
Searching and Analyzing

Information Inside

Hadoop Platform

Abinasha Karana
25th Feb, 2013

To Search a large dataset

Text Search, Range Search

Faceting, Sorting,

Aggregating

1000 columns, multi page

document in Billions

What Didn’t

Work for US

Map-Reduce
Result not in a mouse click

Lucene is a Java based search engine.

To handle large amount of records, the index is

partitioned on a dimension and distributed to

multiple machines.

What Didn’t

Work for US Lucene

Search Engine Database

Builds an index and answers queries

using the index.

Read optimized using inverted index.

Non - Transactional

Builds an index and answers queries

Using the index.

Write optimized

Transactional

Didn’t work Because…

of hot spots in Shards.

2011

Unequal shards leading to hot spotting as

well as replication challenges.

2012 2010 2009

All DATA

2009 - 2012

HOT SPOT

Sharded

On YEAR

What we did

We built a new

search/analytics engine on

HBase Platform

Leveraging HBase’s auto-

sharding and auto-replication

Using HBase…

HBase …

Hadoop Family Open Source columnar database modeled

after Google Big Table.

 Columnar Database (To match Cell2 Value, Just Load 12 Byes instead of 48 Bytes.

Cell1(int) Cell2(Float) Cell3(Float) Cell4(Float) Total Bytes

 11 4.3 87.34 23.11 16 Bytes

12 8.9 91.12 19.00 16 Bytes

13 9.1 101.00 27.17 16 Bytes

12 Bytes 12 Bytes 12 Bytes 12 Bytes 48 Bytes

It is a distributed multi dimensional sorted map with

each row having key value maps. Underlying

Hadoop-HDFS data storage provides auto

replication and auto sharding.

HBase shards the data automatically …

But HBase is designed for write heavy load…

Sharding is just

spreading and not

replication/clustering

Zookeeper

HMaster

Region 1

Region 2
Region 3

Region 4

Sharded

Distributed File System

Hadoop HDFS

In the next few slides you will hear

about

My learning from designing, developing and

benchmarking HSearch - a real-time search engine

whose index is stored and served from HBase

https://github.com/bizosys/

HSearch Benchmarks

@ Leading Pharama Research

1. Table Size : 1.2 Billion rows *

800 columns + 1.2 Billion

Observation data.

2. A complex query returned

1.4 Million matched rows in

600ms

3. Indexing time 8 Hours.

Amazon Large instance 7.5GB

memory * 4 machines with a single

7.5 K SATA drive

Wikipedia Pages

• 100 Million Wikipedia pages

of total 270GB and no

stopwords.

• Data generated by repeating

10 Million Pages 10 Times.

• Search Query Response (Id +

Teaser)

1. Regular word 1.5 Sec.

2. Common word such as hill

found 1.6 million matches

and sorted in 7 secs.

Amazon Large instance 7.5GB memory *

11 machines with a single 7.5 K SATA drive

Version 2 Version 3

HSearch architecture

Hbase + HSearch

Female | test day 1 | human | penicillin | blood count | [19-20]

AND

Rash in face (From Unstructured Descriptions)

Internet Browser Devices

A Search Query

Java App Server

HDFS

Where we slowed Down

Time spent on reading from disk

Internet Browser Devices

Network Time

De-

Serialization

1

2

3

Time spent on reading from disks…
Strategy Applied : Club records to save metadata overhead

1. Stored large cells by merging multiple cols/rows

2. Used a single character as family name

3. Reduced the qualifier name to 1 character.

1

SSD improved HSearch response

time by 66% over SATA.

However, SSD is costlier

We used SSDs for Index only.

Time spent on reading from disks…
Strategy Applied : Using SSD to read faster

1

Serialization – De-Serialization … 2

Student Mark

001 91

008 92

002 93

007

98

91 92 93 98

001 008 002 007

16

Bytes

16

Bytes

Strategy Applied : De-Serialized needed segments

Match on Location Index

De-Serialize 16+4 Bytes to find the

student index(2) scored 93 marks.

Further optimize using binary

search on Byte Arrays

1
-8 1001 : 24.01

1003 : 26.44

1002 : 29.30
-7

1001 : 20.81

Tree Id Cell2 Cell3 Cell4 Cell5

2 1 -8 1001 24.01

2 1 -8 1003 26.44

2 1 -8 1002 29.30

2 1 -7 1001 20.81

From multiple tabular records - To sorted tree structure

Sorted Sorted

where each root level node is serialized to form a HBase

Cell

Row 1

Row 2

Row 3

Row 4

1
-8 1001 : 24.01

1003 : 26.44

1002 : 29.30
-7

1001 : 20.81

Row 1

Row 2

Row 3

Row 4

Inverted Index – Enter By Value and Not Key.

Thread 3

Region 3

Machine 2

Thread 2

Region 2

Machine 1

Thread 1

Region 1

Machine 1

… with parallel processing of Bytes Blocks for each

region servers.

Find Cell

5 = 47.10

P
a
rt

it
io

n
/R

a
n
g

e

1
,2

,3

Each Partition

In a Thread

Each Partition

In a Thread

Each Partition

In a Thread

Network Time
3

Processing moved near to DATA: Filter and Coprocessors

Client Code

Table Read

Hbase Filter

Table Read

Hbase Filter

Region Server

Co-Processor

Region Server

Co-Processor

Like Database Stored

Procedure

Useful for SUM, AVG,

MIN/MAX

Like Database Stored

Procedure

Useful for

Filter/Modify a cell

Network Time
3

Strategy Applied : Bytes Block Caching

M F M M F M F

Object Cache = 7 bytes + 56 bytes (pointer)

Bytes Cache = 7 bytes + 8 bytes (pointer)

To process Big Data in small time, it

is needed to balance

Network vs CPU vs I/O vs Memory

while leveraging multiple machines.

Disk I/O

Memory CPU

Network

Compression

Data Partitioning

Block Caching

Keeping program

log in memory

And flush on

Exception/read

finish

IPC Caching

Sending on Chunks

Snappy/ LZO

Compressed Data

Concurrent GC

Object Reuse

And It’s Configuration…

•Network

• Increased IPC Cache Limit (hbase.client.scanner.caching)

• CPU

• JVM agressive heap

("-server -XX:+UseParallelGC -XX:ParallelGCThreads=4

XX:+AggressiveHeap “)

• I/O

• LZO index compression (“Inbuilt oberhumer LZO” or “Intel IPP

native LZO”)

• Memory

• HBase block caching (hfile.block.cache.size) and overall memory

allocation for data-node and region-server.

and parallelized to multiple machines… `

• Htable.batch (Sending/Receiving data from

Region Servers in chunk)

• Parallel Htable (Multi threaded Scans)

• Co-Processors, Filters

Allocating appropriate resources
dfs.datanode.max.xcievers,

hbase.regionserver.handler.count and

dfs.datanode.handler.count

THANK YOU

