

Robust Query Processing through Progressive Optimization
Volker Markl*, Vijayshankar Raman*, David Simmen+, Guy Lohman*, Hamid Pirahesh*, Miso Cilimdzic#
 *IBM Almaden Research Center +IBM Silicon Valley Lab #IBM Toronto Lab

 San Jose, CA, USA San Jose, CA, USA Toronto, Canada
{marklv, lohman, pirahesh}@almaden.ibm.com, {ravijay, simmen}@us.ibm.com, cilimdzi@ca.ibm.com

Abstract

Virtually every commercial query optimizer chooses
the best plan for a query using a cost model that relies
heavily on accurate cardinality estimation. Cardinality
estimation errors can occur due to the use of inaccu-
rate statistics, invalid assumptions about attribute in-
dependence, parameter markers, and so on. Cardinality
estimation errors may cause the optimizer to choose a
sub-optimal plan. We present an approach to query
processing that is extremely robust because it is able to
detect and recover from cardinality estimation errors.
We call this approach “progressive query optimiza-
tion” (POP). POP validates cardinality estimates
against actual values as measured during query execu-
tion. If there is significant disagreement between esti-
mated and actual values, execution might be stopped
and re-optimization might occur. Oscillation between
optimization and execution steps can occur any num-
ber of times. A re-optimization step can exploit both
the actual cardinality and partial results, computed
during a previous execution step. Checkpoint op-
erators (CHECK) validate the optimizer’s cardinality
estimates against actual cardinalities. Each CHECK
has a condition that indicates the cardinality bounds
within which a plan is valid. We compute this validity
range through a novel sensitivity analysis of query
plan operators. If the CHECK condition is violated,
CHECK triggers re-optimization. POP has been proto-
typed in a leading commercial DBMS. An experimen-
tal evaluation of POP using TPC-H queries illustrates
the robustness POP adds to query processing, while
incurring only negligible overhead. A case-study ap-
plying POP to a real-world database and workload
shows the potential of POP, accelerating complex
OLAP queries by almost two orders of magnitude.

1 Introduction
Database management systems (DBMSs) traditionally com-
pile SQL queries once and retain the resulting Query Execu-
tion Plan (QEP, or just plan) for repeated execution in the
future, either stored in the database (for static optimization
[CAK+81]) or in an in-memory cache (for dynamic queries),

to save re-optimization cost. Most modern query optimizers
determine the best plan for executing a given query by
mathematically modeling the execution cost for each of many
alternative QEPs and choosing the one with the cheapest
estimated cost. The execution cost is largely dependent upon
the number of rows (the row cardinality) that will be proc-
essed by each operator in the QEP, so the optimizer first
estimates this incrementally as each predicate is applied by
multiplying the base table’s row cardinality by a filter factor –
or selectivity – for each predicate in the query [SAC+79,
Gel93, SS94, ARM89, Lyn88]. The estimation process typi-
cally begins with statistics of database characteristics that
were collected prior to optimization, such as the number of
rows for each table, histograms for each column [IC91,
PIH+96, PI97], or sampled synopses [HS93].
While query optimizers do a remarkably good job of estimat-
ing both the cardinality and cost of most queries, many as-
sumptions underlie their mathematical models, such as the
currency of the database statistics and the independence of
predicates. Outdated statistics or invalid assumptions may
cause significant estimation errors in the cardinality, and
hence the cost of a plan, causing sub-optimal plans to be
chosen. One proposed solution is to continually re-optimize
the plan as each row (or group of rows) is accessed [AH00],
but this incurs impractically large re-optimization costs.
This paper introduces a practical compromise between the
extremes of static optimization and continual optimization,
called progressive query optimization (POP). POP provides a
plan “insurance policy” by lazily triggering re-optimization in
the midst of query execution whenever cardinality estimation
errors indicate that the QEP might be sub-optimal. It does
this by adding one or more checkpoint operators (CHECK),
which compare the optimizer’s cardinality estimates with the
actual number of rows processed thus far, and trigger re-
optimization if a pre-determined threshold on the error is
exceeded. The threshold is to ensure that a better alternative
QEP exists if it is exceeded. In this way, POP adds robustness
to query processing, as suboptimal plans are not executed to
completion anymore. This robustness substantially reduces
the run-time of queries that were optimized using significantly
wrong cardinality estimates. If the optimizer’s estimates are
fairly accurate, the only overhead incurred by POP is the
added CPU cost of counting the rows for each CHECK and
comparing them to the threshold. Only if the optimizer has
grossly misestimated the cardinality at some CHECK, and
thus is executing a plan that is likely to have disastrous per-
formance, will the cost of re-optimization and re-execution be
incurred. By treating the results computed up to CHECK as a
temporary materialized view, the optimizer can both exploit
its actual cardinality during re-optimization and reuse much of
the already computed results during re-execution.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

The main contributions of this paper are (a) the concept and
various flavors of the CHECK operator, (b) a novel method of
determining validity ranges for QEPs, and (c) a rigorous
performance analysis of a prototype of POP. We explore
alternative checkpointing schemes that impose different levels
of overhead, and investigate the tradeoffs in placing CHECK
at different places in the QEP. We also introduce CHECK
operators that permit re-optimization of pipelined plans with-
out erroneously returning duplicate rows, a consideration
implicitly ignored by prior re-optimization schemes in the
literature.
In the remainder of Section 1 we first address the risk-
opportunity trade-off of POP before surveying related work.
Section 2 describes the overall concept of POP. Section 3
discusses various flavors of CHECK. Section 4 elaborates on
CHECK placement. An experimental evaluation of a proto-
type of POP implemented on a leading commercial DBMS is
given in Section 5. Section 6 presents the results of a case
study using our prototype for a real-world database with
complex OLAP queries. In Section 7 we discuss future work
before we present our conclusions in Section 8.

1.1 Risk-Opportunity Tradeoffs
POP uses re-optimization to consecutively refine a query
plan, with the goal of improving QEP quality and perform-
ance. There are two dimensions along which one can evaluate
a re-optimization scheme:

• Risk – Risk refers to the degree to which re-optimization
might not be worthwhile and may instead lead to per-
formance regression. Performance regression may occur
whenever re-optimization of a query results in the selec-
tion of the same or even worse (!) plan (improved cardi-
nality estimates can and do lead to worse plans as we see
in our experiments – this occurs because of cardinality
errors canceling each other out). Regression can also oc-
cur when much of query execution needs to be repeated
because intermediate results were not reused or if the
query has a low run-time, thus re-optimization not being
worthwhile.

• Opportunity - Opportunity refers to the aggressiveness
of the re-optimization scheme for a query. Each CHECK
added to a plan represents an opportunity for triggering
re-optimization. The higher the number of CHECK op-
erators the higher the opportunity for re-optimization.
Opportunity is directly correlated to risk. Highly
opportunistic schemes also are high risk because there is
a greater possibility of slowing down query execution.

The recent direction in continuous query optimization (e.g.
Eddies[AH00]) and many papers on streams (e.g. [MS02])
focus on maximizing opportunity while ignoring risk. In
contrast, POP seeks to minimize risk and overhead through
judicious placement of CHECK.

1.2 Related Work
While there has been a large body of work in query optimiza-
tion, most work only addresses static optimization of queries.
 [SLM+01] uses errors observed during previous query execu-
tions to optimize future queries. We complement this work by
re-optimizing the current query.

