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Abstract

XML queries typically specify patterns of selection pred-
icates on multiple elements that have some specified tree
structured relationships. The primitive tree structured re-
lationships are parent-child and ancestor-descendant, and
finding all occurrences of these relationships in an XML
database is a core operation for XML query processing.

In this paper, we develop two families of structural join
algorithms for this task: tree-merge and stack-tree. The
tree-merge algorithms are a natural extension of traditional
merge joins and the recently proposed multi-predicate
merge joins, while the stack-tree algorithms have no coun-
terpart in traditional relational join processing. We present
experimental results on a range of data and queries us-
ing the TIMBER native XML query engine built on top of
SHORE. We show that while, in some cases, tree-merge al-
gorithms can have performance comparable to stack-tree
algorithms, in many cases they are considerably worse.
This behavior is explained by analytical results that demon-
strate that, on sorted inputs, the stack-tree algorithms have
worst-case I/O and CPU complexities linear in the sum of
the sizes of inputs and output, while the tree-merge algo-
rithms do not have the same guarantee.

1 Introduction

XML employs a tree-structured model for representing data.
Quite naturally, queries in XML query languages (see, e.g., [10, 7,
6]) typically specify patterns of selection predicates on multiple el-
ements that have some specified tree structured relationships. For
example, the XQuery path expression:

book[title � ‘XML’]//author[. � ‘jane’]

matchesauthor elements that (i) have as content the string value
“jane”, and (ii) are descendants of book elements that have a
child title element whose content is the string value “XML”.

This XQuery path expression can be represented as a node-labeled
tree pattern with elements and string values as node labels.

Such a complex query tree pattern can be naturally decom-
posed into a set of basic parent-child and ancestor-descendant rela-
tionships between pairs of nodes. For example, the basic structural
relationships corresponding to the above query are the ancestor-
descendant relationship (book, author) and the parent-child
relationships (book, title), (title, XML) and (author,
jane). The query pattern can then be matched by (i) match-
ing each of the binary structural relationships against the XML
database, and (ii) “stitching” together these basic matches.

Finding all occurrences of these basic structural relationships
in an XML database is clearly a core operation in XML query
processing, both in relational implementations of XML databases,
and in native XML databases. There has been a great deal of work
done on how to find occurrences of such structural relationships
(as well as the query tree patterns in which they are embedded)
using relational database systems (see, e.g., [14, 27, 26]), as well
as using native XML query engines (see, e.g., [21, 23, 22]). These
works typically use some combination of indexes on elements and
string values, tree traversal algorithms, and join algorithms on the
edge relationships between nodes in the XML data tree.

More recently, Zhang et al. [29] proposed a variation of the
traditional merge join algorithm, called the multi-predicate merge
join (MPMGJN) algorithm, for finding all occurrences of the ba-
sic structural relationships (they refer to them as containment
queries). They compared the implementation of containment
queries using native support in two commercial database systems,
and a special purpose inverted list engine based on the MPMGJN
algorithm. Their results showed that the MPMGJN algorithm
could outperform standard RDBMS join algorithms by more than
an order of magnitude on containment queries. The key to the ef-
ficiency of the MPMGJN algorithm is the (DocId, StartPos
: EndPos, LevelNum) representation of positions of XML
elements, and the (DocId, StartPos, LevelNum) repre-
sentation of positions of string values, that succinctly capture the
structural relationships between elements (and string values) in
the XML database (see Section 2.3 for details about this rep-
resentation). Checking that structural relationships in the XML
tree, like ancestor-descendant and parent-child (corresponding to
containment and direct containment relationships, respectively, in



the XML document representation), are present between elements
amounts to checking that certain inequality conditions hold be-
tween the components of the positions of these elements.

While the MPMGJN algorithm outperforms standard RDBMS
join algorithms, we show in this paper that it can perform a lot of
unnecessary computation and I/O for matching basic structural re-
lationships, especially in the case of parent-child relationships (or,
direct containment queries). In this paper, we take advantage of
the (DocId, StartPos : EndPos, LevelNum) repre-
sentation of positions of XML elements and string values to devise
novel I/O and CPU optimal join algorithms for matching struc-
tural relationships against an XML database.

Since a great deal of XML data is expected to be stored in re-
lational database systems (all the major DBMS vendors including
Oracle, IBM and Microsoft are providing system support for XML
data), our study provides evidence that RDBMS systems need to
augment their suite of physical join algorithms to include struc-
tural joins to be competitive on XML query processing. Our study
is equally relevant for native XML query engines, since structural
joins provide for an efficient set-at-a-time strategy for matching
XML query patterns, in contrast to the node-at-a-time approach of
using tree traversals.

1.1 Outline and Contributions

We begin by presenting background material in Section 2. Our
main contributions are as follows:

� We develop two families of join algorithms to perform
matching of the parent-child and ancestor-descendant struc-
tural relationships efficiently: tree-merge and stack-tree
(Section 3). Given two input lists of tree nodes, each sorted
by(DocId, StartPos), the algorithms compute an out-
put list of sorted results joined according to the desired struc-
tural relationship. The tree-merge algorithms are a natu-
ral extension of merge joins and the recently proposed MP-
MGJN algorithm [29], while the stack-tree algorithms have
no counterpart in traditional relational join processing.

� We present an analysis of the tree-merge and the stack-tree
algorithms (Section 3). The stack-tree algorithms are I/O
and CPU optimal (in an asymptotic sense), and have worst-
case I/O and CPU complexities linear in the sum of sizes
of the two input lists and the output list for both ancestor-
descendant (or, containment) and parent-child (or, direct
containment) structural relationships. The tree-merge algo-
rithms have worst-case quadratic I/O and CPU complexities,
but on some natural classes of structural relationships and
XML data, they have linear complexity as well.

