
Introduction

I Generalization of OLAP Model to represent data
ambiguity.

I Imprecision
I Uncertainty

I Criteria that must be satisfied by any approach to handle
data ambiguity

I Consistency
I Faithfulness

I Possible world interpretation of data ambiguity.

I Allocation policies.

I Algorithms for evaluating aggregation queries AVERAGE,
COUNT, and SUM

I An experimental evaluation.



Data Representation

Extend measure and dimension attributes to support
imprecision and uncertainty.

I Definition(Uncertain Domain)
I An uncertain domain U over base domain O is the set of all possible

probability distribution functions over O.

I Definition(Imprecise Domains)
I An imprecise domain I over base domain B is a subset of

the powerset of B with ∅ * I ; elements of I are called imprecise values

B = {CA, TX , NY , MA}
I ⊆ 2B = {{CA}, {TX}, {NY }, {MA}

{CA, TX}, {CA, NY }, {CA, MA}, {TX , NY }...
{CA, TX , NY }, {CA, TX , MA}, ...
{CA, TX , NY , MA}
} .



Data Represntation(contd..)

I Definition(Hierarchical Domains).
I A hierarchical domain H over base domain B is defined to be an

imprecise domain over B such that
(1) H contains every singleton set and
(2) for any pair of elements h1, h2 ∈ H, h1 ⊇ h2 orh1 ∩ h2 = ∅

{{CA}, {TX}, {NY }, {MA} {CA, TX}, {NY , MA}, {CA, TX , NY , MA}}



Hierarchical Domains(contd..)



Data Represntation(contd..)

I Definition(Fact Table Schemas and Instances).
I A fact table schema is 〈A1, A2, ...Ak ; M1, ...Mn〉 where

(1) each dimension attribute Ai , i ∈ 1...k, has an associated domain
dom(Ai ), that is imprecise and
(2) each measure attribute Mj , j ∈ 1...n, has an associated domain
dom(Mj ) that is either numeric or uncertain.

I A database instance of this fact table schema is collections of facts
of the form 〈a1, a2, ..ak ; m1, m2..., mn〉 where a1 ∈ dom(Ai ), i ∈ 1...k

and mj ∈ dom(Mj ), j ∈ 1...n.



Diagrammatic representation of Regions and Cells



Regions and Cells(contd..)

I Definition(Regions and Cells).
I Consider a fact table schema with dimension attributes

A1, A2, ..., Ak ,. A vector 〈c1, c2, ..., ck〉 is called a cell if every ci is an
element of base Ai , i ∈ 1...k.

I A region of a dimension vector 〈a1, a2, ..., ak , 〉 is defined to be the
set of cells 〈c1, c2, ..., ck |ci ∈ ai , i ∈ 1...k〉 Let reg(r) denote a region
associated with a fact r.



Data Represntation(contd..)

I Proposition
I Consider a fact table schema with dimension attributes A1, A2, ..., Ak

that all have hierarchical domains. Consider a k−dimensional space
in which each axis i is labelled with the leaf node dom(Ai ). For every
region, the set of all cells in the region is a contiguous
k−dimensional hyper-reactangle that is orthogonal to the axes.



Uncertain Data Representation

I Classify the incident based on the type of problem.

I The subjective nature of text precludes the unambiguity.

I Define an uncertain measure whose values are represented
as pdfs over the set of problem type.

I A text analyzer analyzes the text and outputs pdf over
the classifiers for each problem type.



Queries
I Definition (Queries and Query Results)

I Aquery Q over a database D with schema
〈A1, A2, ..., Ak ; M1, M2, ..., Mn has form Q(a1, a2, ..., aK ; Mi ; Å), where
(1) a1, a2, ..., ak describes the k−dimensional region being queried
(2) Mi describes the measure of interest and
(3) Å is an aggregation function.

I The result of Q is obtained by applying Å to a set of facts
FIND-RELEVENT(a1, a2, ..., ak , D)

I Query:What is the total repair cost of Trucks in MA?



FIND-RELEVENT

I Identifies the set of the facts in D deemed relevant to
query region.

I All precise facts are naturally included.
I What about imprecise facts?

I None option
I Contains option
I Overlaps option

I Query:What is the total repair cost of Trucks in MA?



Aggregating Uncertain Measures

I Query: How likely are the brake problems for Sedans in

Texas

I Answer: Aggregation over the pdfs for p5, p6, p7, p8

I Aggregation is same as evaluating expected value of a
random variable.