General re-optimization of the currently running query was
first introduced in [KD98], where – upon estimation error
detection – the SQL statement of the currently running query
is re-written to access specially materialized intermediate
results as standard table access. We improve upon [KD98] in
both the opportunity and risk metrics. First, [KD98] only re-
optimizes hash joins and only if query results are not pipe-
lined, whereas we present more generally applicable re-
optimization schemes and study their risk-opportunity trade-
offs. Second, [KD98] uses an ad hoc cardinality error thresh-
old to determine whether to re-optimize. We introduce a
sensitivity analysis during optimization to calculate the valid-
ity range for estimates within which the plan is valid. More-
over, instead of always rewriting the original SQL query to
reuse the hash join result, we give the intermediate results as
option to the optimizer to reuse only if beneficial.

System R

KD98

Tukwila

Telegraph

POP
Redbrick

Opportunity

R
is

k

System R

KD98

Tukwila

Telegraph

POP
Redbrick

Opportunity

R
is

k

Figure 1: Risk/Opportunity Tradeoff of Various Re-

Optimization Schemes
In the Tukwila system [Ives02], re-optimization is done by
partitioning the data at each re-optimization point, with a final
cleanup phase to combine results from previous phases. The
main problems with this approach are: (a) each phase is exe-
cuted without using the state generated by the previous
phases, and (b) the final cleanup uses a specialized pipelined
join algorithm rather than invoking the optimizer. The Query
Scrambling project [UFA98] also re-optimizes queries, but its
focus was on handling delayed sources.
In addition to the limitations discussed above, all of these
systems externally re-write SQL queries to re-use prior re-
sults. This is only viable for simple read-only queries. Side
effects like update operations cannot in general be rewritten
into semantically correct SQL queries after partial execution.
In contrast, POP works on arbitrary SQL queries possibly
composed of sub-queries, updates, compiled in trigger and
view maintenance operations, and so on. Furthermore, POP
can handle concurrent update transactions or updates of com-
mon sub-expressions without compromising consistency and
isolation --- the locking information needed for consistency is
tied to the row identifier (rid), and is lost in all approaches
that externally re-write queries.
A completely different strategy is to optimize routing of each
row separately. Ingres [SWK76] used a simple scheme, in
which each row is routed independently to nested loop joins.
The Telegraph project generalizes this to a very fine granular-
ity of re-optimization, in which a separate Eddy operator is
used to continually adapt the row routing between other op-
erators [AH00, RDH02]. Per-row routing gives high opportu-
nity for re-optimization, but imposes a big overhead in steady
state. Moreover, the Eddy routes each row along a greedy,
locally optimal path that does not consider the overall query

execution cost. While this works fine for Telegraph’s interac-
tive processing metric, a regular optimizer is needed to handle
the more common completion time or total work metrics.
Integrating Eddies with a traditional query optimizer remains
a challenge for future work.
Among commercial systems, the DEC RDB system [AZ96]
ran multiple access methods competitively before picking
one. To the best of our knowledge, the only commercial
DBMS currently shipping with a form of POP is the Redbrick
DBMS, which specializes in processing queries over star
schemas. The specific star schema plan used is not fully
determined until execution time. Intermediate results of all
dimension table accesses are first computed. The cardinality
of those intermediate results is then used to select the appro-
priate method for accessing the fact tables. While this product
uses progressive re-optimization, it does so only for a very
specific query execution strategy. The issues of arbitrary
CHECK placement, join re-ordering, and intermediate result
re-use are not addressed.
The closest analogy to our validity range computation method
is the work on parametric optimization (e.g. [CG94, HS02])
where different plans are generated for different intervals of
the optimization parameters. The main problem here is the
combinatorial explosion of the number of plans that need to
be generated, stored, loaded, and decided among at runtime.
We avoid this explosion by embedding validity range compu-
tation into the optimizer pruning phase (Section 2.2).

2 Progressive Query Optimization
Progressive Query Optimization (POP) is comprised of sev-
eral key aspects for protecting against query processing disas-
ter due to the choice of a suboptimal QEP.
1. POP can detect a suboptimal QEP in the midst of execu-

tion and cause it to be re-optimized. Alternating optimiza-
tion and execution steps can occur any number of times.
Partial result records can be pipelined to the application at
each execution step using techniques to prevent duplicate
rows from being returned to the application.

2. During each execution step, POP monitors the actual
values of key estimated parameters used to select the QEP
and feeds this information back into a re-optimization step.
This aspect of POP improves the likelihood that an opti-
mal plan will be selected for the next execution step.

3. POP also makes materialized partial results available for
reuse during the next execution step. Rather than force the
optimizer to reuse these partial results by rewriting the
query or some other means, they are packaged as material-
ized views in order to take advantage of the optimizer’s
ability to make a cost-based decision with regard to their
reuse (see section 2.3 for more details).

Checkpoints are the POP points of control. A checkpoint
inserted into a QEP is effectively an assertion to ensure that
optimization parameter estimates agree with the actual values
for those parameters as measured during query execution. Our
current research focuses on the monitoring of cardinality
estimates; however, a checkpoint could monitor other proper-
ties as well. A checkpoint monitors the number of rows flow-
ing from a producer to a consumer during query execution. It
may also buffers rows that it sees. A checkpoint suspends

query execution and triggers re-optimization if the number of
rows it sees violates the check condition. In our prototype of
POP a check condition defines the cardinality range (or check
range) for which the check condition is true. Determining
check ranges depends on the ability to compute the validity
range for each subplan P rooted with plan operator o, which
defines for each input stream into o the range of cardinalities
for which o is the optimal root operator for P as discussed in
more detail in section 2.2. Our system implements various
flavors of checkpoints (as discussed in section 3),
Checkpoints are manifested in POP plans by CHECK opera-
tors. CHECK has no relational semantics. Each CHECK has a
check range parameter defining a range of cardinalities [l, u].
The check range is dependent on the cardinality estimate as
well as the remainder of the QEP above the CHECK. CHECK
is successful when the actual cardinality a is within the check
range, i.e., a ∈ [l, u]. If CHECK succeeds, query processing
will continue normally; otherwise, query execution is termi-
nated and re-optimization is triggered. Actual cardinality
estimates measured during the partial execution of the query,
occurring up to the point where the check range was violated,
are fed back into the re-optimization phase. Moreover, mate-
rialized intermediate results are made available for re-use
during the re-optimization phase. The decision as to whether
or not intermediate results are reused during re-optimization is
based upon cost analysis. As described later, it may under
certain circumstances be preferable to avoid reusing these
results.

NLJN

CHECKPOINT

NLJN
Add checkpoint

Re-optimization

O I

R R

I

O

HSJN

O I

R

Figure 2: Adding CHECK to the outer of a NLJN

An example of POP is given in Figure 2. The QEP in the left
part of the figure joins the outer (O) and inner (I) sub-plans
using the (index) nested-loop join (NLJN) method before
processing the remainder of the plan (R). The choice of the
operator joining O and I depends heavily on the cardinality
estimate for the result of the sub-plan O. Usually the opti-
mizer will prefer NLJN for joining O and I, when the cardi-
nality of O is small relative to I and there is an index on I to
apply the join predicate. If the cardinality of O is much larger
than estimated, another join method, such as hash-join
(HSJN) or merge-join (MGJN), might be more efficient, and
thus preferred by the optimizer.
Since the choice of an inappropriate join method can result in
performance degradations of orders of magnitude, adding
CHECK to the outer sub-plan of an NLJN helps to prevent the
execution of sub-optimal plans and thus bad query response
times. CHECK added above O in the middle part of Figure 2
ensures that the NLJN method is optimal not only for the
cardinalities estimated at optimization time, but also for the
actual cardinalities measured at runtime, thus making this
plan more robust. When the check range is violated, re-
optimization of the query is triggered, which might result in a
significant change in the QEP such as replacing NLJN in

Figure 2 with a more suitable join method such as hash join
(HSJN).

