
Chapter 2

Traditional Query Optimization

This chapter sets the stage for the work covered in the rest of the thesis. Section 2.1 gives a brief overview
of the important concerns and prior work in traditional query optimization. Section 2.2 describes the design
and implementation of a query optimizer. Later chapters of this thesis build on the framework described in
this section.

2.1 Background

In this section, we provide a broad overview of the main issues involved in traditional query optimization
and mention some of the representative work in the area. This discussion will be kept very brief; for the
details we point to the comprehensive, very readable survey by Chaudhuri [7].

Traditionally, the core applications of database systems have been online transaction processing (OLTP)
environments like banking, sales, etc. The queries in such an environment are simple, involving a small
number of relations, say three to five. For such simple queries, the investment in sophisticated optimization
usually did not pay up in the performance gain. As such, only join-order optimization and that too in
a constrained search space was effective enough. The seminal paper by Selinger et al. [47] presented a
dynamic programming algorithm for searching optimal left-linear join ordered plans. The ideas presented
in this paper formed the basis of most optimization research and commercial development till a few years
back.

However, with the growing importance of online analytical processing (OLAP) environments, which
routinely involve expensive queries, more sophisticated query optimization techniques have become cru-
cial. In order to be effective in such demanding environments, the optimizers need to look at less con-
strained search spaces without loosing much on efficiency. They need to adapt to new operators, new
implementations of these operators and their cost models, changes in cost estimation techniques, etc. This
calls for extensibility in the optimizer architecture. These requirements led to the current generation of
query optimizers, of which two representative optimizers are Starburst [37] and Volcano [22]. While the
IBM DB2 optimizer [19] is based on Startburst, the Microsoft SQL-Server optimizer [21] is based on Vol-
cano. The main difference between the approaches taken by the two is the manner in which alternative
plans are generated. Starburst generates the plans bottom-up – that is, best plans for all expressions on
k relations are computed before expressions on more than k relations are considered. On the other hand,
Volcano generates the plans top-down – that is, it computes the best plans for only those expressions on k
relations which are included in some expression on greater than k relations being expanded.

The need for effective optimization of large, complex queries has brought focus to the intimately related
problem of statistics and cost estimation. This is because the cost-based decisions of an optimizations can
only be as reliable as its estimates of the cost of the generated plans.

A plan is composed of operators (e.g. select, join, sort). The cost of an operator is a function of the
statistical summary of its input relations, which includes the size of the relation, and for each relevant
attribute, the number of distinct values of the attribute, the distribution of these attribute values in terms
of an histogram, etc. While the accuracy of these statistics is crucial – the plan cost estimate may be
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Figure 2.1: Overview of Cost-based Transformational Query Optimization

sensitive to these statistics – the maintenance of these statistics may be very time consuming. The problem
of efficiently maintaining reasonably accurate statistics has received much attention in the literature; for
the details, we refer to the paper by Poosala et al. [38].

Even if we have perfect information about the input relations, modeling the cost of the operators could
still be very difficult. This is because a reasonable cost model must take into account the affect of, for
example, the buffering of the relations in the database cache, access patterns of the inputs, the memory
available for the operator’s execution, etc. Moreover, usually the plans execute in a pipeline – that is,
multiple operators may execute simultaneously. Given the system’s bounded resources like CPU and main
memory, the execution of these operators may interfere, affecting the execution cost of the plan. There has
been much research on cost modeling; an authoritative, very comprehensive survey by Graefe [20] provides
the details of the prior work in this area.

2.2 Design of a Cost-based Query Optimizer

In this section, we describe the design of a cost-based transformational query optimizer, based on the
Volcano optimizer [22].

There are two main advantages of using Volcano as the basis of our work. The first is that Volcano has
gained widespread acceptance in the industry as a state-of-the-art optimizer; the optimizers of Microsoft
SQL Server [21] and Tandem ServerWare SQL Product [6] are based on Volcano. Our work is easily
integrable into such systems. Secondly, the Volcano optimization framework is not dependent on the data
model or on the execution model. This makes Volcano extensible to new data models (e.g. use of Volcano
optimization for object oriented systems was reported in [4]) and for new transformations, operators and
implementations.