I P(x) =
∑

wp ∗ P(x)

I Unless there is some prior knowledge, we assume the
weights are uniform.

I In case of uniform weights P(x) is average of probabilities.



OLAP Requirement

In providing support for OLAP-style queries in the presence of
imprecision and uncertainty, the answers to these queries
should meet reasonable set of requirements.

I Consistency

I Faithfulness



Consistency

I The user expects to see some natural relationship holds
between the answers to aggregation queries associated
with different (connected)regions in a hierarchy.

I Specific forms of Consistency
I Sum-Consistency
I Boundedness-Consistency

I Theorem There exists a SUM aggregate query which

violates Sum-Consistency when Contains option is used

to find relevent imprecise facts in FIND-RELEVENT.



Motivating Example for Allocation of imprecise facts

I p5 overlaps yellow and blue cells.
I Partially assign p5 to both cells.
I weight(yellow) = Wyellow

I weight(blue) = Wblue

I Wyellow + Wblue = 1
I RepairCost(MA, F150) = p3 + Wyellow ∗ p5

I RepairCost(MA, Sierra) = p4 + Wblue ∗ p5

I RepairCost(East, Sierra) = p3 + p4 + p5



Faithfulness

I Faithfulness captures the intuition that more precise data
should give better results.

I Definition(Measure-similar Databases)
I We say that two databases D and D ′ are measure-similar if D ′ is

obtained from D by modifying the dimension attribute values in each
fact r . Let r ′ ∈ D ′ denote the fact obtained by modifying r ∈ D; we
say that r corresponds to r’.

I Types of Faithfulness
I Basic faithfulness
I β-faithfulness



Basic faithfulness

I We say that two measure-similar databases D andD ′ are identically precise
with respect to query Q if for every pair of corresponding facts r ∈ D and
r ′ ∈ D ′, either both reg(r) and reg(r ′) are completely contained in reg(Q)
or both are completely disjoint from reg(Q). We say that an algorithm
satisfies Basic faithfulness with respect to aggregation function Å, if the
algorithm gives identical answers for every pair of measure-similar
databases D and D ′ that are identically precise with respect to Q.

Theorem SUM, COUNT, AVERAGE violate basic faithfulness when None

option is used



β−faithfulness

Query:What is the total repair cost of Trucks in MA?

Answer(Data-set-2) 5 Answer(Data-set-3)



β−faithfulness

I Definition(partial order�)
I Fix a query Q. We say that the relation IQ(D, D ′) holds on two

measure-similar databases D and D ′ if all pairs of corresponding
facts in D and D ′ are identical, except for a single fact r ∈ D and
r ′ ∈ D ′ such that reg(r ′) is obtained from reg(r) by adding a cell
c * reg(Q) ∪ reg(r)

I Definition(β−faithfulness)
I Let β(x1, x2, ..., xp) be a predicate such that the value taken by each

argument of β belongs to range of a fixed aggregation operator Å.
I We say that an algorithm satisfies β−faithfulness with respect to Å

if for any query Q compatible with Å, and for any set of databases
D1 � D2 � ... � Dp the predicate β(q1, ..., qp)) holds true where
qidenotes the answer computed by algorithm on Di , i in 1...p



Queries with the Overlaps optionQueries with the Overlaps option

Notions of possible worlds and Extended Data 
Model

Summarizing Possible Worlds

Allocations and allocation policies

Results 



Possible WorldsPossible Worlds



Possible WorldsPossible Worlds

Consider an imprecise fact r which maps to a region R of cells. 

Each cell inside this region represents a possible completion of an 
imprecise fact, formed by replacing non-leaf node ai with a leaf node 
from the subtree rooted at ai. 

Repeating this process for every imprecise fact in D leads to a 
database D' that contains only precise facts. We call D' a possible 
world for D, and the multiple choices for eliminating imprecision lead
to a set of possible worlds for D.

Possible world query semantics

Given all possible worlds together with their probabilities, queries are 
easily answered (using expected values)



Possible world query semanticsPossible world query semantics

The allocation weights encode a set of possible worlds,{D1, . . . ,Dm} with 
associated weights w1, . . . ,wm. The answer to a query Q is a multiset1 {v1, . . 
. , vm}.