2.1 Architecture of POP
Extending a DBMS with POP capability involves:

a) Adding logic to the plan generator of the query
optimizer to determine the check range by deter-
mining the cardinality range for which any given
operator is optimal in the current plan.

b) Adding logic to the post-pass of the optimizer for
deciding the most judicious location of CHECKs

c) Adding code generator logic for translating CHECK
into executable code

d) Adding logic to the runtime system for interpreting
CHECK.

e) Adding logic to exploit intermediate results when
CHECK fails, so that work already done can be re-
used during re-optimization.

To illustrate those enhancements to the architecture of a
DMBS, Figure 1 distinguishes the initial run (first query
execution until the violation of the check range triggered re-
optimization) and the re-optimization run of a query for ex-
planatory purposes. Actually, the re-optimization run could
again add CHECKs to the new QEP and become the initial
run for a second re-optimization.

Parser

Rewrite
(rule based
optimizer)

Code
Generator

Optimizer
(cost based)

SQL Compiler

Runtime

Parser

Code
Generator

SQL Compiler

Runtime

I. Initial run II. Re-optimization

Add checkpoints to
plan

Perform check,
upon failure:

1. retain already
computed results,
2. trigger re

-optimization,
and

Rewrite
(rule based
optimizer)

Optimizer
(cost based)

Possibly reuse
previous

intermediate
results

Clean up3.
 R

e-
O

pt
im

iz
e

Figure 1: Progressive Optimization architecture

During the initial optimization of a query, the post-pass of the
optimizer adds CHECK operators to the QEP based on the
reliability of an estimate as well as the potential harm of an
estimation error. When CHECK is executed, the check range
is compared to the actual cardinality observed by the runtime
system. If the check range is violated, the runtime system
retains intermediate results together with their actual cardinal-
ity values and triggers re-optimization of the query. Actual
cardinalities measured during the initial run help the re-
optimization step avoid the same mistake. After optimization
and execution of the query in the re-optimization run, cleanup
actions are necessary to remove the intermediate results and
free locks on tables and indexes used during the initial run.

2.2 Computation of Validity Ranges
It is crucial to minimize risk of POP by re-optimizing only
when we are sure that the plan will change. In general, this is

the parametric query optimization problem, computing the
optimal plan for every possible combination of parameter
values [CG94, HS02]. For POP we avoid this exponential
explosion of parameters by forming a validity range for each
edge of the QEP.
Definition: Consider a plan edge e that flows rows into opera-
tor o, and let P be the subplan rooted at o. The validity range
for e is an upper and lower bound on the number of rows
flowing through e, such that if the range is violated at run-
time, we can guarantee P is suboptimal with respect to the
optimizer’s cost model. This range is defined conservatively,
i.e., even within the validity range P may become suboptimal
with respect to alternative QEP we do consider. This conser-
vative definition is fine, since we only want to avoid needless
re-optimization.
The main advantage of validity ranges over parametric opti-
mization is that we need not enumerate beforehand all possi-
ble optimal plans under all possible parameter values – we
only need the cardinality ranges within which the chosen plan
remains optimal. However we cannot use ad hoc thresholds
on cardinality errors because the effect of cardinalities on
query optimality is very complex. A 100x error in cardinality
of the NATION table of a TPC-H schema may make no
difference to plan optimality, whereas a 10 percent increase in
ORDERS may turn a two-stage hash join into a three-stage
hash join, making the query plan highly suboptimal.
POP computes validity ranges during the plan enumeration
and pruning phases of the optimizer through a plan sensitivity
analysis. It iteratively narrows the validity range for each
input to an operator of the currently optimal plans, when
pruning alternative plans during optimization.

C
os

t

Input Cardinality

Palt

Popt

Cost(Palt)

Cost(Popt)

e c

C
os

t

Input Cardinality

Palt

Popt

Cost(Palt)

Cost(Popt)

e c

Figure 4: Computing the Upper Bound of a Validity Range

Suppose that during dynamic programming, plan Popt with
root operator oopt is being compared with another plan Palt
having the same properties (joined tables, applied predicates,
sort order, projected columns) and different only in the root
operator oalt. Suppose that Popt dominates, and we prune Palt
due to its higher cost.
The cost for Popt and Palt is a function of the cardinalities of
the input edges of the root operator. Consider one edge with
estimated cardinality e. Figure 4 illustrates how we can nar-
row the upper bound of the validity range of this edge. As we
prune plan Palt, we determine if there exists an input cardinal-
ity c > e such that the cost functions cost(Palt, c) and cost(Popt,
c) intersect. We do this by solving for the root of cost(Palt , c)
– cost(Popt , c) = 0. When a root operator has multiple input
edges (e.g., joins), we need to find the roots by treating the
cost functions of Poptand Palt as multi-variate functions of the
input cardinalities.

This process is repeated for each alternative plan that is
pruned with Popt. Each time we check if the root c is less than
the current upper bound and adjust the bound accordingly.
Root-Finding through Modified Newton-Raphson
Prior work on parametric optimization assumes that cost
functions can be modeled using simple analytical models like
piecewise-linear functions. In practice, however, cost models
for plan operators are extremely complex, exceeding several
thousand lines of code. Moreover these cost models are con-
tinually being refined as their shortcomings are revealed in
particular environments. Therefore it is not practical to ana-
lytically compute the validity ranges because the formulas
will have to be continually updated as the code changes.
In addition to being complex code, the optimizer cost func-
tions are also not smooth, not even always continuous. We
even have identified situations where the cost functions
monotonically decrease with the input cardinalities. So simple
binary-search techniques as in [GW89] will not work.
Instead we convert validity range estimation into a numerical
solving problem. In practice we have found the Newton-
Raphson method to be very effective, when combined with a
method to escape discontinuities and non-differentiable points
in the cost functions.

1) If operator oopt with child edge e prunes operator oalt.
2) Let ub be the current upper bound for e's cardinality

(initialized to infinity).
3) while cost(oopt) < cost(oalt) do (cap at 3 iterations):

a. currDiff = cost(oalt) - cost(oopt)
b. card(e) = card(e) ×1.1 //need another pt to find gradient
c. newDiff = cost(oalt) - cost(oopt)
d. if newDiff < 0 break
e. // Newton Raphson is diverging: jump

if (newDiff > currDiff) card(e) ×= 10
f. card(e) ×= 1 + newDiff/(11× (-newDiff+currDiff))
g. If ub >card(e) set ub = card(e)

Figure 5: Validity Range Estimation Method (for upper
bound ub, similar method applies for lower bounds)

Figure 5 above shows our modified Newton-Raphson method.
Notice that Newton-Raphson terminates as soon as we get a
cost inversion. We can stop the approximation at any point
and our suboptimality detection is guaranteed to be conserva-
tive; it will not compute a false suboptimality bound. Erring
on the conservative side is acceptable because it will not
cause re-optimization with the risk of regression. In experi-
ments we have determined that merely three iterations of
Newton-Raphson results in finding a good validity range.
Structurally Equivalent Plans
The method described above is very simple. It is easily em-
bedded into a standard dynamic programming optimizer, by
enhancing the prune function. The only overhead is the re-
peated evaluation of the cost functions for operators oopt and
oalt with alternate cardinalities.
Our method is limited as it only detects suboptimality of the
root operator and Popt and Palt must share the same input
edges. It is easy to see for example that the validity range
might miss a cross-over point with a plan that uses a different
join order (and hence has different input edges).