� We show experimental results on a range of data and queries
using the TIMBER native XML query engine built on top of
SHORE (Section 4). We show that while, in some cases, the
performance of tree-merge algorithms can be comparable to
that of stack-tree algorithms, in many cases they are consid-
erably worse. This is consistent with the analysis presented
in Section 3.

We describe related work in Section 5, and discuss ongoing and
future work in Section 6.

2 Background and Overview

2.1 Data Model and Query Patterns

An XML database is a forest of rooted, ordered, labeled trees,
each node corresponding to an element and the edges represent-
ing (direct) element-subelement relationships. Node labels consist
of a set of (attribute, value) pairs, which suffices to model tags,
PCDATA content, etc. For the sample XML document of Fig-
ure 1(a), its tree representation is shown in Figure 1(b). (The util-
ity of the numbers associated with the tree nodes will be explained
in Section 2.3.)

Queries in XML query languages like XQuery [6], Quilt [7],
and XML-QL [10] make fundamental use of (node labeled)
tree patterns for matching relevant portions of data in the XML
database. The query pattern node labels include element tags,
attribute-value comparisons, and string values, and the query pat-
tern edges are either parent-child edges (depicted using single line)
or ancestor-descendant edges (depicted using a double line). For
example, the XQuery path expression in the introduction can be
represented as the rooted tree pattern in Figure 2(a). This query
pattern would match the document in Figure 1.

In general, at each node in the query tree pattern, there is a node
predicate that specifies some predicate on the attributes (e.g., tag,
content) of the node in question. For the purposes of this paper, ex-
actly what is permitted in this predicate is not material. It suffices
for our purposes that there be the possibility of constructing effi-
cient access mechanisms (such as index structures) to identify the
nodes in the XML database that satisfy any given node predicate.

2.2 Matching Basic Structural Relationships

A complex query tree pattern can be decomposed into a set
of basic binary structural relationships such as parent-child and
ancestor-descendant between pairs of nodes. The query pattern
can then be matched by (i) matching each of the binary structural
relationships against the XML database, and (ii) “stitching” to-
gether these basic matches. For example, the basic structural re-
lationships corresponding to the query tree pattern of Figure 2(a)
are shown in Figure 2(b).

A straightforward approach to matching structural relation-
ships against an XML database is to use traversal-style algorithms
by using child-pointers or parent-pointers. Such “tuple-at-a-time”
processing strategies are known to be inefficient compared to the
set-at-a-time strategies used in database systems. Pointer-based
joins [28] have been suggested as a solution to this problem in
object-oriented databases, and shown to be quite efficient.

In the context of XML databases, nodes may have a large
number of children, and the query pattern often requires match-
ing ancestor-descendant structural relationships (for example, the
(book, author) edge in the query pattern of Figure 2(a)),
in addition to parent-child structural relationships. In this case,
there are two options: (i) explicitly maintaining only (parent,
child) node pairs and identifying (ancestor, descendant) node pairs
through repeated joins; or (ii) explicitly maintaining (ancestor, de-
scendant) node pairs. The former approach would take too much
query processing time, while the latter approach would use too
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Figure 1. (a) A sample XML document fragment, (b) Tree representation
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Figure 2. (a) Tree pattern, (b) Structural relationships

much (quadratic) space. In either case, using pointer-based joins
is likely to be infeasible.

2.3 Representing Positions of Elements and String
Values in an XML Database

The key to an efficient, uniform mechanism for set-at-a-time
(join-based) matching of structural relationships is a positional
representation of occurrences of XML elements and string values
in the XML database (see, e.g., [8, 9, 29]), which extends the clas-
sic inverted index data structure in information retrieval [25].

The position of an element occurrence in the XML database
can be represented as the 3-tuple (DocId, StartPos :
EndPos, LevelNum), and the position of a string occurrence
in the XML database can be represented as the 3-tuple (DocId,
StartPos, LevelNum), where (i) DocId is the identifier of
the document; (ii) StartPos and EndPos can be generated by
counting word numbers from the beginning of the document with
identifier DocId until the start of the element and end of the ele-
ment, respectively; and (iii) LevelNum is the nesting depth of the
element (or string value) in the document. Figure 1(b) depicts a 3-
tuple with each tree node, based on this representation of position.
(The DocId for each of these nodes is chosen to be 1.)

Structural relationships between tree nodes (elements or string
values) whose positions are recorded in this fashion can be de-
termined easily: (i) ancestor-descendant: a tree node ��� whose
position in the XML database is encoded as 	�
 ��������������������
is a descendant of a tree node ��� whose position is encoded as

	�
 � ��� � ��� � ��� � � iff 
 � � 
�� ��� � � � � and � � � � � ;1
(ii) parent-child: a tree node �!� whose position in the XML
database is encoded as 	�
 ������"�#�$��������� is a child of a tree
node �%� whose position is encoded as 	�
&� ��� � �'� � �(� � � iff

 � � 
)� ��� �*� � � ��� � � � � ,and � ��+-, � � � .

For example, in Figure 1(b), the author node with position
	 , �/.0��12�/3�� is a descendant of the book node with position
	 , � , �54768� , � , and the string “jane” with position 	 , ��49��:;� is a
child of the author node with position 	 , �/.��<18�=3�� .

A key point worth noting about this representation of node
positions in the XML data tree is that checking an ancestor-
descendant structural relationship is as easy as checking a parent-
child structural relationship. The reason is that one can check for
an ancestor-descendant structural relationship without knowledge
of the intermediate nodes on the path. Also worth noting is that
this representation of positions of elements and string values allow
for checking order and proximity relationships between elements
and/or string values; this issue is not explored further in our paper.

2.4 An Overview

In the rest of this paper, we take advantage of the (DocId,
StartPos : EndPos, LevelNum) representation of po-
sitions of XML elements and string values to (i) devise novel,
I/O and CPU optimal (in an asymptotic sense) join algorithms for
matching basic structural relationships (or, containment queries)
against an XML database; (ii) present an analysis of these algo-
rithms; and (iii) show their behavior in practice using a variety of
experiments.

