
Probabilistic Robust Query Optimization

Rohan Nogueira

March 31, 2007



Outline

Motivation

Cardinality Estimation

Making Uncertainty Explicit

Analysis

Experiments

Related Work [Chu et al, 2002]

Conclusion



Motivation

I Current focus of optimizers is on the best plan possible

I However, consistency and predictability is ignored

I Also, cardinality estimation errors might exist



Current issues

I Attribute Value Independence(AVI) assumption rarely holds

I Problems with many dimensions(“Curse of Dimensionality”)



Performance v/s Predictability

I Some plans might always be slow (e.g. Sequential Scans)

I Others, might be fast for some range of selectivities, slow
otherwise (e.g. Algorithms related to indexes)

I Ideally, the user should be free to decide what he wants



Solving the uncertainty problem

I Rather than giving point estimates, probaility distributions
would be a better idea

I Then, select plan with least expected cost, not just least cost

I Can just call the optimizer several times for different
selectivities, a waste of time



Incorporating the Probability Distribution

I How do we decide between 2 plans given their probability
distributions?

I User decides on performance v/s predictability

I User specifies confidence threshold X%

I The plan is picked which has lower cost X% of the time



Selectivity Estimation via Sampling

I Use precomputed random samples to guess the probability
distribution for the selectivity

I For joins create “Join Synopses” (limited to joins on foreign
keys)

I Avoids build-up of estimation errors due to AVI



Join Synopses

I The join synopsis for a relation R is constructed as follows:

1. Construct a uniform random sample from R
2. For every relation S such that R has a foreign key to S, join

the sample of R with S
3. Repeat step 2 recursively

I This is performed while updating statistics



Deriving the Probability Distribution

I We use Bayes’ rule to estimate the probability of a predicate
succeeding given the observations on the sample set, X, a
vector 〈x1, x2, . . . , xn〉

I The equation becomes:

f (z |X ) =
P[X |p = z ]f (z)∫ 1

0 P[X |p = y ]f (y)dy
(1)

I f (z) is not always given. We can estimate it given the
workload, or use the uniform prior i.e. f (z) = 1 or Jeffreys’
prior i.e. f (z) ∝ z−1/2(1 − z)−1/2



Deriving the Probability Distribution(contd.)

I Suppose k tuples satisfy the predicate

I The fraction of tuples satisfying the predicate is p, and that of
those that don’t is 1 − p

I The variables xi are independent and identically distributed
Bernoulli random variables, so Pr [X |p = z ] = zk(1 − z)n−k

I Combining the above equation with f (z) = 1, we get

f (z |X ) =
zk(1 − z)n−k∫ 1

0 yk(1 − y)n−kdy
(2)

I The denominator is independent of z , and may be treated as
a normalizing constant

I Thus, it is the beta distribution with parameters
(k + 1, n − k + 1)



The estimation procedure

I The estimation procedure can be summed up as follows:

1. Select the correct sample based on relations present in the
query

2. Evaluate the predicate on the sample and use Bayes’ rule to
infer probability distribution

3. Choose confidence threshold, T based on user preference, and
assign s = cdf −1(T )

4. Return s as the selectivity for the predicate



The estimation procedure (contd.)

I T will be smaller if the user prefers a more aggressive
approach, larger for a more predictive approach

I Sample size is most important factor in determining the
distribution.



Building the Analytical model

I Consider a query Q, with 2 possible plans P1 and P2, running
on a table with N rows

I Either plan may be optimal given the selectivity of the query

I We assume a linear cost model of the form vix + fi for plan
Pi , with vi being the cost per tuple and fi , the fixed overhead
per execution



Analytical results

Figure: Confidence Threshold
effect

Figure: Effect of Sample Size

Figure: Performance v/s
Predictability

Figure: Crossover point at high
selectivity



Experimental results

Figure: Selectivity v/s Time
Figure: Performance v/s
Predictability

Figure: Results for a query with 2 predicates

Figure: Effect of varying sample size



Related Work [Chu et al, 2002]

I [Chu et al, 2002] also looks at using Least Expected
Cost(LEC)

I It is shown that LEC can be applied not just to cost functions
related to running time, but also to more general cost
functions

I In addition, the conditions under which current optimizers can
produce LEC plans are investigated



When do we get LEC plans

I We can obtain LEC plans if there exists a parameter setting
that gives an LEC plan

I Some conditions help us find such a parameter efficiently,
such as

I The presence of a dominant plan
I The cost of a plan being linear in the parameters of interest
I The cost of a plan being the sum of products of independent

parameters

I Parameters that don’t fit these criteria can be transformed so
that they do



More general cost functions

I Cost functions that aren’t necessarily a function of running
time can be easily evaluated using LEC

I However, current optimizers can’t be used



Least expected user cost query optimization

I Dynamic programming algorithms like System R are
considered

I If the cost function is additive, an LEC plan is produced

I Can modify System R to produce LEC plan

I Can also include variance in the cost function



Conclusion

I Estimation of cardinality distribution using random sampling
of relation

I User-defined threshold decides cardinality estimate for
optimization

I However, evaluated only for limited conditions

I Might be possible to use LEC optimization with current
techniques, but only in some cases



References

Babcock, B. and Chaudhuri, S. (2005) Towards a Robust
Query Optimizer: A Principled and Practical Approach ACM
SIGMOD, 2005

Chu, F., Halpern, J. and Gehrke, J. (2002) Least Expected
Cost Query Optimization: What can we expect? ACM PODS,
2002


	Outline
	Motivation
	Cardinality Estimation
	Making Uncertainty Explicit
	Analysis
	Experiments
	Related Work CHG02
	Conclusion

