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Declarative Networking

● A declarative framework for networks:
– Network protocols are declaratively specified using 

a database query language
– Distributed query engine executes specifications to 

implement network protocols
● Success of database research:

– 70’s – today: Database research has revolutionized 
data management

– Today: Similar opportunity to revolutionize the 
Internet architecture



Declarative Networking:
Motivation
● Internet faces many challenges today:

– Unwanted, harmful traffic
– Complexity/fragility in Internet routing
– Proliferation of new applications and services

● Efforts at improving the Internet:
– Evolutionary: App-level “Overlay” networks
– Revolutionary: Clean-slate designs

● NSF GENI initiative, FIND program



Motivation
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Routing?
Gathering local network state : Base Data
Deriving forwarding tables : Derived Data
Enforcing constraints : Constraints

Recursive Query processing
Using derived data again in query processing



Datalog

Introduction to datalog and recursive query 
processing



Datalog
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Declarative Paradigm
Give  only what, and not how
Used extensively in SQL, functional 

programming 
Easy and more natural to state 

Datalog
Non procedural query language
Based on Prolog

V1(A,B) :- account (A, “Mumbai”, B), B> 700
This gives account numbers and balances for accounts 

in Mumbai with balance greater than 700

Example from reference 4



Datalog
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A simple Datalog rule 

p :- q1, q2, …, qn 

●      “q1 and q2 and … and qn implies p.”

p :  head
q1..qn : body(list of literals), literals are  
either predicates or functions,
Commas are Logical Conjunction ( AND)



Datalog
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Program consists of rules
Many rules can be used to define a relation
Order of defining rules does not matter
Predicates(relations) and matched (joined) 

to produce head

 interest_rate(A,10) :- account(A,N,B), B >= 10000
 interest_rate(A,5) :-account(A,N,B) , B < 10000
 interest(A,I) :- account(A, ”Mumbai”, B), 

interest_rate(A,R),I = B*I/100

This is an example of non-recursive datalog 
program

Example from reference 4



Datalog
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Recursive datalog program
Consider a program to give all paths 

between nodes of a graph

 path(src,Dest,Path,Cost) :- link(src,Dest,Cost),  
path=f_init(src,Dest). 

 path(src,Dest,Path,Cost) :- link(src,nxt,Cost1), 
path(nxt,Dest,path2,Cost2), 
Cost=Cost1+Cost2, Path=f_concatpath(src,path2)

Recursive programs use fixpoint evaluation
Tuples produced in each iteration are added 

to the relation
Duplicate tuples are removed
Repeated until no new tuples are produces, 

i.e. “fixpoint” is reached 

Example from reference 4



Semi Naïve Evaluation

3/31/14 11

New tuples that are generated for the first 
time in the current iteration are then used 
in the next iteration. 

This is repeated until a fixpoint is achieved 
(i.e., no new tuples are produced).

p1,...,pn are recursive predicates and 
b1,...are base predicates



Language

NDLog, Datalog extended for networking



Language
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Simple example to find path between two 
nodes

Paths in fully connected network:
sp1  path(src,Dest,path,Cost) :- 
link(src,Dest,Cost),  path=f_init(src,Dest). 

To get paths in a general network, we need 
to add one more rule

sp2  path(src,Dest,path,Cost) :- 
link(src,nxt,Cost1), 
path(nxt,Dest,path2,Cost2), 
Cost=Cost1+Cost2, 
path=f_concatpath(src,path2), 
f_inPath(src,path2)=false



Language
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Aggregation
To get the cost of the shortest path we can 

use aggregation
min, max, avg all can be obtained in the same 

way

sp3 spCost(src,Dest,min<Cost>) :- 
path(src,Dest,path,Cost). 