The task of matching a complex XML query pattern then re-
duces to that of evaluating a join expression with one join operator
for each binary structural relationship in the query pattern. Differ-
ent join orderings may result in different evaluation costs, as usual.
Finding the optimal join ordering is outside the scope of this paper,
and is the subject of future work in this area.

1For leaf strings, EndPos is the same as StartPos.



Algorithm Tree-Merge-Anc (AList, DList)
/* Assume that all nodes in AList and DList have the same DocId */
/* AList is the list of potential ancestors, in sorted order of StartPos */
/* DList is the list of potential descendants in sorted order of StartPos */

begin-desc � DList->firstNode; OutputList � NULL;
for (a � AList->firstNode; a

� � NULL; a � a->nextNode) �
for (d � begin-desc; (d

� � NULL ��� d.StartPos
�

a.StartPos); d � d->nextNode) �
/* skipping over unmatchable d’s */ �

begin-desc � d;
for (d � begin-desc; (d

� � NULL ��� d.EndPos
�

a.EndPos); d � d->nextNode) �
if ((a.StartPos

�
d.StartPos) ��� (d.EndPos

�
a.EndPos)

[ ��� (d.LevelNum � a.LevelNum � 1)]) �
/* the optional condition is for parent-child relationships */
append (a,d) to OutputList; ��

�

Figure 3. Algorithm Tree-Merge-Anc with output in sorted ancestor/parent order

3 Structural Join Algorithms

In this section, we develop two families of join algorithms for
matching parent-child and ancestor-descendant structural relation-
ships efficiently: tree-merge and stack-tree, and present an analy-
sis of these algorithms.

Consider an ancestor-descendant (or, parent-child) struc-
tural relationship 	�� � � ��� � , for example, (book, author) (or,
(author, jane)) in our running example. Let AList �	 
 � � 
 � ������ � and DList �

	 � � � � � ������ � be the lists of tree nodes
that match the node predicates �9� and � � , respectively, each list
sorted by the (DocId, StartPos) values of its elements. There
are a number of ways in which the AList and the DList could
be generated from the database that stores the XML data. For
example, a native XML database system could store each ele-
ment node in the XML data tree as an object with the attributes:
ElementTag, DocId, StartPos, EndPos, and LevelNum.
An index could be built across all the element tags, which could
then be used to find the set of nodes that match a given element tag.
The set of nodes could then be sorted by (DocId, StartPos) to
produce the lists that serve as input to our join algorithms.

Given these two input lists, AList of potential ances-
tors (or parents) and DList of potential descendants (resp.,
children), the algorithms in each family can output a list
OutputList �

	 	 
�� � ��� ��� of join results, sorted either by
(DocId,


��
.StartPos,

���
.StartPos) or by (DocId,� �

.StartPos,

 �
.StartPos). Both variants are useful, and

the variant chosen may depend on the order in which an opti-
mizer chooses to compose the structural joins to match the com-
plex XML query pattern.

3.1 Tree-Merge Join Algorithms

The algorithms in the tree-merge family are a natural exten-
sion of traditional relational merge joins (which use an equal-
ity join condition) to deal with the multiple inequality condi-
tions that characterize the ancestor-descendant or the parent-child
structural relationships, based on the (DocId, StartPos :

EndPos, LevelNum) representation. The recently proposed
multi-predicate merge join (MPMGJN) algorithm [29] is also a
member of this family.

The basic idea here is to perform a modified merge-join, possi-
bly performing multiple scans through the “inner” join operand to
the extent necessary. Either AList or DList can be used as the
inner (resp., outer) operand for the join: the results are produced
sorted (primarily) by the outer operand. In Figure 3, we present the
tree-merge algorithm for the case when the outer join operand is
the ancestor; this is similar to the MPMGJN algorithm. Similarly,
Figure 4 deals with the case when the outer join operand is the de-
scendant. For ease of understanding, both algorithms assume that
all nodes in the two lists have the same value of DocId, their pri-
mary sort attribute. Dealing with nodes from multiple documents
is straightforward, requiring the comparison of DocId values and
the advancement of node pointers as in the traditional merge join.

3.1.1 An Analysis of the Tree-Merge Algorithms

Traditional merge joins that use a single equality condition be-
tween two attributes as the join predicate can be shown to have
time and space complexities �)	�� � ��������� + �  ����!�"���#� � , on sorted
inputs, while producing a sorted output. In general, one cannot
establish the same time complexity when the join predicate in-
volves multiple equality and/or inequality conditions. In this sec-
tion, we identify the criteria under which tree-merge algorithms
have asymptotically optimal time complexity.

Algorithm Tree-Merge-Anc for ancestor-descendant
Structural Relationship:

Theorem 3.1 The space and time complexities of Algorithm
Tree-Merge-Anc are �)	�� $�%�&('�)�� + � *�%�&('�)�� + � +-,�)�./,�)�%�&�'�)0� � ,
for the ancestor-descendant structural relationship.

The intuition is as follows. Consider first the case where
no two nodes in AList are themselves related by an ancestor-
descendant relationship. In this case, the size of OutputList is
�)	�� $�%�&('�)�� + � *�%�&('�)�� � . Algorithm Tree-Merge-Anc makes a



Algorithm Tree-Merge-Desc (AList, DList)
/* Assume that all nodes in AList and DList have the same DocId */
/* AList is the list of potential ancestors, in sorted order of StartPos */
/* DList is the list of potential descendants in sorted order of StartPos */

begin-anc � AList->firstNode; OutputList � NULL;
for (d � DList->firstNode; d

� � NULL; d � d->nextNode) �
for (a � begin-anc; (a

� � NULL ��� a.EndPos
�

d.StartPos); a � a->nextNode) �
/* skipping over unmatchable a’s */ �

begin-anc � a;
for (a � begin-anc; (a

� � NULL ��� a.StartPos
�

a.StartPos); a � a->nextNode) �
if ((a.StartPos

�
d.StartPos) ��� (d.EndPos

�
a.EndPos)

[ ��� (d.LevelNum � a.LevelNum � 1)]) �
/* the optional condition is for parent-child relationships */
append (a,d) to OutputList; ��

�

Figure 4. Algorithm Tree-Merge-Desc with output in sorted descendant/child order

single pass over the input AList and at most two passes over the
input DList.2 Thus, the above theorem is satisfied in this case.