The implementation of this query optimizer worked out to around 17,000 lines of C++ code. Later
chapters in this thesis, describing our work on multi-query optimization, query result caching and mate-
rialized view selection and maintenance, build on the framework described in this section. Each of these
extensions could be implemented in about another 3,000 lines of C++ code.

2.2.1 Overview

Figure 2.1 gives an overview of the optimizer. Given the input query, the optimizer works in three distinct
steps:
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1. Generate all the semantically equivalent rewritings of the input query.

In Figure 2.1, Q1, . . . , Qm are the various rewritings of the input query Q. These rewritings are
created by applying “transformations” on different parts of the query; a transformation gives an al-
ternative semantically equivalent way to compute the given part. For example, consider the query
(A

�
(B

�
C)). The join commutativity transformation says that (B

�
C) is semantically equiva-

lent to (C
�

B), giving (A
�

(C
�

B)) as a rewriting.

An issue here is how to manage the application of the transformation so as to guarantee that all
rewritings of the query possible using the given set of transformations are generated, in as efficient
way as possible.

For even moderately complex queries, the number of possible rewritings can be very large. So,
another issue is how to efficiently generate and compactly represent the set of rewritings.

This step is explained in Section 2.2.2.

2. Generate the set of executable plans for each rewriting generated in the first step.

Each rewriting generated in the first step serves as a template that defines the order in which the
logical operations (selects, joins, aggregates) are to be performed – how these operations are to be
executed is not fixed. This step generates the possible alternative execution plans for the rewriting.
For example, the rewriting (A

�
(C

�
B)) specifies that A is to be joined with the result of joining

C with B. Now, suppose the join implementations supported are nested-loops-join, merge-join and
hash-join. Then, each of the two joins can be performed using any of these three implementations,
giving nine possible executions of the given rewriting.

In Figure 2.1, P11, . . . , P1k are the k alternative execution plans for the rewriting Q1, and Pm1, . . . , Pmn

are the n alternative execution plans for Qm.

The issue here, again, is how to efficiently generate the plans and also how to compactly store the
enormous space of query plans.

This step is explained in Section 2.2.3

3. Search the plan space generated in the second step for the “best plan”.

Given the cost estimates for the different algorithms that implement the logical operations, the cost
of each execution plans is estimated. The goal of this step is to find the plan with the minimum cost.

Since the size of the search space is enormous for most queries, the core issue here is how to perform
the search efficiently. The Volcano search algorithm is based on top-down dynamic programming
(“memoization”) coupled with branch-and-bound.

Details of the search algorithm appear in Section 2.2.4.

For clarity of understanding, we take the approach of executing one step fully before moving to the next
in the rest of this chapter. This is the approach that will be extended on in the later chapters. However, this
may not be the case in practice; in particular, the original Volcano algorithm does not follow this execution
order; Volcano’s approach is discussed in Section 2.2.5.

In order to emphasize the “template-instance” relationship between the rewritings and the execution
plans, we hereafter refer to them as logical plans and physical plans respectively.

2.2.2 Logical Plan Space

The logical plan space is the set of all semantically equivalent logical plans of the input query. We begin
with a description of the logical transformations used to generate the logical plan space. The logical
plan space is typically very large; a compact representation of the same, called the Logical Query DAG
representation is described next. Further, the algorithm to generate all the logical plans possible given the
set of transformations, compactly represented as a Logical Query DAG, is presented. Lastly, we give the
rationale of choosing Volcano optimization as the basis of our work.
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Logical Transformations

The logical transformations specify the semantic equivalence between two expressions to the optimizer.
Examples of logical transformations are:

• Join Commutativity: (A
�

B) → (B
�

A)

• Join Associativity: ((A
�

B)
�

C) → (A
�

(B
�

C))

• Predicate Pushdown: (A
�

θ∧θ′ B) → (A
�

θ σθ′(B)) if all attributes used in θ′ are from B.