Language
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Location Specifiers (@)
Extension to datalog for networking
Specifies the location of data
Captures data partitioning
Enables distributed computations necessary 

for network protocols
Hides low level dataflow details



sp1 path(@src,Dest,path,Cost) :- 
link(@src,Dest,Cost),  
path=f_init(src,Dest). 
sp2  path(@src,Dest,path,Cost) :- 
link(@src,nxt,Cost1), 
path(@nxt,Dest,path2,Cost2), 
Cost=Cost1+Cost2, 
path=f_concatpath(src,path2), 
f_inPath(src,path2)=false



Language
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Link Restricted Rules
Models physical network where full 

connectivity is not available
One link predicate in each rule
There is exactly one link predicate in the body 

 and rule is either..
Local rule or
All other predicates (including the head predicate)have 

their location specifier set to either the first (source) or 
second (destination) field of the link predicate.

p(@Dest,...):- link(@Src,Dest...),p1(@Src,...),
…,pn(@Src,...).



Language
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sp1 path(@src,Dest,path,Cost) :- 
link(@src,Dest,Cost),  
path=f_init(src,Dest). 

sp2  path(@src,Dest,path,Cost) :- 
link(@src,nxt,Cost1), 
path(@nxt,Dest,path2,Cost2), 
Cost=Cost1+Cost2, 
path=f_concatpath(src,path2), 
f_inPath(src,path2)=false 

sp3 spCost(@src,Dest,min<Cost>) :- 
path(@src,Dest,path,Cost). 

sp4  shortestpath(@src,Dest,path,Cost) :-  
spCost(@src,Dest,Cost),path(@src,Dest,pat

h,Cost). 
Query shortestpath(@src,Dest,path,Cost).



Language
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Execution Plan generation



Execution Plan Generation
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Network Protocols : State machines

NDlog : Developed as Distributed dataflow 
execution engines ( runtime similar to 
Parallel Database Systems)

Recursive flows and the asynchronous 
communication difficult to handle

Two types : Centralized / Distributed



Centralized Evaluation
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Centralized Evaluation
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Distributed Plan Generation

For Distributed implementation:

Nonlocal rules whose body predicates have 
different location Can not be executed as a 
single node

Tuples to be joined are situated at diff nodes

Rule localization rewrite ensures all tuples to 
be joined at same node



Localization Rewrite
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Rules may have body predicates at different 
locations:

R2: path(@S,D,P) ← link(@S,Z), path(@Z,D,P2), 
P=S•P2.

sp2b: path(@S,D,P) ← linkD(S,@Z), path(@Z,D,P2), 
P=S•P2.

sp2a: linkD(S,@D) ← link(@S,D)

Matching variable Z = “Join”

Rewritten rules: 

Matching variable Z = “Join”

Slide Source : Reference 5



Distributed Plan Generation
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Rule sp2a@Src sends links to dest. add with 
as linkD tuples.

Rule sp2b-2@Nxt takes linkD and performs  
join with path tuple.

Picture Source : Reference 1



Recursive Query Evaluation

Semi-naïve evaluation:
Iterations (rounds) of synchronous computation
Results from iteration ith used in (i+1)th
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Slide Source : 
Reference  5



Pipelined Semi-naïve (PSN)
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Fully-asynchronous evaluation:
Computed tuples in any iteration pipelined to next 

iteration
Natural for distributed dataflows
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Slide Source : Reference 5



Pipelined Semi-naïve (PSN)
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• Node receiving new tuple can immediately 
process the tuple without waiting for local 
iteration to complete.



Incremental Maintenance



Semantics in Dynamic 
Network
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• Underlying Network Changes.
• Use Bursty update model for re-computations

• Three types of changes:
Insertion : Tuple can be inserted at any stage , handled by 

pipelined Evaluation.
Deletion : Deletion of base tuple leads to deletion of tuples 

derived from base tuple.
Update : Treated as deletion followed by insertion. Updating 

base tuple leads to more updates propagated further.