Consider next the case where multiple nodes in AList are
themselves related by an ancestor-descendant relationship. This
can happen, for example, in the (section, head) structural rela-
tionship for the XML data in Figure 1. In this case, multiple passes
may be made over the same set of descendant nodes in DList,
and the size of OutputList may be �)	�� $�%�&('�)���� � *�%�&('�)/� � ,
which is quadratic in the size of the input lists. However, we
can show that the algorithm still has optimal time complexity, i.e.,
�)	�� $�%�&('�)�� + � *�%�&('�)�� + � +-,�)�./,�)�%�&�'�)0� � .

One cannot establish the I/O optimality of Algorithm
Tree-Merge-Anc. In fact, repeated paging can cause its I/O
behavior to degrade in practice, as we shall see in Section 4.

Algorithm Tree-Merge-Anc for parent-child
Structural Relationship: When evaluating a parent-
child structural relationship, the time complexity of Algo-
rithm Tree-Merge-Anc is the same as if one were performing
an ancestor-descendant structural relationship match between the
same two input lists. However, the size of OutputList for the
parent-child structural relationship can be much smaller than the
size of the OutputList for the ancestor-descendant structural
relationship. In particular, consider the case when all the nodes
in AList form a (long) chain of length � , and each node in
AList has two children in DList, one on either side of its child
in AList; this is shown in Figure 5(a). In this case, it is easy to
verify that the size of OutputList is �)	�� $�%�&('�)�� + � *�%�&('�)/� � ,
but the time complexity of Algorithm Tree-Merge-Anc is
�)	/	�� $�%�&('�)�� + � *�%�&('�)/� � � � ; the evaluation is pictorially depicted
in Figure 5(b), where each node in AList is associated with the
sublist of DList that needs to be scanned. The I/O complexity is
also quadratic in the input size in this case.

Algorithm Tree-Merge-Desc: There is no analog to
Theorem 3.1 for Algorithm Tree-Merge-Desc, since the time

2A clever implementation that uses a one node lookahead in AList
can reduce the number of passes over DList to just one.

complexity of the algorithm can be �)	/	�� $�%�&('�)�� + � *�%�&('�)�� +
� +-,�)�./,�)�%�&('-)/� � � � in the worst case. This happens, for example, in
the case shown in Figure 5(c), when the first node in AList is an
ancestor of each node in DList. In this case, each node in DList
has only two ancestors in AList, so the size of OutputList is
�)	�� $�%�&('�)�� + � *�%�&('�)�� � , but AList is repeatedly scanned, result-
ing in a time complexity of �)	�� $�%�&('�)���� � *�%�&('�)�� � ; the evaluation is
depicted in Figure 5(d), where each node in DList is associated
with the sublist of AList that needs to be scanned.

While the worst case behavior of many members of the tree-
merge family is quite bad, on some data sets and queries they
perform quite well in practice. We shall investigate the behav-
ior of Algorithms Tree-Merge-Anc andTree-Merge-Desc
experimentally in Section 4.

3.2 Stack-Tree Join Algorithms

We observe that a depth-first traversal of a tree can be per-
formed in linear time using a stack of size as large as the height of
the tree. In the course of this traversal, every ancestor-descendant
relationship in the tree is manifested by the descendant node ap-
pearing somewhere higher on the stack than the ancestor node. We
use this observation to motivate our search for a family of stack-
based structural join algorithms, with better worst-case I/O and
CPU complexity than the tree-merge family, for both parent-child
and ancestor-descendant structural relationships.

Unfortunately, the depth-first traversal idea, even though ap-
pealing at first glance, cannot be used directly since it requires
traversal of the whole database. We would like to traverse only the
candidate nodes provided to us as part of the input lists. We now
describe our stack-tree family of structural join algorithms; these
algorithms have no counterpart in traditional join processing.

3.2.1 Stack-Tree-Desc

Consider an ancestor-descendant structural relationship 	�� � � ��� � .
Let AList �

	 
 � � 
 � ������ � and DList �

	 � � � � � ������ � be the lists
of tree nodes that match node predicates �2� and � � , respectively,
sorted by the (DocId, StartPos) values of its elements.
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We first discuss the stack-tree algorithm for the case when
the output list

	 	 
�� � ��� ��� is sorted by (DocId,
���
.StartPos,
 �

.StartPos). This is both simpler to understand and ex-
tremely efficient in practice. The algorithm is presented in Fig-
ure 6 for the ancestor-descendant case.

The basic idea is to take the two input operand lists, AList and
DList, both sorted on their (DocId, StartPos) values and
conceptually merge (interleave) them. As the merge proceeds, we
determine the ancestor-descendant relationship, if any, between
the current top of stack and the next node in the merge, i.e., the
node with the smallest value of StartPos. Based on this com-
parison, we manipulate the stack, and produce output.

The stack at all times has a sequence of ancestor nodes, each
node in the stack being a descendant of the node below it. When
a new node from the AList is found to be a descendant of the
current top of stack, it is simply pushed on to the stack. When
a new node from the DList is found to be a descendant of the
current top of stack, we know that it is a descendant of all the nodes
in the stack. Also, it is guaranteed that it won’t be a descendant
of any other node in AList. Hence, the join results involving
this DList node with each of the AList nodes in the stack are
output. If the new node in the merge list is not a descendant of the
current top of stack, then we are guaranteed that no future node
in the merge list is a descendant of the current top of stack, so we
may pop stack, and repeat our test with the new top of stack. No
output is generated when any element in the stack is popped.

