge to W[l]. □

The assumption behind the current CBR design is that
operators’ selectivities change more frequently than the
correlations between operators and tuple content. As such,
selectivity is tracked continuously (quick to detect
changes) while profiling is performed only for a sample of
the tuples (slower to detect changes). For example in the
real-life dataset that we worked with we observed changes
in selectivity from 1% to 96% in one operator while the

best classifier attribute for that operator stayed the same
(Section 6.6).

6. Experimental Results
We now describe an experimental evaluation of our CBR
techniques using a prototype implementation in
TelegraphCQ [9]. We evaluate the CBR prototype using
both synthetic and real life datasets. The synthetic dataset
is used to evaluate CBR by varying parameters hard to
control in a real-life dataset: skew, selectivity, and
aggregate selectivity. The real-life dataset is used to
evaluate CBR’s adaptivity and performance under varying
operator costs and overhead.

6.1. Datasets

The prototype implementation of CBR was evaluated with
both a synthetic and a real-life dataset, described below:
• Stream-Star: We created a synthetic benchmark,

Stream-Star, based on a star schema. Instead of a
central fact table, we used a data stream S.5 Our
experiments use N-way join queries of the following
form which join incoming S tuples with N dimension
tables d1, d2, …, dN:
SELECT * FROM stream S, d1, d2, …, dN
WHERE s.fkd1 = d1.pk // Operator Op1
AND s.fkd2 = d2.pk // Operator Op2
…
AND s.fkdN = dN.pk; // Operator OpN

Each stream consisted of 100,000 tuples. Depending on
the query, between two and eight dimension tables
containing 10,000 tuples each are used. Stream S
contains tuples with a single classifier attribute, attrC,
which is correlated with the selectivities of all
operators. (We note that in the real-life dataset
described next, different operators can have different
correlated attributes and these correlations can change,
appear, or disappear with time. CBR worked equally
well in both settings.). Our stream generator is able to
produce tuples with any kind of non-independence
between the classifier attribute attrC and the selectivity
of the join operators. For example, it can generate a
stream with the characteristics shown in Table 1.

• Lab: The Lab dataset is a trace of readings from 54
sensors in the Intel Research, Berkeley Lab. The
readings were taken between end of February and
beginning of April of 2004. The schema consists of one
single stream, sensors. Tuples in the stream have
attributes light, humidity, temperature, voltage,
sensorID, and timestamp information (year, month,
day, hour, minute, and second) [14]. We cleansed this

5 A star schema was chosen for two reasons: (i) queries over streams
normally refer to one single stream source that joins with zero or more
local tables; and (ii) data stream applications have streams that represent
facts, e.g., traffic information, which then join with dimensions, e.g.,
speed sensors and cars.

763

dataset by removing tuples with missing values or
impossible values (e.g., negative humidity) that
sometimes happen when the sensor batteries run low.
There are 2.2 million records in the cleansed dataset.
For this dataset the readings are sent to TelegraphCQ in
generation order, as they would if the tuples were being
collected from the sensors in real-time.

6.2. Algorithms, Metrics, and Default Values

Section 4.2 described most of the details of our
implementation of CBR in TelegraphCQ, Content-Learns
(Learns in the figures), and the non-content-based SBR
algorithm in TelegraphCQ. To illustrate the differences
between the learning overhead and the routing overhead
of CBR, in the Stream-Star experiments we include a
routing algorithm called Content-Knows (Knows in the
figures) which does not need to learn classifier attributes
automatically. Instead, Content-Knows is a theoretical
bound that simulates a routing policy that is “told” which
attribute is the best classifier for each operator and what is
the best routing order for each class.

In addition to the running time, we also use the
number of routing calls as a performance metric. The
number of routing calls shows a clear picture of the
quality of the routing algorithm: a bad routing algorithm
will miss opportunities to route a tuple to the most
selective operator, e.g., a tuple may be routed several
times before being dropped. In addition, the improvement
in routing calls due to using Content-Learns instead of
SBR acts as a ceiling in the improvement we can expect
in total running time.

Unless otherwise stated, the default values used in the
experiments are the ones listed in Table 2.

Parameter Defaults Comment
P 6% Tuple sampling probability
|R| 150 tuples Sample size to compute GainRatio
d 24 Number of buckets in hash partitions

Confidence 95% Confidence intervals in graphs

Table 2. Defaults used in experiments and graphs

6.3. Varying Skew

In this section we use the Stream-Star dataset to show
how CBR performs in the presence of skew among the
content-specific selectivities of operators. We set the
stream to have as many tuple classes as joins. (Each tuple
class is identified by a unique value of attribute attrC.)
Skew was created by setting the selectivity of one
operator to A, and setting the selectivity of the all other N-
1 operators to B, as shown in Table 3.