Semantics in Dynamic 
Network
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Semantics in Dynamic 
network
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Use of Count Algorithm for multiple derivations
Standard view maintenance technique for aggregates
Ensures that tuples no longer derivable are deleted on 

deletes/updates.
Example : Calculate 2 hop paths for given link set

Link={(a,b),(b,c),(b,e),(a,d),(d,c)}
Evaluates to {[(a,c)-2],[(a,e)-1]}
We keep count with both paths
If link (a,b) is deleted, algo uses stored count to 

reevaluate hop to {(a,c)}



Use Cases

Use Cases of Declarative Networking

3/31/14

34



Declarative Routing
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Routing Protocol is implemented by writing query 
in NDlog

Queries executed in distributed fashion on nodes
Static analysis tests for termination of query in 

Ndlog ( check for recursive defination and check 
for termination)

NDlog can express variety of routing protocols 
such as distance vector, path vector ,dynamic 
source routing easily



Distance Vector Routing
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At each node, save next hop each 
destination with the cost

Nodes exchange this information to get 
knowledge about complete network state
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Distance Vector Routing
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DV1: path(@S,D,D,C) :- link(@S,D,C). 
DV2: path(@S,D,Z,C) :- link(@S,Z,C1),
 path(@Z,D,W,C2), C = C1 + C2  
DV3: shortestCost(@S,D,min<C>) :- 

path(@S,D,Z,C). 
DV4: nextHop(@S,D,Z,C) :- path(@S,D,Z,C), 

. shortestCost(@S,D,C). 
Query: nextHop(S,D,Z,C).



Distance Vector Routing

3/31/14 38

DV1: path(@S,D,D,C) :- link(@S,D,C). 
DV2: path(@S,D,Z,C) :- link(@S,Z,C1),
 path(@Z,D,W,C2), C = C1 + C2  
DV3: shortestCost(@S,D,min<C>) :- 

path(@S,D,Z,C). 
DV4: nextHop(@S,D,Z,C) :- path(@S,D,Z,C), 

. shortestCost(@S,D,C). 
Query: nextHop(S,D,Z,C).

Count to Infinity problem?
DV2: path(@S,D,Z,C) :- link(@S,Z,C1), 
 path(@Z,D,W,C2), C = C1 + C2, W != S
DV5: path(@S,D,Z,∞) :- link(@S,Z,C1), 

path(@Z,D,S,C2)



Policy Based Routing
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Some of the policies
Node Utilization
Link Utilization
Security issues
Transit- Peer relationships

PBR1: invalidPath(@S,D,P,C) :- 
path(@S,D,P,C),      
excludeNode(@S,W), f_inPath(P,W) = true. 

PBR2: permitPath(@S,D,P,C) :- 
path(@S,D,P,C), not invalidPath(@S,D,P,C)

Query: permitPath(@S,D,P,C).
excludeNode(@S,W) : this says that node W 

can not carry any traffic for node S



Declarative Overlays
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• Overlay network : Virtual nodes built on top of 
internet

• To provide services that are not available in existing 
network.

Internet

Overlay

•   Overlog  declarative language  an 
extension on NDlog.

•   Soft-state is introduced on Overlog

Picture Source : Reference 5
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Stored data has associated Time-to-live(TTL)
Soft  state dataum needs to be periodically refreshed 
If more time than TTL passes without datum being refreshed, that 

datum is deleted.
Soft State is favored in networking implementations since it 

provides eventual consistency.
Eventual values are obtained in case of transient errors such as 

reordered messages, node disconnection.
In case of persistent failure no coordination is required, since any 

data provided by failed node would be forgotten.

Soft State



Soft State
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In Overlog  use materialized keyword
 materialized(link, {1,2}, 10) , this specifies link tuple has a life time  of 

ten seconds

If TTL set to infinity : Hard State
If predicate has no materialized keyword  it is treated as event 

predicate ( TTL =0)
Event predicates  are transient tables and use to trigger rules 

periodically or case of network events
 ping(@Y, X) :- periodic(@X, 10) , link(@X, Y)



Conclusion
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Ease of programming: 
Compact and high-level representation of 

protocols
Orders of magnitude reduction in code size
Easy customization

Safety: 
Queries are “sandboxed” within query processor
Potential for static analysis techniques on safety

What about efficiency? 
No fundamental overhead when executing 

standard routing protocols
Application of well-studied query optimizations
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Thank you
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