The parent-child case of Algorithm Stack-Tree-Desc is
even simpler since a DList node can join only (if at all) with the
top node on the stack. In this case, the “for loop” inside the “else”
case of Figure 6 needs to be replaced with:

if (d.LevelNum � stack->top.LevelNum + 1)
append (stack->top,d) to OutputList

Example 3.1 [Algorithm Stack-Tree-Desc]
Some steps during an example evaluation of Algo-
rithm Stack-Tree-Desc, for a parent-child structural

relationship, on the dataset of Figure 7(a), are shown in Fig-
ures 7(b)–(e). The


0�
’s are the nodes in AList and the

���
’s

are the nodes in DList. Initially, the stack is empty, and the
conceptual merge of AList and DList is shown in Figure 7(b).
In Figure 7(c),


 � has been put on the stack, and the first new
element of the merged list,

� � , is compared with the stack top (at
this point 	 
 � � � � � is output). Figure 7(d) illustrates the state of the
execution several steps later, when


 � � 
 � ������ � 
 � are all on the
stack, and

�
� is being compared with the stack top (after this point,

the OutputList includes 	 
 � � � � � � 	 
 �� � �<� ������ � 	 
 � � � � � ).
Finally, Figure 7(e) shows the state of the execution when the
entire input has almost been processed. Only


 � remains on the
stack (all the other


��
’s have been popped from the stack), and� � � is compared with

 � . Note that all the desired matches have

been produced while making only a single pass through the entire
input. Recall that this is the same dataset of Figure 5(a), which
illustrated the sub-optimality of Algorithm Tree-Merge-Anc,
for the case of parent-child structural relationships.

3.2.2 Stack-Tree-Anc

We next discuss the stack-tree algorithm for the case when
the output list

	 	 
�� � ��� ��� needs to be sorted by (DocId,
 �
.StartPos,

� �
.StartPos).

It is not straightforward to modify Algo-
rithm Stack-Tree-Desc to produce results sorted by
ancestor because of the following: if node



from AList on the

stack is found to be an ancestor of some node
�

in the DList,
then every node


��
from AList that is an ancestor of



(and

hence below



on the stack) is also an ancestor of
�

. Since the
StartPos of


 �
precedes the start position of



, we must delay

output of the join pair 	 
 � � � until after 	 
�� � � � has been output.
But there remains the possibility of a new element

���
after

�
in the

DList joining with

��

as long

��

is on stack, so we cannot output
the pair 	 
 � � � until the ancestor node


 �
is popped from stack.

Meanwhile, we can build up large join results that cannot yet be



Algorithm Stack-Tree-Desc (AList, DList)
/* Assume that all nodes in AList and DList have the same DocId */
/* AList is the list of potential ancestors, in sorted order of StartPos */
/* DList is the list of potential descendants in sorted order of StartPos */

a � AList->firstNode; d � DList->firstNode; OutputList � NULL;
while (the input lists are not empty or the stack is not empty) �

if ((a.StartPos � stack->top.EndPos) ��� (d.StartPos � stack->top.EndPos)) �
/* time to pop the top element in the stack */
tuple � stack->pop(); �

else if (a.StartPos
�

d.StartPos) �
stack->push(a)
a � a->nextNode �

else �
for (a1 � stack->bottom; a1

� � NULL; a1 � a1->up) �
append (a1,d) to OutputList

�
d � d->nextNode

��

Figure 6. Algorithm Stack-Tree-Desc with output in sorted descendant order

output. Our solution to this problem is described in Figure 8 for
the ancestor-descendant case.

As with Algorithm Stack-Tree-Desc, the stack at all times
has a sequence of ancestor nodes, each node in the stack being a
descendant of the node below it. Now, we associate two lists with
each node on the stack: the first, called self-list is a list of result
elements from the join of this node with appropriate DList ele-
ments; the second, called inherit-list is a list of join results involv-
ing AList elements that were descendants of the current node on
the stack. As before, when a new node from the AList is found
to be a descendant of the current top of stack, it is simply pushed
on to the stack. When a new node from the DList is found to
be a descendant of the current top of stack, it is simply added to
the self-lists of the nodes in the stack. Again, as before, if no new
node (from either list) is a descendant of the current top of stack,
then we are guaranteed that no future node in the merge list is a
descendant of the current top of stack, so we may pop stack, and
repeat our test with the new top of stack. When the bottom ele-
ment in stack is popped, we output its self-list first and then its
inherit-list. When any other element in stack is popped, no output
is generated. Instead, we append its inherit-list to its self-list, and
append the result to the inherit-list of the new top of stack.

An optimization to the algorithm (incorporated in Figure 8) is
as follows: no self-list is maintained for the bottom node in the
stack. Instead, join results with the bottom of the stack are output
immediately. This results in a small space savings, and renders the
stack-tree algorithm partially non-blocking.

3.2.3 An Analysis of Algorithm Stack-Tree-Desc

Algorithm Stack-Tree-Desc is easy to analyze. Each AList
element in the input may be examined multiple times, but these can
be amortized to the element on DList, or the element at the top
of stack, against which it is examined. Each element on the stack
is popped at most once, and when popped, causes examination of
the new top of stack with the current new element. Finally, when a

DList element is compared against the top element in stack, then
it either joins with all elements on stack or none of them; all join
results are immediately output. In other words, the time required
for this part is directly proportional to the output size. Thus, the
time required for this algorithm is �)	�� � ���"���#� + �  /� �!��� �#� � in the
worst case. Putting all this together, we get the following result:

Theorem 3.2 The space and time complexities of Algorithm
Stack-Tree-Desc are �)	�� $�%�&('�)�� + � *�%�&('�)�� + � +-,�)�./,�)�%�&�'�)0� � ,
for both ancestor-descendant and parent-child structural relation-
ships.