Formally, we can show that our method will find suboptimal-
ity with respect to all structurally equivalent plans.
Definition: Two plans P1, P2 with identical properties (joined
tables, predicates, projected columns and sort order) are struc-
turally equivalent if they share the same set of edges, where
an edge is defined by the set of rows flowing through it during
query execution.
Theorem: Suppose that during execution of a plan P with
edges {e1 , e2 , … , em}, the edges ei1 , ei2 , … , eik are seen to
be erroneous (i.e. cardinality of rows flowing along them is
incorrectly estimated). Let oi1 , oi2 , … , oik be the operators
incident to and above each of these edges, and Pi1 , Pi2 , … ,
Pik be the subplans of P rooted at these operators. The follow-
ing statements are equivalent (proof by induction [MR+04]):
(a) P is suboptimal with respect to another plan P' that has

the same set of edges {e1 , e2 , … , em}
(b) At least one of Pi1 , Pi2 , … , Pik is suboptimal given the

cardinality errors in those edges in {e1 , e2 , … , em } that
lie under them.

(c) At least one of oi1 , oi2 , … , oik is a suboptimal operator
given the cardinality errors in {e1 , e2 , … , em} that are in
its input edges.

Structural equivalence includes plans with alternative choices
for physical operators (e.g. different join algorithms), and also
plans with reverse orders of the inner and outer children of
various operators. However, it excludes plans with alternative
choices of join orders. It is this restriction that allows use to
reduce our search space for suboptimality and avoid enumer-
ating all possible optimal plans. Moreover, even if we were
able to search for suboptimality against plans with alternative
join orders, it would be a very risky strategy. Consider a plan
that uses the join order (R | S) | T. During run time, we can
never observe the cardinality of R | T. So if we were to
assert that (R | S) | T. is suboptimal, we would be making
an arbitrary guess as to the correlation of the predicates on the
R and T tables. The problem is that the optimizer will assume
independence, and this often leads to cardinality underesti-
mates because positive correlations are common. Not explic-
itly modeling validity ranges for join order changes helps to
avoid such guesses to minimize regression risk. Note, how-
ever, that when a validity range is violated, the new optimal
plan with respect to the optimizer’s model may very well
create a new join order. We are merely conservative in not
basing validity ranges on join order changes except for com-
mutation, but we do not prevent the optimizer from choosing
a new join order for the re-optimized query.

2.3 Exploiting Intermediate Results
In order to efficiently re-optimize, already computed interme-
diate results should be exploited whenever possible. We
exploit materialized views (MV) to easily and elegantly inte-
grate POP with intermediate result exploitation.
Before recursively calling the SQL compiler, CHECK pro-
motes each intermediate result to a temporary MV, having the
cardinality of the intermediate result in its catalog statistics.
Thus exact cardinalities are available for all intermediate
results for re-optimization. During re-optimization the opti-
mizer will also consider table accesses to the materialized
views as an alternative sub-plan that is compared to sub-plans

that re-create intermediate result from scratch. The optimizer
could even create an index on the materialized view before re-
using it if worthwhile.
Re-optimization takes place in the same transaction as the
initial partial execution and holds all locks acquired previ-
ously. Therefore it is guaranteed that all persisted results are
still transactionally correct when re-execution takes place.
To minimize the overhead and thereby the risk of re-opti-
mization, these intermediate results are not necessarily written
out to disk. Rather the temporarily MV has a pointer to the
actual runtime object for the scan from the current execution.
If this view is reused, the fields of this in-memory object are
modified to satisfy the new plan (e.g., the internal id’s for
each column of this scan may change when the plan changes).
The standard mechanisms for matching MVs to a query is
used to determine if the MV created from the intermediate
result can be used for some part of the query. Once the inter-
mediate results have been matched to the query, the query
optimizer will construct plans that exploit each matched MV
in addition to the original plans, using the known cardinality
for the subplan corresponding to that MV in all cases, and
then choose the cheapest plan as usual. In most cases, a plan
that re-uses the MV representing the intermediate result
should win. Unlike regular MVs, however, the runtime sys-
tem has to remember to remove any of these temporarily
materialized views after completing query execution.
If the plan under CHECK performs a side-effect (in-
sert/delete/update), the intermediate results must always be
matched and reused – otherwise the side-effect would be
applied twice.
Intuitively it seems that intermediate results should always be
reused rather than be thrown away. But this is not always true.
A wrong initial choice of join order, for instance, might create
a prohibitively large intermediate result that would have been
avoided with a different join order. Moreover, we have found
that many cardinality estimation errors are due to violations of
the independence assumption between predicates, and are
therefore underestimates, leading to larger-than-expected
intermediate results. Using this intermediate result could incur
a much higher cost than restarting from scratch. Instead of
always using intermediate results, POP gives the optimizer
the choice whether or not to use the intermediate results. This
choice is based on the optimizer’s cost model, which is en-
hanced by better cardinality and statistics information ob-
tained from the previous partial execution of the query.

NLJN

NLJN

CHECK

B

P

MATERIALIZATION
POINT

A C

HSJN

P

CMV

(A join B)

NLJN

P

BNLJN

CA

Alternative 1

Alternative 2

Figure 6: Two alternatives considered in re-optimization

The right part of Figure 6 shows two alternatives QEPs
among other alternatives that the query optimizer will con-
sider when re-optimizing the QEP in the left part of the figure
at the CHECK. Alternative 1 reuses the materialized view
created from the intermediate result at the materialization
point below CHECK, whereas Alternative 2 uses a different
join order and does not reuse the previous work. The opti-
mizer’s cost model will decide which alternative to choose for
the re- optimized query.

3 Variants of CHECK
The main metrics to evaluate CHECK are the risk and oppor-
tunity of re-optimization at the checkpoint. An additional
metric is its usability in pipelined plans, i.e., QEPs that do not
have any operators that block row processing, but stream all
rows directly to the user in order to reduce the time that that
user has to wait before seeing the query’s first results. Re-
optimization in this case might be triggered after some results
have already been returned. Without buffering or compensat-
ing for those rows, re-optimization will result in unexpected
duplicates, which is inconsistent with the semantics of the
original query.
We now present five flavors of CHECK to meet these chal-
lenges: lazy checking (LC), lazy checking with eager materi-
alization (LCEM), eager checking without compensation
(ECWC), eager checking with buffering (ECB), and eager
checking with deferred compensation (ECDC). The first three
apply only to non-pipelined plans, and the last two apply to all
plans.

3.1 Lazy Checking
Lazy checking (LC) piggybacks on materialization points,
i.e., points in a QEP where an entire intermediate result is
materialized before proceeding with further operators of the
plan. Examples for such materialization points are a) the
SORT operator (which sorts its input, e.g. for a sort-merge
join or group-by), b) the TEMP operator (which creates a
temporary table, e.g., for caching subquery results), and c) the
build side of the hash join operator. Placing CHECK above a
materialization point means that the cardinality of the mate-
rialization point will be checked exactly once, that is, after the
materialization has been completed. Materialization points are
ideal checkpoints for two reasons. First, LC needs no com-
pensation, because no results could have been output before
re-optimization. Second, the materialization creates interme-
diate results that can be reused by the re-optimized query.