The complexity of the logical plan generation step, described below, depends on the given set of trans-
formations; an unfortunate choice of transformations can lead to the generation of the same logical plan
multiple times along different paths. Pellenkroft et al. [36] present a set of transformations that avoid this
redundancy.

The complete list of logical transformations used in our optimizer is given in Appendix B.

Logical Query DAG Representation

A Logical Query DAG (LQDAG) is a directed acyclic graph whose nodes can be divided into equivalence
nodes and operation nodes; the equivalence nodes have only operation nodes as children and operation
nodes have only equivalence nodes as children.

An operation node in the LQDAG corresponds to an algebraic operation, such as join (
�

), select (σ),
etc. It represents the expression defined by the operation and its inputs. An equivalence node in the LQDAG
represents the equivalence class of logical expressions (rewritings) that generate the same result set, each
expression being defined by a child operation node of the equivalence node, and its inputs. An important
property of the LQDAG is that there are no two equivalence nodes that correspond to the same result set.
The algorithm for expansion of an input query into its LQDAG is presented later in this section.

Figure 2.2 shows a LQDAG for the query A
�

B
�

C. Note that the DAG has exactly one equivalence
node for every subset of {A, B, C}; the node represents all ways of computing the joins of the relations in
that subset. Though the LQDAG in this example represents only a single query A

�
B

�
C, in general a

LQDAG can represent multiple queries in a consolidated manner.

Logical Plan Space Generation

The given query tree is initially represented directly in the LQDAG formulation. For example, the query
tree of Figure 2.3(a) for the query (A

�
B

�
C) is initially represented in the LQDAG formulation, as

shown in Figure 2.3(b). The equivalence nodes are shown as boxes, while the operation nodes are shown
as circles.

The initial LQDAG is then expanded by applying all possible transformations on every node of the
initial LQDAG representing the given query. In the example, suppose the only transformations possible
are join associativity and commutativity. Then the plans (A

�
(B

�
C)) and ((A

�
C)

�
B), as well as
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Procedure EXPANDDAG
Input: eq, the root equivalence node for the initial LQDAG
Output: The expanded LQDAG
Begin

for each unexpanded logical operation node op ∈ child(eq)
for each inpEq ∈ input(op)

EXPANDDAG(inpEq)
apply all possible logical transformations to op

/* may create new equivalence nodes */
for each resulting logical expression E

if E 6∈ LQDAG
add E’s root operation node to child(eq)

else if the previous instance E′ ∈ eq′ where eq′ 6≡ eq
unify eq′ with eq /* may trigger further unifications */

mark op as expanded
End

Figure 2.4: Algorithm for Logical Query DAG Generation

several plans equivalent to these modulo commutativity can be obtained by transformations on the initial
LQDAG of Figure 2.3(b). These are represented in the LQDAG shown in Figure 2.3(c).

Procedure EXPANDDAG, presented in Figure 2.4, expands the input query’s LQDAG (as in Fig-
ure 2.3(b)) to include all possible logical plans for the query (as in Figure 2.3(c)) in one pass – that is,
without revisiting any node. The procedure applies the transformations to the nodes in a bottom-up topo-
logical manner – that is, all the inputs of a node are fully expanded before the node is expanded.

In the process, new subexpressions are generated. Some of these subexpressions may be equivalent to
expressions already in the LQDAG. Further, subexpressions of the query may be equivalent to each other,
even if syntactically different. For example, suppose the query contains two subexpressions that are logi-
cally equivalent but syntactically different (e.g., ((R

�
S)

�
T ), and (R

�
(S

�
T ))). Before the second

subexpression is expanded, the Query DAG would contain two different equivalence nodes representing
the two subexpressions. Whenever it is found that by applying a transformation to an expression in one
equivalence node leads to an expression in the other equivalence node (in the above example, after applying
join associativity), the two equivalence nodes are deduced as representing the same result and unified, that
is, replaced by a single equivalence node. The unification of the two equivalence nodes may cause the
unification of their ancestors. For example, if the query had the subexpressions (A

�
((R

�
S)

