
Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan,

Timothy Roscoe, and Ion Stoica
CACM 52(11), Nov 2009

Presented By
Sandeep Kale

Declarative Networking

Agenda

3/31/14 2

Datalog and Recursive Query Processing
Motivation to Declarative Networking
NDLog : Extensions to Datalog
Execution Plan generation
Incremental Maintenance
Use cases
Conclusion and References

Declarative Networking

● A declarative framework for networks:
– Network protocols are declaratively specified using

a database query language
– Distributed query engine executes specifications to

implement network protocols
● Success of database research:

– 70’s – today: Database research has revolutionized
data management

– Today: Similar opportunity to revolutionize the
Internet architecture

Declarative Networking:
Motivation
● Internet faces many challenges today:

– Unwanted, harmful traffic
– Complexity/fragility in Internet routing
– Proliferation of new applications and services

● Efforts at improving the Internet:
– Evolutionary: App-level “Overlay” networks
– Revolutionary: Clean-slate designs

● NSF GENI initiative, FIND program

Motivation

3/31/14 5

Routing?
Gathering local network state : Base Data
Deriving forwarding tables : Derived Data
Enforcing constraints : Constraints

Recursive Query processing
Using derived data again in query processing

Datalog

Introduction to datalog and recursive query
processing

Datalog

3/31/14 7

Declarative Paradigm
Give only what, and not how
Used extensively in SQL, functional

programming
Easy and more natural to state

Datalog
Non procedural query language
Based on Prolog

V1(A,B) :- account (A, “Mumbai”, B), B> 700
This gives account numbers and balances for accounts

in Mumbai with balance greater than 700

Example from reference 4

Datalog

3/31/14 8

A simple Datalog rule

p :- q1, q2, …, qn

● “q1 and q2 and … and qn implies p.”

p : head
q1..qn : body(list of literals), literals are
either predicates or functions,
Commas are Logical Conjunction (AND)

Datalog

3/31/14 9

Program consists of rules
Many rules can be used to define a relation
Order of defining rules does not matter
Predicates(relations) and matched (joined)

to produce head

 interest_rate(A,10) :- account(A,N,B), B >= 10000
 interest_rate(A,5) :-account(A,N,B) , B < 10000
 interest(A,I) :- account(A, ”Mumbai”, B),

interest_rate(A,R),I = B*I/100

This is an example of non-recursive datalog
program

Example from reference 4

Datalog

3/31/14 10

Recursive datalog program
Consider a program to give all paths

between nodes of a graph

 path(src,Dest,Path,Cost) :- link(src,Dest,Cost),
path=f_init(src,Dest).

 path(src,Dest,Path,Cost) :- link(src,nxt,Cost1),
path(nxt,Dest,path2,Cost2),
Cost=Cost1+Cost2, Path=f_concatpath(src,path2)

Recursive programs use fixpoint evaluation
Tuples produced in each iteration are added

to the relation
Duplicate tuples are removed
Repeated until no new tuples are produces,

i.e. “fixpoint” is reached

Example from reference 4

Semi Naïve Evaluation

3/31/14 11

New tuples that are generated for the first
time in the current iteration are then used
in the next iteration.

This is repeated until a fixpoint is achieved
(i.e., no new tuples are produced).

p1,...,pn are recursive predicates and
b1,...are base predicates

Language

NDLog, Datalog extended for networking

Language

3/31/14 13

Simple example to find path between two
nodes

Paths in fully connected network:
sp1 path(src,Dest,path,Cost) :-
link(src,Dest,Cost), path=f_init(src,Dest).

To get paths in a general network, we need
to add one more rule

sp2 path(src,Dest,path,Cost) :-
link(src,nxt,Cost1),
path(nxt,Dest,path2,Cost2),
Cost=Cost1+Cost2,
path=f_concatpath(src,path2),
f_inPath(src,path2)=false

Language

3/31/14 14

Aggregation
To get the cost of the shortest path we can

use aggregation
min, max, avg all can be obtained in the same

way

sp3 spCost(src,Dest,min<Cost>) :-
path(src,Dest,path,Cost).

Language

3/31/14 15

Location Specifiers (@)
Extension to datalog for networking
Specifies the location of data
Captures data partitioning
Enables distributed computations necessary

for network protocols
Hides low level dataflow details

sp1 path(@src,Dest,path,Cost) :-
link(@src,Dest,Cost),
path=f_init(src,Dest).
sp2 path(@src,Dest,path,Cost) :-
link(@src,nxt,Cost1),
path(@nxt,Dest,path2,Cost2),
Cost=Cost1+Cost2,
path=f_concatpath(src,path2),
f_inPath(src,path2)=false

Language

3/31/14 17

Link Restricted Rules
Models physical network where full

connectivity is not available
One link predicate in each rule
There is exactly one link predicate in the body

 and rule is either..
Local rule or
All other predicates (including the head predicate)have

their location specifier set to either the first (source) or
second (destination) field of the link predicate.

p(@Dest,...):- link(@Src,Dest...),p1(@Src,...),
…,pn(@Src,...).