A was varied from 5% to 95% with B varying
accordingly such that the overall aggregate selectivity
remained constant at 5%. (Section 6.4 reports experiments
where selectivities are chosen randomly and Section 6.5
reports experiments where the aggregate selectivity is
varied.) There were 8 other attributes in tuples in the

stream not correlated with the selectivities of the
operators. Thus, Content-Learns must learn that, among
all these attributes, attrC is the best classifier attribute for
all operators. The N-way join query was run for two, four,
six, and eight join operators. Due to space constraints, we
only show results for two and six joins in Figure 3 and
Figure 4.

 Op1 Op2 … OpN
Class 1 A B … B
Class 2 B A … B

… … … … …
Class N B B … A

Table 3. Selectivities for class/operator pairs

-5%
0%
5%

10%
15%
20%
25%
30%
35%

-1
00

%

-8
0%

-6
0%

-4
0%

-2
0% 0% 20

%

40
%

60
%

80
%

10
0%

Skew = A - B

Routing Calls (Knows)
Routing calls (Learns)
Execution time (Learns)

% Improvement over SBR

Figure 3. Improvement with varying skew (2 joins)

0%

10%

20%

30%

40%

50%

60%

70%

-1
00

%

-8
0%

-6
0%

-4
0%

-2
0% 0% 20

%

40
%

Skew = A - B

Routing Calls (Knows)
Routing calls (Learns)
Execution time (Learns)

% Improvement over SBR

Figure 4. Improvement with varying skew (6 joins)

Note that when A<B (negative skew), a good routing
policy should exploit the selectivity skew by routing
tuples first to the lower selectivity operator corresponding
to A. When A>B, a good routing algorithm will avoid the
operator with selectivity A and route tuples through all the
other operators first.

Overall, the higher the skew between A and B,
especially when A<B, the greater the extent by which
Content-Learns outperforms SBR. At most, Content-
Learns outperforms SBR by performing 67.8% fewer
routing calls (with eight operators and the largest skew).
Across all experiments, when A<B, Content-Learns
required on average 26.9% fewer routing calls and when
A>B, Content-Learns required 10.2% fewer routing calls.
That is, it is more useful to know which operator is

764

different by being more selective than it is to know which
operator is different for being less selective. This happens
because more selective operators will appear earlier in
operator orderings affecting more tuples and having
greater performance impact than less selective operators
that appear later in the operator order.

6.4. Varying Selectivities

In Section 6.3, the choice of selectivities made routing
tuples to operators difficult for SBR because all operators
appeared to be equally selective. Each operator had
selectivity A for one class of tuples and B for all other
classes. Thus, in all cases, to SBR, all operators appeared
to have a selectivity of (A + B * (N-1))/N, for the N-way
join query.

We continue to use the Stream-Star dataset in the
following experiments. Each query was run against 50
different streams. Attribute attrC was correlated with the
selectivities of the operators. However, this time we
assigned random selectivities to each operator. As before,
we included additional attributes (constants, sequences,
and foreign keys) whose content was not correlated with
any of the selectivities of the operators. Figure 5 shows
that Content-Learns is very effective at learning the right
classifier; out of the 16 million routing calls, Content-
Learns used the wrong classifier only 6.4% of the time.

Breakdown of routing calls:

77.3% 85.2%83.0%

6.3%
6.5%6.5%

3.5% 4.8% 6.0%
5.7% 2.3%10.6%

0%

20%

40%

60%

80%

100%

4 joins 6 joins 8 joins

Using wrong classifier
Not using a classifier
Profiling
Using right classifier

Figure 5. Breakdown of routing calls

21.2%

29.4%

35.1%

19.7%18.8%

12.8%

0%

5%

10%

15%

20%

25%

30%

35%

40%

4 joins 6 joins 8 joins

Routing calls
Execution time

% Improvement over SBR

Figure 6. Improvement with random selectivities

Figure 6 shows the improvement of Content-Learns over
SBR both in terms of routing calls and total execution

time. Note that the larger the number of operators
involved, the more opportunities are available for
improvement.

6.5. Varying Aggregate Selectivity

In Section 6.3 the overall aggregate selectivity was kept at
5%. In Section 6.4 the operator selectivities were
randomly selected without any guarantee on the aggregate
selectivity. On average, the aggregate selectivity was 8%
across all streams. This section explores the space of
aggregate selectivities from 5% to 35%. For this
experiment, we ran a 6-way join query over Stream-Star
with the operators having random selectivities under the
restriction that the overall aggregate selectivity was kept
at some pre-determined value. The aggregate selectivity is
varied in Figure 7. Each point in the plot represents the
average improvement of CBR over SBR for 50 streams of
100,000 tuples each.