�
T ))

and (A
�

(R
�

(S
�

T ))), then the unification of the equivalence nodes containing ((R
�

S)
�

T ) and
(R

�
(S

�
T )) will cause the equivalence nodes containing the above two subexpressions to be unified as

well. Thus, the unification has a cascading effect up the LQDAG.
In order to efficiently check the presence of a logical expression in the LQDAG, a hash table is used.
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Recall that an expression is identified by a logical operator (called the root operator) and its input equiv-
alence nodes; for example, the expression (A

�
(B

�
C)) is identified by the root operator

�
and its

two input equivalence nodes corresponding to A and (B
�

C). As such, the has value of an expression is
computed as a function of the type-id of the root operator and the id of its input equivalence nodes.

A logical space generation algorithm is called complete iff it acts on the initial LQDAG for a query
Q and expands it into an LQDAG containing all possible logical plans possible using the given set of
transformations. We end this description with a proof of completeness of EXPANDDAG.

Theorem 2.2.1 EXPANDDAG is complete.

Proof: Let D0 denote the initial LQDAG for the query Q. EXPANDDAG acts on D0 and, by applying the
given set of transformations as shown in the pseudocode in Figure 2.4, generates a final expanded LQDAG
DE . Now, consider any complete algorithm, called COMPLETE, that acts on D0 and generates the LQDAG
DC . We show that all plans contained in DC are contained in DE , thus proving the theorem.

We trace the expansion of D0 into DC by COMPLETE as follows:

D0
T1−→ D1

T2−→ D2
T3−→ · · ·

Tn−→ Dn ≡ DC

where
Ti−→ denotes the application of the transformation Ti, transforming a subplan P old

i below the equiv-
alence node ei in Di−1 to a new semantically equivalent plan P new

i below ei, resulting in Di.
Let k be such that for all i < k, all plans in Di are contained in DE , but there exists a plan in Dk, say

P , that is not contained in DE . We show, by contradiction, that such a k cannot exist.
Clearly, the plan P new

k , generated by the application of transformation Tk to the subplan P old
k of ek

during the execution of COMPLETE, is a subplan of P . Let P ′ denote the plan obtained by replacing the
subplan P new

k of P by P old
k ; P ′ is contained in Dk−1. But then, by the choice of k above, P ′ is also

contained in DE . This implies that (a) the subplan P old
k is present below ek in DE , and that (b) the subplan

P new
k is not present below ek in DE – otherwise, P would be present in DE , which a contradiction due to

the choice of k. Next, we use (b) to contradict (a).
When EXPANDDAG visits ek, it applies all the available transformations, including Tk, to the plans

below ek till no further new plans are generated. Since P new
k is not generated in this exercise, this implies

that P old
k is also not present below ek after it has been expanded as above. Now, because EXPANDDAG

visits nodes in a bottom-up topological manner, neither ek nor any of its descendents are visited later
during the expansion. This implies that P old

k is never generated during the execution of EXPANDDAG and
is therefore not present below ek in DE , leading to a contradiction. �

2.2.3 Physical Plan Space

The plans represented in the Logical Query DAG are only at an abstract, semantic level and, in a sense,
provide “templates” that guarantee semantic correctness for the physical plans. For instance, the logical
plan ((A

�
B)

�
C) only specifies the order in which the relations are to be joined. It does not specify the

actual execution in terms of the algorithms used for the different operators; for example, a
�

can be either a
nested-loops join, a merge-join, an indexed nested-loops or a hash-join. As such, the cost for these plans is
undefined. Further, the logical plan does not consider the physical properties of the results, like sort order
on some attribute, into account since results with different physical properties are logically equivalent.

However, the physical properties are important since (a) they affect the execution costs of the algorithms
(e.g., the merge join does not need to sort its input if it is already sorted on the appropriate attribute), and
(b) they need to be taken into account when specified in the query using the ORDER BY clause.