Language

3/31/14 18

sp1 path(@src,Dest,path,Cost) :-
link(@src,Dest,Cost),
path=f_init(src,Dest).

sp2 path(@src,Dest,path,Cost) :-
link(@src,nxt,Cost1),
path(@nxt,Dest,path2,Cost2),
Cost=Cost1+Cost2,
path=f_concatpath(src,path2),
f_inPath(src,path2)=false

sp3 spCost(@src,Dest,min<Cost>) :-
path(@src,Dest,path,Cost).

sp4 shortestpath(@src,Dest,path,Cost) :-
spCost(@src,Dest,Cost),path(@src,Dest,pat

h,Cost).
Query shortestpath(@src,Dest,path,Cost).

Language

3/31/14 Picture source : Reference 1 19

Execution Plan generation

Execution Plan Generation

3/31/14 21

Network Protocols : State machines

NDlog : Developed as Distributed dataflow
execution engines (runtime similar to
Parallel Database Systems)

Recursive flows and the asynchronous
communication difficult to handle

Two types : Centralized / Distributed

Centralized Evaluation

3/31/14 22Picture Source : Reference 1

Centralized Evaluation

3/31/14 23

Distributed Plan Generation

For Distributed implementation:

Nonlocal rules whose body predicates have
different location Can not be executed as a
single node

Tuples to be joined are situated at diff nodes

Rule localization rewrite ensures all tuples to
be joined at same node

Localization Rewrite

3/31/14 25

Rules may have body predicates at different
locations:

R2: path(@S,D,P) ← link(@S,Z), path(@Z,D,P2),
P=S•P2.

sp2b: path(@S,D,P) ← linkD(S,@Z), path(@Z,D,P2),
P=S•P2.

sp2a: linkD(S,@D) ← link(@S,D)

Matching variable Z = “Join”

Rewritten rules:

Matching variable Z = “Join”

Slide Source : Reference 5

Distributed Plan Generation

3/31/14 26

Rule sp2a@Src sends links to dest. add with
as linkD tuples.

Rule sp2b-2@Nxt takes linkD and performs
join with path tuple.

Picture Source : Reference 1

Recursive Query Evaluation

Semi-naïve evaluation:
Iterations (rounds) of synchronous computation
Results from iteration ith used in (i+1)th

3/31/14 27

Path Table

8
7

3-hop

10
9

2
1

1-hop
3

6
5 2-hop
4

Link Table Network

5
10

0
21

3

4

6

8

7

Problem: Unpredictable delays and failures

9

Slide Source :
Reference 5

Pipelined Semi-naïve (PSN)

3/31/14 28

Fully-asynchronous evaluation:
Computed tuples in any iteration pipelined to next

iteration
Natural for distributed dataflows

Path Table

4
1

7

Link Table Network

2
5
8
3
6
9
10

5
10

0
21

3

4

6

8

7
9

Relaxation of
semi-naïve

Slide Source : Reference 5

Pipelined Semi-naïve (PSN)

3/31/14 29

• Node receiving new tuple can immediately
process the tuple without waiting for local
iteration to complete.

Incremental Maintenance

Semantics in Dynamic
Network

3/31/14 31

• Underlying Network Changes.
• Use Bursty update model for re-computations

• Three types of changes:
Insertion : Tuple can be inserted at any stage , handled by

pipelined Evaluation.
Deletion : Deletion of base tuple leads to deletion of tuples

derived from base tuple.
Update : Treated as deletion followed by insertion. Updating

base tuple leads to more updates propagated further.

Semantics in Dynamic
Network

3/31/14 32

Semantics in Dynamic
network

3/31/14 33

Use of Count Algorithm for multiple derivations
Standard view maintenance technique for aggregates
Ensures that tuples no longer derivable are deleted on

deletes/updates.
Example : Calculate 2 hop paths for given link set

Link={(a,b),(b,c),(b,e),(a,d),(d,c)}
Evaluates to {[(a,c)-2],[(a,e)-1]}
We keep count with both paths
If link (a,b) is deleted, algo uses stored count to

reevaluate hop to {(a,c)}

Use Cases

Use Cases of Declarative Networking

3/31/14

34

Declarative Routing

3/31/14 35

Routing Protocol is implemented by writing query
in NDlog

Queries executed in distributed fashion on nodes
Static analysis tests for termination of query in

Ndlog (check for recursive defination and check
for termination)

NDlog can express variety of routing protocols
such as distance vector, path vector ,dynamic
source routing easily