37.0%

31.2%

25.4%

20.0%

13.0%

22.0%
18.5%

25.1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

5% 15% 25% 35%
Aggregate selectivity

Routing calls
Execution time

% Improvement over SBR

Figure 7. Improvement with varying aggregate

selectivity (6 joins)

6.6. Adaptivity Experiments

In this and subsequent sections, we will use the real-life
Lab dataset. In the Lab dataset the best classifier attributes
for operators change, appear, and disappear as time
progresses. Query Q1 is used to illustrate how CBR
adapts in the presence of variations of selectivity and
variations of correlation.

SELECT * FROM sensors WHERE light>500 (Q1)

For example, the amount of light varies with the time of
day in the obvious way: during the day there is more light
than during the night. However, the predicate that
evaluates “light>500” may actually be correlated with
sensorID and not with, say, hours. This happens because
some sensors are placed in illuminated areas like windows
or in offices, while others are placed in hallways with less
human activity and light. Furthermore, if the operator that
checks if light>500 evaluated to true for, say, sensor 7, at
12h34pm, then it is very likely that it will evaluate to true
for the same sensor 1 minute later. During the night, when
it is dark and when people have left the building, the

765

operator that tests for light will almost always have zero
selectivity. When that is the case, no attribute can be
found to be correlated with the operator; that is, if the
selectivity of an operator is 0% (or 100%), then all
attributes have zero information gain ratio.

Figure 8 shows the result of running query Q1 for
three days and nights of data. The top part of the figure
shows the selectivity of the predicate; note that during the
day the selectivity does not reach 100%, thus, some
sensors are in darker areas than others. In the middle of
the figure, we show what attribute is most correlated with
the selectivity of the operator for each moment in time.
sensorID is almost always the best classifier attribute.
Sometimes, especially during transitions night-day or day-
night, the attribute hours is the best classifier attribute. In
three other moments, one of the other attributes was found
to be the best classifier. In all other periods not covered by
any of the black lines from “sensorID”, “hours”, and “All
others”, CBR could not find any attribute correlated with
the selectivity of the operator (because its selectivity was
0%). Finally, the lower part of the Figure 8 shows how the
information gain of attribute sensorID varies with time.
Although Figure 8 is indicative that data characteristics in
the stream change dramatically and that CBR is able to
adapt to them, queries with only one operator (like query
Q1) do not require good routing policies.

To evaluate the adaptivity of CBR on the Lab dataset,
we ran queries like query Q2 below:

SELECT * FROM sensors (Q2)
WHERE light BETWEEN lowL AND highL
AND temperature BETWEEN lowT AND highT
AND humidity BETWEEN lowH AND highH
AND voltage BETWEEN lowV AND highV;

For each attribute, the parameter lowX was randomly
chosen from among the lowest 25% values in the
attribute’s domain and the parameter highX was randomly
chosen from the highest 25% values in the domain.

For 50 different random Q2 queries, we obtained on
average an improvement of 8% in routing calls, 5% in
total execution time, 7% in time spent evaluating
operators, and 18% in routing calls needed until a tuple is
dropped. The results are positive but modest. Two reasons
explain why CBR does not provide greater improvements:
(i) There are overheads in TelegraphCQ unrelated to

routing or operator execution [12], for instance, the IO
required to get the stream tuples from the network and
the overhead of queuing those tuples before they get to
the Eddy. These overheads limit the benefit we can
obtain from a better routing policy. In Section 6.7 we
explore operators with higher execution costs and
show that as operator costs increase, CBR’s
performance improves.

(ii) CBR can only obtain improvements when the
selectivities of the operators are not close to 0% or
100%. As seen in Figure 8 there are large intervals in
the dataset where the selectivities of operators stay

very close to 0% or very close to 100%. The
selectivity graphs for the other operators (not shown)
have similar intervals very close to 0% or to 100%.
For Q2, this happened 57.2% of the time, CBR yields
improvements only on the other 42.8% of the time.

6.7. Varying Operator Cost

In this section we vary the time it takes an operator to
process a tuple and report the corresponding CBR’s
performance improvements. There are two motivations
for exploring the space of higher operator costs: (i) there
are applications where operator costs can be very high
(for example, [14] reports operator costs, expressed in
terms of power consumption, with cost differences of two
orders of magnitude between operators) and (ii) the
implementation of TelegraphCQ we used has overheads
[12] that overshadow operator costs. By increasing the
operator costs, we decrease the weight of these overheads
in the overall execution time.