In this section, we give the details of how the physical plan space for a query is generated. Since the
physical plan space is very large, a compact representation for the same is needed. We start with a descrip-
tion of the representation used in our implementation, called the Physical Query DAG. This representation
is a refinement of the Logical Query DAG (LQDAG) representation for the logical plan space described in
Section 2.2.2. This is followed by a description of the algorithm to generate the physical plan space in the
Physical Query DAG representation given the LQDAG for the input query.
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Physical Query DAG Representation

The Physical Query DAG (PQDAG) is a refinement of the LQDAG. Given an equivalence node e in the
LQDAG, and a physical property p required on the result of e, there exists an equivalence node in the
PQDAG representing the set of physical plans for computing the result of e with exactly the physical
property p. A physical plan in this set is identified by a child operation node of the equivalence node
(called the physical plan’s root operation node), and its input equivalence nodes.

For contrast, we hereafter term the equivalence nodes in the LQDAG logical equivalence nodes and the
equivalence nodes in the PQDAG physical equivalence nodes. Similarly, we hereafter term the operation
nodes in the physical plans as physical operation nodes to disambiguate from the logical operation nodes
in the logical plans.

The physical operation nodes can either be (a) algorithms for computing the logical operations (e.g.,
the algorithm merge join for the logical operation

�
), or (b) enforcers that enforce the required physical

property (e.g., the enforcer sort to enforce the physical property sort-order on an unsorted result).
Figure 2.5 illustrates the PQDAG for (A

�

A.X=B.Y B). The dotted boxes are the logical equivalence
nodes, labeled alongside with the corresponding relational expressions. The solid boxes within are the
corresponding physical equivalence nodes for the respective physical properties stated alongside. The
circles denote the physical operators: those within the dotted boxes are the enforcers (sort operations),
while those within the dashed box are the algorithms (nested loops join and merge join) corresponding to
the logical join operator as shown.

Physical Property Subsumption. Figure 2.5 shows two physical equivalence nodes corresponding to the
result (A

�
B): one representing plans to compute (A

�
B) with no sort order, and the other representing

plans to compute (A
�

B) with the result sorted on A.X . Clearly, any plan that computes (A
�

B) sorted
on A.X can be used as a plan that computes (A

�
B) with no sort order.

In general, we say that the physical equivalence node e subsumes the physical equivalence node e′ iff
any plan that computes e can be used as a plan that computes e′; this defines a partial order on the set of
physical equivalence nodes corresponding to a given logical equivalence node.

While finding the best plan for the physical equivalence node e (see Section 2.2.4), the procedure
FINDBESTPLAN not only looks at the plans below e, but also at plans below physical equivalence nodes e′

that subsume e, and returns the overall cheapest plan. To save on expensive physical property comparisons
during the search, the physical equivalence nodes corresponding to the same logical equivalence node are
explicitly structured into a DAG representing the partial order.

Furthering the terminology, we say that the physical equivalence node e strictly subsumes the physical
equivalence node e′ iff e subsumes e′, but e and e′ are distinct. Finally, we say that e immediately subsumes
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Procedure PHYSDAGGEN

Input: e, a equivalence node in the Logical Query DAG,
p, the desired physical property

Output: np, the equivalence node in the Physical Query DAG for e with physical property p,
populated with the corresponding plans

Begin
if an equivalence node np exists for e with property p

return it
create an equivalence node np

for every operation node o below e
for every algorithm a for o that guarantees property p

create an algorithm node oa under np.
for each input i of e

let oi be the ith input
let pi the physical property required from input i by algorithm a
set input i of oa = PHYSDAGGEN(oi, pi)

for every enforcer f that generates property p
create an enforcer node of under np

set the input of of = PHYSDAGGEN(e, null)
/* null denotes “no physical property requirement” */

return np

End

Figure 2.6: Algorithm for Physical Query DAG Generation

e′ iff e strictly subsumes e′ but there does not exist another distinct node e′′ such that e strictly subsumes
e′′ and e′′ strictly subsumes e′.

Physical Plan Space Generation

The PQDAG for the input query is generated from its LQDAG using Procedure PHYSDAGGEN listed in
Figure 2.6.

Given a subgoal (e, p) where e is a logical equivalence node in the LQDAG, and p a physical property,
PHYSDAGGEN creates a physical equivalence node corresponding to (e, p) if it does not exist already,
and then populates it with the physical plans that compute e with the given physical property. Depending
on the root operation node being an algorithm or an enforcer, the corresponding physical plan is called an
algorithm plan or an enforcer plan respectively.