MATERIALIZATION
POINT

MATERIALIZATION
POINT

CHECKPOINT

Eager checking
R

P

R

P

Lazy checking
MATERIALIZATION

POINT

R

P2

CHECKPOINT

P1

(a) (b)

Figure 7: Lazy checking (LC) and eager checking without

compensation (ECWC)

Lazy checking is depicted in the left half of Figure 7, where
the QEP in the middle of the figure processes its sub-plan P
and materializes the result of P at a materialization point.
After materialization, the result is further processed by sub-
plan R. The left part of the figure shows how POP adds LC
above the materialization point.

3.2 Lazy Check with Eager Materialization
Although materialization points allow very efficient re-
optimization, they may not occur frequently. If we want to
check above a QEP node and there is no materialization, an
alternative is to explicitly add a MATERIALIZATION-
CHECK pair that first materializes the result and blocks any
pipelining. Upon complete construction of the materialized
intermediate result, the check range is evaluated. We call this
flavor of checkpoint Lazy Checks with Eager Materialization
(LCEMs).
We cannot add LCEMs recklessly because of the extra over-
head of materialization. Instead we use the following heuris-
tic. Among the various join operators in the plan, merge joins
typically have naturally-occurring materializations on both
inputs, and hash joins have materialization on the build side.
So it is mainly the various varieties of NLJN that may have no
materialized inputs and therefore need LCEMs. Therefore our
heuristic is to add LCEMs on the outer side of every NLJN
(unless the outer stream already has a materialization opera-
tor).
For the common case of equi-joins, the fact that the optimizer
picked NLJN over HSJN or MGJN suggests that the cardinal-
ity of the outer is small (because the cost of NLJN is roughly
the outer cardinality times the cost of probing or scanning the
inner). If the optimizer’s cardinality estimate was correct,
materializing the outer will not be too expensive, as we verify
experimentally in Section 5. If not, it will be worth the over-
head to avoid such a mistake.

3.3 Eager Checking (ECWC, ECDC, ECB)
A main weakness of lazy checking is that the materialized
result may be too large, and it may be suboptimal to compute
them at all. Sometimes this can have serious implications: if
the intermediate result cardinality was badly underestimated,
there may not be enough temporary space to hold the materi-
alized result! Eager Checking is an aggressive alternative that
re-optimizes without waiting for materialization, thereby
reacting faster to cardinality errors. Clearly, results could have
been output to the user by that time, in which case we must
compensate for this. Furthermore, eager checking may result
in throwing away work, and thus are of higher risk than lazy
checking. There are 3 flavors of eager checking:

Eager Checking without Compensation
An Eager Check without Compensation (ECWC) is a check-
point that has a materialization point as its ancestor, i.e.,
which is executed later, and therefore needs no compensation.
The right half of Figure 7 shows how CHECK is pushed
down below a materialization point, breaking the sub-plan P
into two sub-plans P1 and P2 and performing eager checking
on P1.
Eager CHECK operators can also be placed in pipelined
(sub)plans, and thus may require compensation in order to

avoid false duplicates. We distinguish the following two kinds
of eager CHECK operators:

Eager Check with Buffering
An Eager Check with Buffering (ECB) is a combination of
CHECK and a buffer, testing if the actual cardinality is above
or below a certain threshold. ECB buffers the rows passing
through it until it is confident that ECB will either fail or
succeed. It thus supports pipelining, though with a delay.
Specifically, an ECB with a threshold range [0, b) or [b, ∞]
accepts and buffers up to b rows like a valve. An ECB with
range [0, b) ([b, ∞]) will succeed (fail), when its child in the
QEP returns no more rows and the buffer contains less than b
rows at this time. An ECB with range [0, b) ([b, ∞]) will fail
(succeed), when the bth row is inserted into the buffer. If ECB
fails, re-optimization is triggered. If ECB succeeds, pipelined
execution continues. The parent operator above ECB will first
process the rows from the buffer. If the buffer is exhausted for
a [b, ∞] ECB, further rows are requested from the operator
below the ECB.
ECBs can be implemented with a buffered check (BUF-
CHECK) operator. Figure 8 illustrates a BUFCHECK with
buffer B on the outer sub-plan O of a NLJN. This buffer
blocks the join until either the buffer has been filled or O
finishes. ECB can be used instead of LCEM for checking the
outer cardinality of a NLJN, because pipelining can be
blocked for a short while in order to ensure that NLJN is the
proper join method. An ECB can also help SORT or HSJN
builds, if these run out of temporary space when creating their
results, by re-optimizing instead of signaling an error.

NLJN NLJN

BUFCHECK

Eager checking

B

immediate compensation

R

O I

O

R

I

Figure 8: Eager checking with Buffering

ECB and LCEM
Note that an ECB can easily morph into an LCEM by simply
waiting to re-optimize (on a check failure) until its input is
exhausted.

Eager Check with Deferred Compensation
For queries only containing select, project and join (SPJ)
operators we can avoid delaying pipelining by using another
flavor of Eager Check called Eager checking with deferred
compensation (ECDC) that transfers each row to its parent
operator in a pipelined manner. To allow for compensation in
case of re-optimization, the identifiers of all rows (rids) re-
turned to the user are stored in a side table S. The new plan of
the query needs to compensate for these prior results by doing
an anti join between S and the new result stream.
ECDC is depicted in Figure 9. In the middle part of the figure,
the pipelined plan P has been broken up at compile time into
the sub-plans P1 and P2, and a checkpoint has been inserted

between the two sub-plans. The RETURN plan operator in the
figure denotes the operation that returns rows to the user.
Because of deferred compensation, ECDC neither delays
pipelining nor buffers any rows. However, in order to enable
deferred compensation, an INSERT operator is inserted just
below the return operator. INSERT uses a temporary table S
to remember the rids of all rows that have been returned to the
user. These rids may need to be constructed if the row has
been derived from a base table. If re-optimization is triggered,
the optimizer adds an anti join (set difference) plan operator
on top of the re-optimized QEP P* to compensate for already
returned rows from the initial run of the query.

CHECK

INSERT S

RETURN

P P2

P1

P*

ANTI-JOIN
(not exists)

S

RETURNRETURN

Re-optimization

Eager checkingEager checking

deferred compensation
Figure 9 Eager checking with deferred compensation

Figure 10 shows the implementation of the check (CHECK)
and buffered check (BUFCHECK) operators via an
open/next/close model. The implementation of check can be
simplified if the DBMS maintains counters for each plan
operator. In this case, the check operator can directly refer to
the counters of the operator below CHECK. Similarly, if
CHECK is only placed above a materialization point, check-
ing can be optimized to be only executed once (i.e., after the
materialization has completed) and refer to the counter of the
materialized intermediate result.
Figure 10: Check implementation for check range [low,high]

CHECK.OPEN:
 count = 0;
CHECK.NEXT:
 count++;
 r = childStream.next();
 if count > high
 call re-optimization;
 if count < low and r = EOF
 call re-optimization;
 else
 return r;
CHECK.CLOSE:

 ∅

BUFCHECK.OPEN:
 count = 0;
 allocate B of size b; // buffer
 for i = 0 to b do
 B[i] = childStream.next();
 if childStream.EOF()
 and i < low
 call re-optimization;
BUFCHECK.NEXT:
 count++;
 if high < count
 call re-optimization;
 if count < b
 return B[count];
 else
 return childStream.next();
 BUFCHECK.CLOSE:
 free B;