Further, Algorithm Stack-Tree-Desc is a non-blocking al-
gorithm.

Clearly, no competing join algorithm that has the same input
lists, and is required to compute the same output list, could have
better asymptotic complexity.

The I/O complexity analysis is straightforward as well. Each
page of the input lists is read once, and the result is output as soon
as it is computed. Since the maximum size of stack is proportional
to the height of the XML database tree, it is quite reasonable to
assume that all of stack fits in memory at all time. Hence, we have
the following result:

Theorem 3.3 The I/O complexity of Algorithm
Stack-Tree-Desc is �)	 � �������	�
�� +

� �������	��
� +

� ���������������	�	���
� � ,

for ancestor-descendant and parent-child structural relationships,
where � is the blocking factor.

3.2.4 An Analysis of Algorithm Stack-Tree-Anc

The key difference between the analyses of Algo-
rithms Stack-Tree-Anc and Stack-Tree-Desc is
that join results are associated with nodes in the stack in Algo-
rithm Stack-Tree-Anc. Obviously, the list of join results at
any node in the stack is linear in the output size. What remains to
be analyzed is the appending of lists each time the stack is popped.



2n-1
d

2nd

n+1
d

nd

a
n

2
d

1d
a

2

a
1

2n-1
d

2nd

n+1
d

nd

a
n

2
d

a
2

a
1

1d

2n-1
d

2nd

n+1
d

a
1

a
2

a
n

nd

a
1 2ndn+1

d

2n-2d
2n-1

d
2nd

a
1

a
2

a
3

a
n

1d

2
d

3d

nd

(a) (b) (c) (d) (e)

Figure 7. (a) Dataset (b)–(e) Steps during evaluation of Stack-Tree-Desc

If the lists are implemented as linked lists (with start and end
pointers), these append operations can be carried out in unit time,
and require no copying. Thus one comparison per AList input
and one per output are all that are performed to manipulate stack.
Combined with the analysis of Algorithm Stack-Tree-Desc,
we can see that the time required for this algorithm is still
�)	�� � ��������� + �  /� �!��� �#� � in the worst case.

The I/O complexity analysis is a little more involved. Certainly,
one cannot assume that all the lists of results not yet output fit
in memory. Careful buffer management is required. It turns out
that the only operation we ever perform on a list is to append to
it (except for the final read out). As such, we only need to have
access to the tail of each list in memory as computation proceeds.
The rest of the list can be paged out. When list � is appended to
list � , it is not necessary that the head of list � be in memory, the
append operation only establishes a link to this head in the tail of � .
So all we need is to know the pointer for the head of each list, even
if it is paged out. Each list page is thus paged out at most once,
and paged back in again only when the list is ready for output.
Since the total number of entries in the lists is exactly equal to the
number of entries in the output, we thus have that the I/O required
on account of maintaining lists of results is proportional to the size
of output (provided that there is enough memory to hold in buffer
the tail of each list: requiring two pages of memory per stack entry
— still a requirement within reason). All other I/O activity is for
the input and output. This leads to the desired linearity result.

Theorem 3.4 The space and time complexities of Algorithm
Stack-Tree-Anc are �)	�� $�%�&('�)�� + � *�%�&('�)/� + � +-,�)�./,�)�%�&('�)0� � ,
for both ancestor-descendant and parent-child structural relation-
ships.

The I/O complexity of Algorithm Stack-Tree-Anc is
�)	 � ��� ���	�
�� +

� �������	��
� +

� ������������� ���	���
� � , for both ancestor-descendant

and parent-child structural relationships, where � is the blocking
factor.

4 Experimental Evaluation

In this section, we present the results of an actual implemen-
tation of the various join algorithms for XML data sets. Due to
space limitations, we evaluate only the structural join algorithms
we introduce in this paper, namely, TREE-MERGE JOIN(TMJ) and
STACK-TREE JOIN (STJ). Once more, the output can be sorted in
two ways, based on the “ancestor” node or the “descendant” node
in the join. Correspondingly, we consider two flavors of these al-
gorithms, and use the suffix “-A” and “-D” to differentiate between
these. The four algorithms are thus labeled: TMJ-A, TMJ-D, STJ-
A and STJ-D.

For reasons of space, we omit detailed comparison of our struc-
tural join algorithms with traversal-style algorithms, and with tra-
ditional relational join algorithms in a commercial database. As
expected, the performance of the traversal-style algorithms de-
grades considerably with the size of the dataset, and yields very
poor performance compared with our structural join algorithms.
Also, consistent with the results of [29], structural join algorithms
(implemented outside the database) perform significantly better
than native relational DBMS join algorithms, even in the presence
of indexes.

4.1 Experimental Testbed

We implemented the join algorithms in the TIMBER XML
query engine. TIMBER is an native XML query engine that is built
on top of SHORE [5]. Since the goal of TIMBER is to efficiently
handle complex XML queries on large data sets, we implemented
our algorithms so that they could participate in complex query
evaluation plans with pipelining. All experiments using TIMBER

were run on a 500MHz Intel Pentium III processor running Win-
dowsNT Workstation v4.0. SHORE was compiled for a 8KB page
size. SHORE buffer pool size was set to 32MB, and the container
size in our implementation was 8000 bytes.

All numbers presented here are produced by running the exper-
iments multiple times and averaging all the execution times except
for the first run (i.e., these are warm cache numbers).