An algorithm plan is generated by taking a logical plan for e as a template and instantiating it as follows.
The algorithm a that forms the root of the physical plan implements the logical operation o at the root of the
logical plan, generating the result with the physical property p. The inputs of a are the physical equivalence
nodes returned by recursive invocations of PHYSDAGGEN on the respective input equivalence nodes of o
with physical properties as required by a.

For each enforcer f that enforces the physical property p, an enforcer plan is generated with f as the
root operation node. The input of f is the physical equivalence node returned by a recursive invocation of
PHYSDAGGEN on the same equivalence node with no required physical property.

In the PQDAG of Figure 2.5, the logical equivalence node (A
�

A.X=B.Y B) is refined into the two
physical equivalence nodes – one for no physical property and the other for sort order on A.X . The
logical join instantiated as nested loops join forms the root of the algorithm plan for the former. For the
latter, the same logical join instantiated as merge-join forms the root of the algorithm plan while the sort
operator forms the root of the enforcer plan. From the PQDAG shown, it is apparent that the nested loops
join requires no physical property on its input relations A and B, while the merge join requires its input
relations A and B sorted on A.X and B.X respectively.

The entire PQDAG is generated by invoking PHYSDAGGEN on the root of the input query’s LQDAG,
with the desired physical properties of the query.
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2.2.4 The Search Algorithm

Each plan in the PQDAG has a cost computed recursively by adding the local cost of the physical operator
at the root to the cost of the subplans of each of its inputs.1 This section describes how Volcano determines
the plan with the least cost from the space of plans represented in the Physical Query DAG generated as
above. The search algorithm is based on dynamic programming – specifically, it uses the technique of
memoization wherein the best plans for the nodes are saved after the first computation, and reused when
needed later.

We assume that the set of enforcers being considered are such that in any best plan, no two enforcers
can be cascaded together; hence the plans with enforcer cascades need not be considered while searching
for the best plan. This may not be true always. For example, the index enforcer, that takes a sorted input and
builds a clustered index on the same, requires that its input be sorted on the relevant attribute, and the best
plan for the input may be an enforcer plan with the sort operator as the root. We handle this by introducing
a composite enforcer for each possible cascade – in the above case, the sort-index cascade is handled by
introducing a sort-cum-index enforcer. The space of enforcer plans generated using the resulting enforcer
set contains the best enforcer plan.

Procedure FINDBESTPLAN, shown in Figure 2.7, finds the best plan for an equivalence node e in
the PQDAG. FINDBESTPLAN calls the procedures FINDBESTENFPLAN and FINDBESTALGPLAN that
respectively find the best enforcer plan and algorithm plan for e, and returns the cheaper of the two plans.

FINDBESTENFPLAN looks at each enforcer child of e, and constructs the best plan for that enforcer by
taking the best algorithm plan for its input physical equivalence node. The cheapest of these plans is the
best enforcer plan for e.

FINDBESTALGPLAN looks at each algorithm child of e, and builds the best plan for that algorithm
by taking the best plan for each of its input physical equivalence nodes, determined by recursive invoca-
tions of FINDBESTPLAN. Further, it looks at the best plan for each immediately subsuming node (see
Section 2.2.3), determined recursively. The cheapest of all these plans is the best algorithm plan for e.

Observe that subsuming physical equivalence nodes are considered only while searching for the best
algorithm plan (in FINDBESTALGPLAN) and not while searching for the best enforcer plan (in FIND-
BESTENFPLAN). This is because an enforcer plan for the subsuming physical equivalence node has a cost
at least as much as the best enforcer plan for the subsumed physical equivalence node.2

Branch-and-Bound Pruning. Branch-and-bound pruning is implemented by passing an extra parameter,
the cost limit, which specifies an upper limit on the cost of the plans to be considered. The cost limit for
the root equivalence node is initially infinity. When a plan for a physical equivalence node e with cost less
than the current cost limit is found, its cost becomes the new cost limit for future search of the best plan for
e.