Distance Vector Routing

3/31/14 36

At each node, save next hop each
destination with the cost

Nodes exchange this information to get
knowledge about complete network state

B

D
C

A A C D

1 1,
A

1,
C

--

2 1,
A

1,
C

2,
A

B C D

1 1,
B

1,
C

1,
B

Distance Vector Routing

3/31/14 37

DV1: path(@S,D,D,C) :- link(@S,D,C).
DV2: path(@S,D,Z,C) :- link(@S,Z,C1),
 path(@Z,D,W,C2), C = C1 + C2
DV3: shortestCost(@S,D,min<C>) :-

path(@S,D,Z,C).
DV4: nextHop(@S,D,Z,C) :- path(@S,D,Z,C),

. shortestCost(@S,D,C).
Query: nextHop(S,D,Z,C).

Distance Vector Routing

3/31/14 38

DV1: path(@S,D,D,C) :- link(@S,D,C).
DV2: path(@S,D,Z,C) :- link(@S,Z,C1),
 path(@Z,D,W,C2), C = C1 + C2
DV3: shortestCost(@S,D,min<C>) :-

path(@S,D,Z,C).
DV4: nextHop(@S,D,Z,C) :- path(@S,D,Z,C),

. shortestCost(@S,D,C).
Query: nextHop(S,D,Z,C).

Count to Infinity problem?
DV2: path(@S,D,Z,C) :- link(@S,Z,C1),
 path(@Z,D,W,C2), C = C1 + C2, W != S
DV5: path(@S,D,Z,∞) :- link(@S,Z,C1),

path(@Z,D,S,C2)

Policy Based Routing

3/31/14 39

Some of the policies
Node Utilization
Link Utilization
Security issues
Transit- Peer relationships

PBR1: invalidPath(@S,D,P,C) :-
path(@S,D,P,C),
excludeNode(@S,W), f_inPath(P,W) = true.

PBR2: permitPath(@S,D,P,C) :-
path(@S,D,P,C), not invalidPath(@S,D,P,C)

Query: permitPath(@S,D,P,C).
excludeNode(@S,W) : this says that node W

can not carry any traffic for node S

Declarative Overlays

3/31/14 40

• Overlay network : Virtual nodes built on top of
internet

• To provide services that are not available in existing
network.

Internet

Overlay

• Overlog declarative language an
extension on NDlog.

• Soft-state is introduced on Overlog

Picture Source : Reference 5

3/31/14 41

Stored data has associated Time-to-live(TTL)
Soft state dataum needs to be periodically refreshed
If more time than TTL passes without datum being refreshed, that

datum is deleted.
Soft State is favored in networking implementations since it

provides eventual consistency.
Eventual values are obtained in case of transient errors such as

reordered messages, node disconnection.
In case of persistent failure no coordination is required, since any

data provided by failed node would be forgotten.

Soft State

Soft State

3/31/14 42

In Overlog use materialized keyword
 materialized(link, {1,2}, 10) , this specifies link tuple has a life time of

ten seconds

If TTL set to infinity : Hard State
If predicate has no materialized keyword it is treated as event

predicate (TTL =0)
Event predicates are transient tables and use to trigger rules

periodically or case of network events
 ping(@Y, X) :- periodic(@X, 10) , link(@X, Y)

Conclusion

3/31/14 43

Ease of programming:
Compact and high-level representation of

protocols
Orders of magnitude reduction in code size
Easy customization

Safety:
Queries are “sandboxed” within query processor
Potential for static analysis techniques on safety

What about efficiency?
No fundamental overhead when executing

standard routing protocols
Application of well-studied query optimizations

References

3/31/14 44

Declarative Networking, Boon Thau Loo, Tyson Condie, Minos Garofalakis,
David E. Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan,
Timothy Roscoe, and Ion Stoica
1. CACM 52(11), Nov 2009
2. Declarative Networking: Language, Execution and Optimization Boon

Thau Loo , Tyson Condie , Minos Garofalakis , David E. Gay , Joseph M.
Hellerstein , Petros Maniatis , Raghu Ramakrishnan , Timothy Roscoe ,
Ion Stoica, SIGMOD-2006

3. Declarative Routing:Extensible Routing with Declarative Queries, Boon
Thau Loo, Joseph M. Hellerstein, Ion Stoica, Raghu Ramakrishnan,
SIGCOMM-2005

4. Database Systems and Concepts, Avi Silberschatz, Henry F. Korth, S.
Sudarshan, 4th Edition

5. Design and Implementaion of Declarative Networks, Boon Thau Loo,
powerpoint presentation, available online, URL :
www.cis.upenn.edu/~boonloo/research/talks/dn-sigmod07.ppt

Thank you

	Slide 1
	Slide 2
	Declarative Networking
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