Algorithm Stack-Tree-Anc (AList, DList)
/* Assume that all nodes in AList and DList have the same DocId */
/* AList is the list of potential ancestors, in sorted order of StartPos */
/* DList is the list of potential descendants in sorted order of StartPos */

a � AList->firstNode; d � DList->firstNode; OutputList � NULL;
while (the input lists are not empty or the stack is not empty) �

if ((a.StartPos � stack->top.EndPos) ��� (d.StartPos � stack->top.EndPos)) �
/* time to pop the top element in the stack */
tuple � stack->pop();
if (stack->size � � 0) � /* we just popped the bottom element */

append tuple.inherit-list to OutputList �
else �

append tuple.inherit-list to tuple.self-list
append the resulting tuple.self-list to stack->top.inherit-list�

�
else if (a.StartPos

�
d.StartPos) �

stack->push(a)
a � a->nextNode �

else �
for (a1 � stack->bottom; a1

� � NULL; a1 � a1->up) �
if (a1 ��� stack->bottom) append (a1,d) to OutputList
else append (a1,d) to the self-list of a1�

d � d->nextNode��

Figure 8. Algorithm Stack-Tree-Anc with output in sorted ancestor order

4.2 Workload

For our workload, we used the IBM XML data generator to
generate a number of data sets, of varying sizes and other data
characteristics, such as the fanout (MaxRepeats) and the maxi-
mum depth, using the Organization DTD presented in Figure 9.
We also used the XMach-1 [1] and XMark [2] benchmarks, and
some real XML data. The results obtained were very similar in all
cases, and in the interest of space we present results only for the
largest organization data set that we generated. This data set con-
sists of 6.3 million element nodes, corresponding to approximately
800MB of XML documents in text format. The characteristics of
this data set in terms of the number of occurrences of element tags
are summarized in Table 1.

We evaluated the various join algorithms using the set of
queries shown in Table 1. The queries are broken up into two
classes. QS1 to QS6 are simple structural relationship queries,
and have an equal mix of parent-child queries and ancestor-
descendant queries. QC1 and QC2 are complex chain queries, and
are used to demonstrate the performance of the algorithms when
evaluating complex queries with multiple joins in a pipeline.

4.3 Detailed Implementation

The focus in the experiments is to characterize the performance
of the four structural join algorithms, and understand their differ-
ences. Before doing so in the following subsections, we present
here some additional detail regarding the manner in which these
were implemented for the experiments reported. Our choice of im-

plementation, on top of SHORE and TIMBER, was driven purely
by the need for sufficient control — the algorithms themselves
could just as well have been implemented on many other plat-
forms, including (as new join methods) on relational databases.

All join algorithms were implemented using the operator itera-
tor model [15]. In this model, each operator provides an open, next
and close interface to other operators, and allows the database en-
gine to construct an operator tree with an arbitrary mix of query
operations (different join algorithms or algorithms for other op-
erations such as aggregation) and naturally allows for a pipelined
operator evaluation. To support this iterator model, we pay careful
attention to the manner in which results are passed from one oper-
ator to another. Algorithms such as the TMJ algorithms may need
to repeatedly scan over one of the inputs. Such repeated scans are
feasible if the input to a TMJ operator is a stream from a disk file,
but is not feasible if the input stream originates from another join
operator (in the pipeline below it). We implemented the TMJ al-
gorithms so that the nodes in a current sweep are stored in a tem-
porary SHORE file. On the next sweep, this temporary SHORE
file is scanned. This solution allows us to limit the memory used
by TMJ implementation, as the only memory used is managed by
the SHORE buffer manager, which takes care of evicting pages
of the temporary file from the buffer pool if required. Similarly
for the STJ-A algorithm, the inherit- and self-lists are stored in
a temporary SHORE file, again limiting the memory used by the
algorithm. In both cases, our implementation turns logging and
locking off for the temporary SHORE files. Note that STJ-D can
join the two inputs in a single pass over both inputs, and, never has
to spool any nodes to a temporary file.



<!ELEMENT manager (name,(manager|department|employee)+)>
<!ATTLIST manager id CDATA #FIXED "1">
<!ELEMENT department (name, email?, employee+, department*)>
<!ATTLIST department id CDATA #FIXED "2">
<!ELEMENT employee (name+,email?)>
<!ATTLIST employee id CDATA #FIXED "3">
<!ELEMENT name (#PCDATA)>
<!ATTLIST name id CDATA #FIXED "4">
<!ELEMENT email (#PCDATA)>
<!ATTLIST email id CDATA #FIXED "5">

Figure 9. DTD used in our experiments

Node Count
manager 25,880
department 342,450
employee 574,530
email 250,530

Query XQuery Path Expression Result Cardinality
QS1 employee/email 140,700
QS2 employee//email 142,958
QS3 manager/department 16,855
QS4 manager//department 587,137
QS5 manager/employee 17,259
QS6 manager//employee 990,774
QC1 manager/employee/email 7,990
QC2 manager//employee/email 232,406

Table 1. Description of queries and characteristics of the data set

To amortize the storage and access overhead associated with
each SHORE object, in our implementation we group nodes into
a large container object, and create a SHORE object for each con-
tainer. The join algorithms write nodes to containers and when
a container is full it is written to the temporary SHORE file as
a SHORE record. The performance benefits of this approach are
substantial; we do not go into details for lack of space.

4.4 STJ and TMJ, Simple Structural Join Queries

Here, we compare the performance of the STJ and the TMJ al-
gorithms using all the six simple queries, QS1–QS6, shown in Ta-
ble 1. Figure 10 plots the performance of the four algorithms. As
shown in the Figure, STJ-D outperforms the remaining algorithms
in all cases. The reason for the superior performance of STJ-D is
because of its ability to join the two data sets in a single pass over
the input nodes, and it never has to write any nodes to intermediate
files on disk. From Figure 10, we can also see that STJ-A usually
has better performance than both TMJ-A and TMJ-D. For queries
QS4 and QS6, the STJ-A algorithms and the two TMJ algorithms
have comparable performance. These queries have large result
sizes (approximately 600K and 1M tuples respectively as shown
in Table 1). Since STJ-A keeps the results in the lists associated
with the stack, and can output the results only when the bottom-
most element of the stack is popped, it has to perform many writes
and transfers of the lists associated with the stack elements (in our
implementation, these lists are maintained in temporary SHORE
files). With larger result sizes this list management slows down
the performance of STJ-A in practice. Figure 10 also shows that
the two TMJ algorithms have comparable performance.