The cost limit is propagated down the DAG during the search and helps prune the search space as
follows. Consider the invocation of FINDBESTPLAN on the physical equivalence node e. In the call to
FINDBESTENFPLAN, the cost limit for the input of the enforcer op is the cost limit for e minus the local
cost of op. Similarly, in FINDBESTALGPLAN invoked on e, when invoking FINDBESTPLAN on the ith
input of an algorithm node child op of e, the cost limit for the plan for the ith input is the cost limit for
e minus the sum of the costs of best plans for earlier inputs to op as well as the local cost of computing
op. The recursive plan generation occurs only till the cost limit is positive; when the cost limit becomes
non-positive, the current plan is pruned. If all the plans for e are pruned for the given cost limit, then the
cost limit is a lower bound on the best plan for e – this lower bound is used to prune later invocations on e
with higher cost limits.

Branch-and-bound pruning is not shown in the pseudocode for FINDBESTPLAN in Figure 2.7, for sake
of simplicity.

1The formulae used to estimate the operator costs appear in Appendix C.
2This is assuming that, for example, cost of sorting A on A.X is at most that of sorting it on 〈A.X, A.Y 〉
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Procedure FINDBESTPLAN

Input: e, a physical equivalence node in the PQDAG
Output: The best plan for e
Begin

bestEnfPlan = FINDBESTENFPLAN(e)
bestAlgPlan = FINDBESTALGPLAN(e)
return the cheaper of bestEnfPlan and bestAlgPlan

End

Procedure FINDBESTENFPLAN

Input: e, a physical equivalence node in the PQDAG
Output: The best enforcer plan for e
Begin

if best enforcer plan for e is present /* memoized */
return best enforcer plan for e

bestEnfPlan = dummy plan with cost +∞
for each enforcer child op of e

planCost = cost of op
for each input equivalence node ei of op

inpBestPlan = FINDBESTALGPLAN(ei)
planCost = planCost + cost of inpBestPlan

if planCost < cost of bestEnfPlan
bestEnfPlan = plan rooted at op

memoize bestEnfPlan as best enforcer plan for e
return bestEnfPlan

End

Procedure FINDBESTALGPLAN

Input: e, a physical equivalence node in the PQDAG
Output: The best algorithm plan for e
Begin

if best algorithm plan for e is present /* memoized */
return best algorithm plan for e

bestAlgPlan = dummy plan with cost +∞
for each algorithm child op of e

planCost = cost of op
for each input equivalence node ei of op

inpBestPlan = FINDBESTPLAN(ei)
planCost = planCost + cost of inpBestPlan

if planCost < cost of bestAlgPlan
bestAlgPlan = plan rooted at op

for each equivalence node e′ that immediately subsumes e
subsBestAlgPlan = FINDBESTALGPLAN(e′)
if cost of subsBestAlgPlan < cost of bestAlgPlan

bestAlgPlan = subsBestAlgPlan
memoize bestAlgPlan as best algorithm plan for e
return bestAlgPlan

End

Figure 2.7: The Search Algorithm
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2.2.5 Differences from the Original Volcano Optimizer

In this section, we point out the major differences between our optimizer and the Volcano optimizer as
described in [22].

Separation of Logical/Physical Plan Space Generation and Search

Our approach in this chapter has been to assume that the three steps of (1) LQDAG generation, (2) PQDAG
generation, and (3) search for the best plan are executed one after another, independently. In other words,
the optimization task goes “breadth-first” on the graph of Figure 2.1 – given the input query Q, first all its
rewritings Q1, . . . , Qm are generated, then all its execution plans P11, . . . , Pmn are generated, and finally
the best execution plan P ∗ is identified and returned.