3.4 Risks and Opportunities for each flavor of
Checkpoint

Lazy checks (LCs) impose the least risk during query process-
ing because their input is materialized and can be reused. But
their opportunity is limited to materialization points in the
plan.
Lazy checks with Eager Materialization (LCEMs) impose the
additional overhead of materializing results, and could thus be
more risky. So we choose to place LCEMs only on the outer

side of NLJN, where cardinalities are likely to be small. By
introducing these artificial materialization points, LCEMs
provide greater re-optimization opportunities.
The main problem with LCs and LCEMs is that they wait for
full materialization before re-optimizing. This can be bad if
the result is much larger than expected -- LCEMs are espe-
cially affected, because there the materialization is artificially
introduced.
Eager checks with Buffering (ECBs) avoid this problem by
checking before materialization is completed. The penalty is
that the sub-plan being materialized has to be completely re-
run, modulo other materialization points within it. In general
we want to couple both approaches, placing an LCEM above
an ECB so that the ECB can prevent the materialization from
growing beyond bounds. The relative risk of inserting the
ECBs vs. the LCEM depends on the relative costs of re-
running the outer and materializing the results. Also, like any
eager CHECK, ECBs terminate early and thus will not enable
the optimizer to use the correct cardinality for the subplan
during re-optimization. They merely give the optimizer a
lower bound for the correct cardinality that is higher than the
previous estimate, ensuring that a different plan will chosen,
but there is no guarantee that the new plan will be optimal.
ECWC and ECDC give much greater opportunities for re-
optimization. ECWC can be placed anywhere below materi-
alization points. ECDC works even in pipelined plans and
requires only one buffer for the entire query, regardless of
how many checkpoints exist in the QEP. Because of the anti-
join post-processing of the re-optimized query, ECDC reduces
the overhead of the initial run of the query and puts more of
the cost upon re-optimization, which can be good if re-
optimization is rare. As a penalty for this virtually unlimited
opportunity for re-optimization, ECWC and ECDC have high
risk, because they fail to retain work done.

4 CHECK Placement
Table 1 summarizes the 5 flavors of checkpoints.
LCEM and ECB checkpoints are placed on the outer side of
nested loop joins during plan enumeration. After the optimal
plan has been chosen, LC checkpoints are placed above mate-
rialization operators. ECWC and ECDC checkpoints can be
placed arbitrarily.
In our current implementation, the materialization points we
consider are SORTs and TEMPs. The two other kinds of
reusable results that arise during query processing are: (a) the
build side of hash joins, and (b) rid-lists generated from in-
dexes. We have found SORT and TEMP reuse alone to pro-
vide for significant performance improvements, but plan to
enhance our prototype to reuse further intermediate results in
order to make re-optimization even more efficient.
Our validity range estimation ensures that checkpoints will
not trigger re-optimization unless an alternative better plan is
available. However, LCEM and ECB checkpoints induce the
overhead of an extra materialization even with no re-
optimization. Moreover, even if a better plan is available, we
might throw away so much additional work using eager
checking (with ECB, ECWC and ECDC checkpoints) that the
overall execution is slower. As we intend to be conservative,
the default behavior of our prototype is to only place LC and

LCEM checkpoints, where LCEM is placed to guard the outer
of a NLJN. (in one experiment we also show the opportunity
of ECB checkpoints by selectively enabling them for that
experiment). General purpose placement of ECB, ECWC, and
ECDC is disabled by default.
To avoid needless materialization, we have an additional
restriction on checkpoint placement: there must be alternative
query plans for the part above the checkpoint. This informa-
tion is obtained from the optimizer itself during plan enu-
meration. We also do not place CHECK operators in simple
queries with an estimated cost below a certain threshold, in
order to avoid the cost of monitoring and re-optimization for
those kinds of queries.
More generally, a checkpoint is useful only if the cardinality
estimate at that point may be erroneous. It remains future
work to investigate a detailed confidence model for cardinal-
ities at plan edges. The number of times assumptions were
used instead of actual knowledge in order to compute an
estimate might be a starting point for a heuristics for a reli-
ability measure.

5 Performance Analysis
We study the performance of POP and the various flavors of
checkpoints using a prototype implemented in a leading
commercial DBMS. While this section analyzes the robust-
ness that POP adds to query processing as well as its risk and
opportunities, we give performance numbers of applying POP
in a real-world use-case in Section 6. We currently implement
LC, LCEM, ECB and ECWC checkpoints. For code simplic-
ity, we implement BUFCHECK by placing a TEMP over a
CHECK, with the TEMP acting as buffer. As mentioned
before, we reuse materialized results from TEMP and SORT
operators. Our current implementation does not reuse hash
join builds or rid-lists during re-optimization.
We first present experiments describing the benefits of POP
in improving query robustness. Next in Section 5.2 we ana-
lyze the risk and opportunity of each flavor of checkpoint.
We used the TPC-H schema and queries to analyze the per-
formance of POP in this section. All experiments were per-
formed on a lightly-loaded Power PC with a Power3-II
375Mhz CPU, 4MB L2 cache, 3 GB real memory, 2GB swap
file.

5.1 Robustness in Case of Estimation Errors
We illustrate how POP improves robustness in query process-
ing using TPC-H Q10, which is a complex join of
LINEITEM, ORDER, and CUSTOMER. To simulate and
analyze estimation errors, we replace the literal in the selec-
tion predicate on LINEITEM with a parameter marker. In this
case the DBMS does not know the value of the literal at opti-
mization time, and chooses a default selectivity, resulting in a
default plan using the following join order and join operators:
(CUSTOMERS HSJN (LINEITEM NLJN ORDER)). At run
time, we bind the parameter marker to all possible values of
the literal, thereby varying the selectivity on LINEITEM.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

Actual Selectivity

Ex
ec

ut
io

n
Ti

m
e

Default Selectivity Estimate, with POP
Default Selectivity Estimate
Correct Selectivity Estimate

Figure 11: Robustness of TPC-H Q10 with POP

Figure 11 shows the execution time of TPC-H Q10 depending
on the actual selectivity of the predicate on LINIETEM in
three situations: (a) with POP and with parameter markers,
such that the selectivity estimate for the predicate on
LINEITEM used by the optimizer is a constant default value,
(b) without POP and with parameter markers, again using a
constant selectivity, and (c) without parameter markers, so
that the selectivity estimate for LINEITEM is accurate, giving
the QEP optimal with respect to the optimizer’s model as a
reference point. Parameter markers lead to highly suboptimal
execution times without POP. POP is able to keep the execu-
tion time close to optimal across the whole range of selectivi-
ties. The optimal query goes through 5 different optimal plans
as we vary the selectivity: from (CUSTOMER HSJN
(LINEITEM NLJN ORDER) for the highly selective predi-

Table 1: Placement, Risk and Opportunity for various flavors of checkpoints

Checkpoint Type Placement Risk Opportunity

Lazy Check (LC) CHECK Above
materialization points Very Low -- only context switching Low, only at materializa-

tion points
Lazy Check with Eager Mate-
rialization (LCEM)

CHECK-Materialization
pairs on outer of NLJN

Context Switching + materialization
overhead

Materialization points and
NLJN outers

Eager Check with Buffering
(ECB)

BUFCHECK on outer
of NLJN.