We also ran these experiments with reduced buffer sizes, but
found that for this data set the execution time of all the algo-
rithms remained fairly constant. Even though the XML data sets

that we use are large, after applying the predicates, the candidate
lists that we join are not very large. Furthermore, the effect of
buffer pool size is likely to be critical when one of the inputs has
nodes that are deeply nested amongst themselves, and the node
that is higher up in the XML tree has many nodes that it joins
with. For example, consider the TMJ-A algorithms, and the query
“manager/employee”. If many manager nodes are nested be-
low a manager node that is higher up in the XML tree, then after
the join of the manager node at the top is done, repeated scans of
the descendant nodes will be required for the manager nodes that
are descendants of the manager node at the top. Such scenarios
are rare in our data set, and, consequently, the buffer pool size has
only a marginal impact on the performance of the algorithms.

4.5 Complex Queries

Here, we evaluate the performance of the algorithms using the
two complex chain queries, QC1 and QC2, from Table 1. Each
query has two joins and for this experiment, both join operations
are evaluated in a pipeline. For each complex query one can evalu-
ate the query by using only ancestor-based join algorithms or using
only descendant-based join algorithms. These two approaches are
labeled with suffixes “-A2” and “-D2” for the ancestor-based and
descendant-basedapproaches respectively. The performance com-
parison of the STJ and TMJ algorithms for both query evaluation
approaches (A2 and D2) is shown in Figure 11. From the figure
we see that STJ-D2 has the highest performance once again, since
it is never has to spool nodes to intermediate files.
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5 Related Work

Matchings between pairs of trees in memory has been a topic
of study in the algorithms community for a long time (e.g., see [3]
and references therein). The algorithms developed deal with many
variations of the problem but unfortunately are of high complexity
and always assume that trees are entirely memory resident. The
problem also has been considered in the programming language
community, as it arises in various type checking scenarios but once
again solutions developed are geared towards small data collec-
tions processed entirely in main memory.

Many algorithms are known to be very efficient over tree struc-
tures. Most relevant to us in this literature are algorithms for
checking the presence of sets of edges and paths. Jacobson et
al. [16] present linear time merging-style algorithms for comput-
ing the elements of a list that are descendants/ancestors of some el-
ements in a second list, in the context of focusing keyword-based
searches on the Web and in UNIX-style file systems. Jagadish
et al. [17] present linear time stack-based algorithms for comput-
ing elements of a list that satisfy a hierarchical aggregate selec-
tion condition wrt elements in a second list, for the directory data
model. However, none of these algorithms compute join results,
which is the focus of our work.

Join processing is central to database implementation and there
is a vast amount of work in this area [15]. For inequality join con-

ditions, band join [11] algorithms are applicable when there exists
a fixed arithmetic difference between the values of join attributes.
Such algorithms are not applicable in our domain as there is no
notion of fixed arithmetic difference. In the context of spatial and
multimedia databases, the problem of computing joins between
pairs of spatial entities has been considered, where commonly the
predicate of interest is overlap between spatial entities [18, 24, 19]
in multiple dimensions. The techniques developed in this paper
are related to such join operations. However, the predicates con-
sidered as well as the techniques we develop are special to the
nature of our structural join problem.

In the context of semistructured and XML databases, the is-
sue of query evaluation and optimization has attracted a lot of re-
search attention. In particular, work done in the context of the
Lore database management system [20, 21], and the Niagara sys-
tem [23], has considered various aspects of query processing on
such data. XML data and various issues in their storage as well as
query processing using relational database systems have recently
been considered in [14, 27, 26, 4, 12, 13]. In [14, 27, 13], the map-
ping of XML data to a number of relations was considered along
with translation of a select subset of XML queries to relational
queries. In subsequent work [26, 4, 12], the authors considered the
problem of publishing XML documents from relational databases.
Our work is complementary to all of these since our focus is on the
join algorithms for the primitive (ancestor-descendant and parent-
child) structural relationships. Our join algorithms can be used by
these previous works to advantage.

The representation of positions of XML elements used by us,
(DocId, StartPos : EndPos, LevelNum), is essen-
tially that of Consens and Milo, who considered a fragment of the
PAT text searching operators for indexing text databases [8, 9],
and discussed optimization techniques for the algebra. This repre-
sentation was used to compute containment relationships between
“text regions” in the text databases. The focus of that work was
solely on theoretical issues, without elaborating on efficient algo-
rithms for computing these relationships.

Finally, the recent work of Zhang et al. [29] is closely re-
lated to ours. They proposed the multi predicate merge join (MP-
MGJN) algorithm for evaluating containment queries, using the
(DocId, StartPos : EndPos, LevelNum) represen-
tation. The MPMGJN algorithm is a member of our Tree-Merge



family. Our analytical and experimental results demonstrate that
the Stack-Tree family is considerably superior to the Tree-Merge
family for evaluating containment queries.

6 Conclusions

In this paper, our focus has been the development of new join
algorithms for dealing with a core operation central to much of
XML query processing, both for native XML query processor im-
plementations as well for relational XML query processors. In
particular, the Stack-Tree family of structural join algorithms was
shown to be both I/O and CPU optimal, and practically efficient.

There is a great deal more to efficient XML query processing
than is within the scope of this paper. For example, XML per-
mits links across documents, and such “pointer-based joins” are
frequently useful in querying. We do not consider such joins in
this paper, since we believe that they can be adequately addressed
using traditional value-based join methods. There are many issues
yet to be explored, and we currently have initiated efforts to ad-
dress some of these, including the piecing together of structural
joins and value-based joins to build effective query plans.
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