This may not be the case in reality, where these three steps may interleave. For example, on the other
extreme, the optimizer may choose to go “depth-first” on the graph of Figure 2.1. First Q1 is generated,
then its corresponding execution plans P11, . . . , P1k , are generated and the best plan so far identified. Then,
the next rewriting Q2 is generated, followed by its corresponding execution plans and the best plan so far
is updated, if a better plan is seen. This repeats for all the successive rewritings upto Qm, and finally
the overall best plan is returned. This is essentially the Volcano algorithm, as described in [22]. This
approach may be advantageous when the complete space of plans is too big to fit in memory, since here the
rewritings and the plans that have already been found to be suboptimal can be discarded before the end of
the algorithm.

Unification of Equivalent Subexpressions

The original Volcano algorithm does not generate the unified LQDAG as explained in Section 2.2.2. In-
stead, the generated LQDAG may have multiple logical equivalence nodes representing the same logical
expressions.

For example, consider the query ((A
�

B
�

C) ∪ (B
�

C
�

D)). The Volcano optimizer does not
consider the two occurrences of B as referring to the same relation. Similarly for the two occurrences of
C. Instead each occurrence of B or C is considered a distinct relation; effectively, the query is interpreted
as ((A

�
B

�
C) ∪ (B′ �

C ′ �
D)) where B′ and C ′ are clones of B and C respectively. This does not

alter the search space, since during execution the two accesses of B (or C) are going to be independent,
anyway. However, by doing so, it fails to recognize that the two subexpressions expressions (B

�
C) and

(B′ �
C ′) are identical, and therefore optimizes them independently.

In our version of Volcano, since the equivalent subexpressions are unified (see Section 2.2.2), the
subexpression is going to be optimized only once and the best plan reused for both of its occurrences. In
general, the common subexpression may be rather complex, and unification may reduce the optimization
effort significantly.

Separation of the Enforcer and Algorithm Plan Spaces

Our version of Volcano memoizes the best algorithm plan as well as the best enforcer plan for each physical
equivalence node. On the other hand, Volcano stores only the overall best plan.

While searching for the best plan for, say, (A
�

A.X=B.Y B) sorted on A.X , Volcano explores the
enforcer plan with the sort operation on A.X as the root and the equivalence node for unsorted result as
input. In order to determine the best plan for this input node, in the naive case, it visits the equivalence
nodes that subsume the same. In particular, it explores the equivalence node for the sort order A.X as
well, landing back where it had started and thus gets into an infinite recursion. Volcano tries to avoid this
by passing down an extra parameter, the excluding physical property, to the search function. In the above
example, the excluding physical property is “sort order on A.X” and helps the recursive call to determine
the best plan for the unsorted result figure that the equivalence node with sort order on A.X should not be
explored while looking for the best plan.

However, this approach has its own problems. The best plan thus found for the equivalence node with
no sort order is subject to the exclusion of the said physical property and may not be its overall best plan;
in particular, the merge-join plan for the result that is present below the equivalence code for sort order
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A.X may be the overall best plan for the unsorted result, but has not been considered above. Thus, at each
equivalence node, the optimizer needs to memoize the best plan for each excluded physical property apart
from the overall best plan — a significant amount of book-keeping.

Our version obviates the above problem, as discussed earlier in Section 2.2.4 by observing that one
need only consider algorithm plans as input to an enforcer while looking for the best enforcer plan. While
searching for the best plan for (A

�
B) sorted on A.X , the enforcer plan considered only consists of

the sort operation over the best algorithm plan for the unsorted result. In general, it can be seen that in
Figure 2.7, neither of FINDBESTPLAN, FINDBESTENFPLAN and FINDBESTALGPLAN are ever invoked
more than once on the same equivalence node, thus proving that the recursion always terminates.

2.3 Summary

In this chapter, we first gave a brief overview of the issues in traditional query optimization, and pointed
out the important research and development work in this area. We then gave a detailed description of
the design of our version of the Volcano query optimizer, which provides the basic framework for the
work presented in this thesis. Later chapters of this thesis modify this basic optimizer, enabling it to
perform multi-query optimization, query result cache management and materialized view selection and
materialization respectively.

For sake of simplicity, the later chapters restrict to the logical plan space. The Query DAG referred
hereafter will refer to the Logical Query DAG, unless explicitly stated otherwise. However, the descriptions
therein can be easily extended in terms of the physical plan space.