High – exact cardinality of subplan below
ECB not available

Can reoptimize anytime
during materialization

Eager Check without compen-
sation (ECWC)

CHECK below
materialization points

High – may throw away arbitrary amount of
work during reoptimization

Anywhere below a materi-
alization point

Eager Check with deferred
compensation (ECDC)

CHECK and INSERT
before reoptimization;
anti-join afterwards

High – may throw away arbitrary amount of
work during reoptimization

Anywhere in the plan of an
SPJ-query

cate on LINEITEM to (LINEITEM HSJN (CUSTOMER
HSJN ORDER)), if that predicate is not selective. POP is only
2 times slower than the optimal plan in worst case, and in this
case is about four times faster than the plan that the optimizer
would actually use. In general, POP is within a factor of two
of the optimal plan in response time, achieving speed-ups of
almost an order of magnitude over the initial plan chosen by
the optimizer, thus adding significant robustness to query
optimization.

5.2 Risk and Opportunity Analysis
Having seen the overall benefit of POP on robustness and
response time, we now study overhead of the individual
flavors of checkpoints vs. the opportunities they provide (for
re-optimizing the query). Out of the 5 flavors of POP in Table
1, we analyze LC, LCEM and ECB checkpoints along both
these domains. The other two flavors– ECNC and ECDC –
can be placed almost anywhere in the query plan, but can
result in wastage of arbitrary amounts of work. We do not
quantitatively analyze these two high-risk, high-opportunity
flavors.
As mentioned before, we define the overhead of a checkpoint
as its performance impact on a dummy re-optimization that
does not change the QEP. We separately add LC, LCEM, and
ECB checkpoints to plans as in Table 1, and measure the total
execution times with and without re-optimization.

Risk Analysis
Since LCs are placed just above existing materializations, the
only overhead is for context switching and re-invoking the
optimizer. We explicitly disable hash-join for this experiment
so that the optimizer generates lots of materialization points
so that we can study the LC overhead extensively.

0
0.2

0.4
0.6
0.8

1
1.2

a b a a a b a b

Q3 Q4 Q5 Q7 Q9

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Before Reopt Optimization After Reopt

Figure 12: Normalized Execution time with LC re-

optimization (1 is the execution time without re-optimization)
Figure 12 plots the normalized execution time for selected
TPC-H queries. Each query is run once without triggering re-
optimization and once or twice with re-optimization. The
figure shows the execution time calling re-optimization nor-
malized by the regular execution time for each query. For
queries Q3, Q7, and Q9, the QEP had multiple checkpoints.
The bars denoted by a and b in the figure show two separate
executions of these queries with re-optimization triggered
from different checkpoints in the same QEP. The left slanting
region is the component of execution time before re-
optimization, the right slanting region is the component after
the re-optimization, and the small gap between them (almost

invisible) is the time taken for the additional optimization at
the checkpoint. The overhead that POP introduces is -
negligible, about 2-3%.
The next experiment tries a more daring approach to re-
optimization. We re-enable all joins, and proactively add
LCEM check/materialization points on the outer of all
NLJNs. We then run TPC-H queries without any re-
optimization. Figure 13 plots the increased cost because of
adding materialization points, normalized by the regular total
execution time. The negligible overhead in Figure 13 clearly
validates our hypothesis that if NLJN is picked over hash join,
the outer is small enough to be aggressively materialized.

1

1.005

1.01

1.015

1.02

1.025

1.03

Q3 Q4 Q5 Q7 Q9

O
ve

rh
ea

d
in

 Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e

Figure 13: Cost of Lazy Checking with Eager Materialization
The last kind of checkpoint we analyze are ECBs, where we
re-optimize even before the materialization is complete. The
overhead here depends entirely on the work done till then, so
we present it as part of opportunity analysis.

Opportunity Analysis
Our next experiment studies the frequency of opportunities
for each flavor of re-optimization. We add LC, LCEM and
ECB checkpoints to plans as in Table 1, but disable the actual
re-optimization so that the entire query is executed and all
checkpoints are encountered. Figure 14 shows a scatter-plot
of the occurrence of these opportunities during query execu-
tion. Note that the ECB checkpoint opportunities are ranges
given as dashed lines.

0

0.2

0.4

0.6

0.8

1

1.2

Queries

Fr
ac

tio
n

of
 Q

ue
ry

 E
xe

cu
tio

n
C

om
pl

et
ed

LC (above HJ)
LCEM
LC (above TMP/SORT)

Q2 Q3 Q4 Q5 Q7 Q8 Q11 Q18

Figure 14: Opportunities for various kinds of checkpoints
The figure shows that even the low-risk LC and LCEM
checkpoints occur quite regularly in query execution. Even
granting that the ones occurring towards the end of query
execution cannot help, we have one or two checkpoints in the
middle of execution and one or two at the very beginning.
When we add ECBs, a sizable fraction of the query duration
(the dashed lines) is available for re-optimization. But the

overhead is that we must redo the fraction of the query that is
already completed – this ranges from 0 to about 60% in the
figure. Many re-optimization opportunities are closely clus-
tered together, especially in the early stages of query execu-
tion. This is because joins over the smaller tables typically
separate materialization points.

6 POP in Action
In this section we apply POP to a real-world database and
customer workload, using an 8-way PowerPC with 1.4 GHz
Power4 CPUs, 32 GB RAM, 56 FASTT managed disks with a
total of 36 GB net storage space. The database holds data of a
department of motor vehicles (DMV), consisting of more than
30 tables and more than 100 indexes. The major tables of the
database are the CAR and OWNER table storing 8 million
respectively 6 million records. The overall size of the data-
base is 7.4 GB. The CAR table contains major correlations,
like a correlation between the columns MAKE, MODEL,
COLOR, and MODEL, WEIGHT. There are also correlations
when joining CAR and OWNER, like correlations between
ZIP, MAKE and AGE, MAKE. We use 39 real-world queries
obtained from the DMV to evaluate POP. The queries are
very complex decision support queries, joining more than 10
tables in average.
Although the DMV workload did not use any parameter
markers, it contained many other pitfalls that caused the
optimizer to use wrong estimates: Many of the queries restrict
several correlated columns, thus creating major cardinality
estimation errors as the optimizer uses independence to com-
bine the selectivities of these columns. Moreover, many of the
queries uses complex predicates like substring comparisons,
LIKE-predicates, and complex IN-lists and disjunctions. All
of these predicates are additional sources of estimation errors.
The largest cardinality estimation errors we have observed in
the DMV queries exceed six orders of magnitude! For these
complex real-world queries it is hardly possible for the opti-
mizer to determine the right query plan based on its basic
statistics and assumptions.
With POP no query runs longer than 5 minutes, whereas
without POP the longest query took more than 20 minutes.

0

250

500

750

1000

1250

1500

0 250 500 750 1000 1250 1500
Response Time without POP

R
es

po
ns

e
tim

e
w

ith
 P

O
P

Degradation

Improvement

Figure 15: Scatter Plot of Response Times with and without

POP on the DMV database
The scatter plot of the response times in Figure 15 shows that
while 22 queries receive an improvement with POP, we notice
a slight to moderate performance degradation in 17 queries.

This performance degradation is due to two facts: In some
circumstances the better cardinality information available to
the optimizer during re-optimization resulted in the choice of
a worse plan (!) because two estimation errors had canceled
each other out during the initial run of the query, and no
longer did so after re-optimization. In addition, we use a
simplistic cost model for the cost for re-using an intermediate
result, and this model leads to over-eager re-optimizations.
Improving the optimizer’s cost functions can solve the first
problem. The second problem arises because we wanted to
study re-optimizations extensively in this prototype and so
used a generous cost model for reoptimization. So we are
confident we can avoid this performance degradation when
transferring this work into the product.
Figure 16 shows the speedup or regression experienced by
each individual query. While POP reaches impressive speed-
ups of almost two orders of magnitude, the maximum regres-
sion due to a wrong optimizer decision during re-optimization
was a factor of 5.