0%

5%

10%

15%

20%

25%

0 100 200 300 400 500
Operator cost (microsecs)

Routing calls
Execution time

% Improvement over SBR

Figure 9. Improvement with varying operator cost

Figure 9 shows the improvement in performance from
using Content-Learns in queries like Q2. The
improvement in the number of routing calls remains

Figure 8. Change in selectivity, best classifiers, and
gain ratio

766

constant throughout and is shown only for reference. The
improvement in execution time improves as the operator
cost increases. The increase in operator cost was obtained
by running CPU intensive computations every time a
tuple had to be processed by an operator.

6.8. Run-time Overhead of CBR

As mentioned in Section 4.3, CBR has two overheads:
routing overhead and learning overhead. We instrumented
the code to determine the time spent by each of these
overheads. The routing overhead was measured as the
time taken by the function that performs routing decisions
(the algorithm of Section 4.2). The learning overhead was
measured as the time taken for updating the data
structures described in Section 4.1 together with the time
spent computing the best classifier attributes for each
profiled operator. We also instrumented the SBR version
to report its routing and updating overheads (although
SBR does not determine classifier attributes, it spends
time updating statistics as well). Figure 10 reports, per
routed tuple6, these overheads, in microseconds, for both
SBR and CBR policies for the experiments of Section 6.4
(Stream-Star dataset). For both policies, the total
overhead (routing together with learning and updating
statistics) was around 4-5% of the total execution time.

In addition, we also measured the worst case scenario for
CBR: when the routing policy is irrelevant, as is the case
for queries with one operator only. If there is just one
operator, no benefit can be gained from different routing
policies. Thus, differences in total execution time must be
from overhead and not from better decisions. For this
experiment we run query Q1 from Section 6.6 over the
Lab dataset (without using the operator delays mentioned
in the previous section) for both CBR and SBR. The
average over 10 runs of query Q1 shows that, when no
benefit is possible, CBR is about 0.8% worse than SBR in
total execution time.

0

1

2

3

4

5

6

7

8

SBR CBR SBR CBR SBR CBR

Learning/Updating per tuple
Routing per tuple

Microseconds

4 joins 6 joins 8 joins
Figure 10. Per tuple overhead

6 Per tuple overhead is computed as total overhead divided by the
number of routing calls. Note that the number of routing calls is equal to
the number of times the Eddy has to route tuples.

7. Conclusions
In this paper we proposed a new concept: assigning
different query execution plans for subsets of data with
different statistical properties. As such, we developed a
new query processing technique called content-based
routing that eliminates the single-plan restriction in
current systems. We showed how the adaptive
architecture of a data stream management system,
TelegraphCQ, can be extended with content-based routing
to enable the system to exploit correlations between tuple
content and operator selectivities.

Our most important contribution was to show that
content-based learning and routing can be simultaneously
inexpensive and adaptive while still achieving significant
performance improvements. We presented the Content-
Learns algorithm which learns good content-based routes
automatically, and we showed that the overhead of
maintaining the extra statistics and computing classifier
attributes is negligible when compared to a non-CBR
algorithm.

Our prototype implementation indicates that CBR can
improve execution time by up to 35% when compared
with routing based on operator statistics alone. For all
queries with more than one operator, CBR yielded better
results than SBR, both in the number of routing calls as
well as in absolute running time. In addition, the
performance comparison between Content-Learns and
Content-Knows showed that Content-Learns learns
classifier attributes correctly in real time.

8. Future Work
While CBR appears to be a promising approach for query
processing, many issues remain to be explored:
• In this paper we considered only operator-attribute

combinations as the basis for CBR. This approach could
be extended to consider combinations of operator sets
(or lists) and attribute sets. The relevance of classifier
attribute sets was discussed briefly in Section 3.
Operator sets for CBR are useful in the presence of
non-commutative operators and also to reduce routing
overhead.

• Some run-time parameters in our implementation of
CBR are not yet learned automatically. These include
the number of partitions used by the hash functions, the
sampling rate, and the sample size for computing gain
ratio.