-10

0

10

20

30

40

50

60

70

80

90

39 Real-World Complex Queries

Sp
ee

du
p

(+
)/R

eg
re

ss
io

n
Fa

ct
or

 (-
)

Figure 16: Speedup and Regression of each Query

Overall, POP adds significant robustness to the processing of
the DMV queries, impressively speeding up several long-
running queries.

7 Future Work
Synchronization in Parallel DBMSs
While implementing CHECK is relatively simple and
straightforward for serial uni-processor environments, the
cardinality counters it uses must be globally synchronized in
symmetric multi-processor and shared nothing environments.
Such synchronization can be a costly operation that can sub-
stantially delay query processing, and must be viewed as
another risk of checkpointing in multi-processor environ-
ments. Alternatively, one can locally re-optimize a partial
QEP executed on one node if the check range for this node
alone is violated. Local checking in multi-processor environ-
ments would require that between global synchronization
points (exchange operators in Volcano [GM93]) each node
may change its plan, thus giving each node the chance to
execute a different partial QEP.
Checking Opportunities
POP can be considered to be a more conservative mode of
query execution, which is useful for complex ad-hoc queries
or queries with parameter makers where statistics or the opti-

mizer’s assumptions are not considered to be reliable. In
volatile environments like these, the optimizer can favor
operators that enable further re-optimization opportunities
over other operators. For example, sort-merge offers more
chances than does hash-join for lazy re-optimization on either
input if the check range is violated, so plans with merge joins
with POP are more robust to misestimates of cardinalities
than the corresponding hash-join plans. Interesting research
issues arise here, e.g., when to use which of the five flavors of
checkpoints.
Ensuring Termination
POP introduces the risk of iteratively re-optimizing a query
many times. In order to ensure termination, heuristics have to
be used, for instance by limiting the number of re-
optimization attempts or by forcing to the use of intermediate
results after several attempts in order to ensure that progress is
indeed made. While our current prototype uses a crude heuris-
tics, limiting the number of re-optimizations to 3, a more
elaborate scheme deriving the number of permitted re-
optimization attempts from the query complexity and the trust
in the optimizer’s cardinality estimates could be developed.
Considering Uncertainty during Re-optimization
POP learns actual cardinalities, which are compared to uncer-
tain estimates during re-optimizations. The cost of the new
join order in Figure 6, for instance, is measured without using
actual knowledge about the cardinality of the join result, and
compared to a cost computed using an actual cardinality. It
might be useful to penalize plans without actual knowledge
for the uncertainty in their cardinality estimates in order to
avoid or at least alleviate the problem of wrong decisions
based on partial knowledge und uncertainty. However, this
significantly impacts the optimizer’s cost model and requires
more research.
Learning for the Future
POP only helps the query that is currently under execution.
As a future extension it would be desirable to combine POP
with techniques like LEO [SLM+01].

8 Conclusions
Progressive Optimization (POP) provides a flexible mecha-
nism to build QEPs that are robust to optimizer mis-
estimations, by inserting CHECK operators into a traditional
QEP to test at execution time criteria under which the remain-
der of a QEP is still optimal. When these criteria are violated,
the optimizer is invoked to progressively refine the plan,
exploiting the additional information and results computed
thus far. Different flavors of CHECK operators permit pro-
gressively refining both pipelined and non-pipelined plans
and plans with various degrees of risk and opportunity.
CHECK operators can also be used to re-optimize when
parameters other than the cardinality are out of bounds, such
as memory consumption, execution time, or even the overall
system load. We have prototyped in a commercial DBMS the
more conservative form of checkpoints that safeguard materi-
alization points -- such as SORTs or TEMPs -- and the outer
of each NLJN. Opportunities for basically risk-free check-
points occur frequently in long-running real-world queries.
Based on our experience building the prototype, an industrial-
strength prototype of POP can be added easily to a DBMS.

Experiments using our prototype have shown that POP drasti-
cally improves robustness of query execution, speeding-up
complex queries by up to two orders of magnitude, while
incurring only a negligible overhead of around 2-3% of the
overall query execution time for queries not benefiting from
POP.

9 References
AH00 R. Avnur and J. M. Hellerstein, Eddies: Continuously

Adaptive Query Optimization, SIGMOD 2000
ARM89 R. Ahad, K.V.B. Rao, and D. McLeod, On Estimating the

Cardinality of the Projection of a Database Relation, TODS
14(1), 1989

BC02 N. Bruno and S. Chaudhuri. Exploiting Statistics on Query
Expressions for Optimization, SIGMOD 2002

C+81 D. D. Chamberlin et al., Support for Repetitive Transactions and
Ad-Hoc Query in System R, TODS 6(1), 1981.

CG94 R. Cole and G. Graefe. Optimization of Dynamic query
evaluation plans, SIGMOD 1994.

Gel93 A. Van Gelder, Multiple Join Size Estimation by Virtual
Domains, PODS 1993.

GM93 G. Graefe and W. McKenna, The Volcano Optimizer Genera-
tor: Extensibility and Efficient Search. ICDE, 1993

GW89 G. Graefe and K. Ward, Dynamic Query Evaluation Plans.
SIGMOD 1989

HS93 P. Haas and A. Swami, Sampling-Based Selectivity Estima-
tion for Joins Using Augmented Frequent Value Statistics,
IBM Research Report, 1993

HS02 A. Hulgeri and S. Sudarshan. Parametric Query Optimization
for Linear and Piecewise Linear Cost Functions. VLDB 2002.

IC91 Y.E.Ioannidis and S.Christodoulakis. Propagation of Errors in
the Size of Join Results, SIGMOD 1991

Ives 02 Z. Ives, Efficient Query Processing for Data Integration, Ph.D
thesis, University of Washington, 2002

KD98 N. Kabra and D. DeWitt, Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans, SIG-
MOD 1998

MS02 S. Madden, M. Shah, J.M.Hellerstein, V. Raman. Continu-
ously Adaptive Continuous Queries. SIGMOD 2000.

PIH+96 V. Poosala, et. al, Improved histograms for selectivity
estimation of range predicates, SIGMOD 1996

PI97 V. Poosala and Y. Ioannidis, Selectivity Estimation without
value independence, VLDB 1997

RAH03 V. Raman, A. Deshpande, and J. M. Hellerstein, Using State
Modules for Adaptive Query Optimization. ICDE 2003

SAC+79 P.G. Selinger et al. Access Path Selection in a Relational
DBMS. SIGMOD 1979

SS94 A. N. Swami and K. B. Schiefer, On the Estimation of Join
Result Sizes, EDBT 1994

SWK96 M. Stonebraker, E. Wong and P. Kreps. The Design and
Implementation of INGRES. TODS 1(3), 1976.

UFA98 T. Urhan, M.J. Franklin, and L. Amsaleg, Cost-based Query
Scrambling for Initial Delays, SIGMOD 1998

SLM+01 M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO –
DB2’s Learning Optimizer, VLDB 2001

ZCL+00 M. Zaharioudakis et. al: Answering Complex SQL Queries
Using ASTs. SIGMOD 2000