• Although our work is not strictly comparable with [13]
it is useful to contrast some high level design decisions.
In [13] the goal is to minimize power consumption over
of a large network of sensors. This is achieved by
collecting large amounts of data before running queries,
processing the data with heavy machine learning
algorithms to learn conditional plans, and distributing
those plans to sensors. Our work, though not covering
all sensor acquisitional scenarios, is much more

767

adaptive: it uses lightweight techniques to detect
correlations and produce the different plans for different
data (a form of conditional plans) on the fly. An
interesting avenue of future work is trying to combine
the light-weight adaptive nature of our techniques with
the distributed nature and power-consumption
minimization of acquisitional systems.

Acknowledgements
We would like to thank Sam Madden and Amol
Deshpande for providing us the Lab dataset. We also
would like to thank Sailesh Krishnamurthy, Amol
Deshpande (again), Joe Hellerstein, and the rest of the
TelegraphCQ team for providing TelegraphCQ and
answering all our questions.

References
[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R.

Motwani, I. Nishizawa, U. Srivastava, D. Thomas, R.
Varma, J. Widom. STREAM: The Stanford Stream Data
Manager. IEEE Data Eng. Bull. 26(1): 19-26 (2003).

[2] R. Avnur and J. Hellerstein. Eddies: Continuously
adaptive query processing. In SIGMOD ‘00.

[3] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J.
Widom. Adaptive ordering of pipelined stream filters. In
ACM SIGMOD ‘04.

[4] S. Babu and J. Widom. StreaMon: An adaptive engine
for stream query processing. In ACM SIGMOD ‘04.
Demonstration proposal.

[5] S. Babu, P. Bizarro, and D. DeWitt, Proactive Re-
optimization. In ACM SIGMOD ‘05.

[6] J. Beale. Snort 2.1 Intrusion Detection. Syngress
Publishing, 2004.

[7] N. Bruno and S. Chaudhuri. Exploiting statistics on
query expressions for optimization. In ACM SIGMOD
‘02.

[8] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S.
Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S.
Zdonik. Monitoring streams – a new class of data
management applications. In VLDB ‘02.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. Shah.
TelegraphCQ: Continuous dataflow processing for an
uncertain world. In CIDR ‘03.

[10] C. Cranor, T. Johnson, O. Spataschek, and V.
Shkapenyuk. Gigascope: A stream database for network
applications. In ACM SIGMOD ‘03.

[11] A. Deshpande, M. N. Garofalakis, and R. Rastogi.
Independence is Good: Dependency-Based Histogram
Synopses for High-Dimensional Data. In ACM
SIGMOD ‘01.

[12] A. Deshpande. An initial study of overheads of eddies.
SIGMOD Record, 32(4), Dec. 2003.

[13] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-Driven Data Acquisition in Sensor
Networks. In VLDB ‘04.

[14] A. Deshpande, C. Guestrin, S. Madden, W. Hong.
Exploiting Correlated Attributes in Acquisitional Query
Processing. In ICDE ‘05.

[15] P. Domingos and G. Hulten. Mining high-speed data
streams. In SIGKDD ‘00.

[16] L. Getoor, B. Taskar, D. Koller. Selectivity Estimation
using Probabilistic Models. In ACM SIGMOD ‘01.

[17] J. Gehrke, F. Korn, and D. Srivastava. On computing
correlated aggregates over continual data streams. In
ACM SIGMOD ‘01.

[18] L. Golab and T. Ozsu. Issues in data stream
management. SIGMOD Record, 32(2):5–14, June 2003.

[19] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv. 25(2): 73-170. 1993.

[20] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. In Proc. of the 2001 Annual ACM Symp. on
Theory of Computing, 2001.

[21] I. Ilyas, V. Markl, P. Haas, P. Brown, and A.
Aboulnaga. CORDS: Automatic discovery of
correlations and soft functional dependencies. In ACM
SIGMOD ‘04.

[22] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D.
Weld. An adaptive query execution system for data
integration. In ACM SIGMOD ‘99.

[23] Z. Ives, Alon Y. Halevy, Daniel S. Weld. Adapting to
Source Properties in Processing Data Integration
Queries. In ACM SIGMOD ‘04.

[24] N. Kabra and D. J. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In
ACM SIGMOD ‘98.

[25] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong.
The Design of an Acquisitional Query Processor for
Sensor Networks. In ACM SIGMOD ‘03.

[26] V. Markl, V. Raman, D. Simmen, G. Lohman, and H.
Pirahesh. Robust query processing through progressive
optimization. In ACM SIGMOD ‘04.

[27] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[28] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein, and R.
Varma. Query processing, approximation, and resource
management in a data stream management system. In
CIDR ‘03.

[29] Snort: The Open Source Network Intrusion Detection
System. http://www.snort.org.

[30] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO
-DB2’s LEarning Optimizer. In VLDB ‘01.

768