Consider the multiset {v1, . . . vm} of possible answers to a query Q. We define 
the answer variable Z associated with Q to be a random variable with pdf

Basic faithfulness is satisfied if answers to queries are computed using the 
expected value of the answer variable.

The above approach complicates matters because the number of possible

worlds grows exponentially in the number of imprecise facts. Allocations can 
compactly encode this exponentially large set but the challenge now is to 
summarize without having to explicitly use the allocations to iterate over all 
possible worlds.



Extended Data ModelExtended Data Model

If there are k imprecise facts in a dataset D, and the region for the ith

imprecise fact contains ci cells, the number of possible worlds is

i.e. number of possible worlds is exponential!

To tackle the complexity due to this exponential number of possible 
worlds, we consider each imprecise fact r and assign a probability for 
its “true” value being c, for each cell c in its region. The assignments 
for all imprecise facts collectively (and implicitly) associate 
probabilities (weights) with each possible world.



Storing Allocations using Extended Data Storing Allocations using Extended Data 
ModelModel
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AllocationAllocation

Allocation gives facts weighted assignments to possible completions, 
leading to an extended version of the data (Allocated Database )

The schema of Allocated Database contains all the columns of D 
plus additional columns to keep track of the cells that have strictly 
positive allocations.

Size increase is linear in number of (completions of) imprecise 
facts

Queries operate over this extended version

Key contributions:

Appropriate characterization of the large space of allocation 
policies

Designing efficient allocation policies that take into account the 
correlations in the data



Summarizing PossibleWorlds

We answer query Q in the extended data model in two steps:

Step 1: We identify the set of candidate facts r Є R(Q) and compute 
the corresponding allocations to Q. The former is accomplished by 
using a filter for the query region whereas the latter is accomplished 
by identifying groups of facts that share the same identifier in the ID 
column and then summing up the allocations within each group. At the 
end of this step, we have a set of facts that contains for each fact r  Є
R(Q), the allocation of r to Q and the measure  value associated with 
r. Note that this step depends only on the query region q.

Step 2: This step is specialized to the aggregation operator, and two 
comments are in order. First, we seek to identify the information 
necessary to compute the summarization while circumventing the 
enumeration of possible worlds. Second, it is possible in some cases 
to merge this second step with the first in order to gain further savings, 
e.g., the expected value of SUM can be computed thus. 



Results on Query SemanticsResults on Query Semantics

Evaluating queries over extended version of data yields expected
value of the aggregation operator over all possible worlds

intuitively, the correct value to compute

Efficient query evaluation algorithms for SUM, COUNT

consistency and faithfulness for SUM, COUNT are satisfied under 
appropriate conditions

Dynamic programming algorithm for AVERAGE

Unfortunately, consistency does not hold for AVERAGE



Alternative Semantics for AVERAGEAlternative Semantics for AVERAGE

APPROXIMATE AVERAGE

E[SUM] / E[COUNT] instead of E[SUM/COUNT]  

simpler and more efficient

satisfies consistency

extends to aggregation operators for uncertain measures



Allocation PoliciesAllocation Policies

Faithfulness can be violated if 
the extended data model is 
built using arbitrary allocation 
policies.

Monotone Allocation Policy

Restricts the way in which 
the weights for the larger 
set of possible worlds are 
defined.

As a region gets larger 
allocations for the old cells 
are redistributed to new 
cells

E.g. Uniform Allocation 
Policy



Uniform Allocation policyUniform Allocation policy
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Allocation PoliciesAllocation Policies

Dimension Independent Policies
allocation pc,r equals the probability  cell c is chosen



Allocation PoliciesAllocation Policies

Measure-oblivious Allocation

An allocation policy is said to be measure-oblivious if the following 
holds.

Let D be any database and let D' be obtained from D by possibly
modifying the measure attribute values in each fact r arbitrarily but 
keeping the dimension attribute values in r intact. Then, the allocations 
produced by the policy are identical for corresponding facts in D and 
D'.

Eg. Uniform Allocation policy

Correlation-Preserving Allocation

Allocation policy A is correlation-preserving if for every database D, 
the correlation distance of A with respect D is the minimum over all 
policies.

correlation distance



CorrelationCorrelation--based Allocationbased Allocation

Involves defining an objective function to capture some underlying 
correlation structure

a more stringent requirement on the allocations

solving the resulting optimization problem yields the allocations

EM (Expectation Minimization)-based iterative allocation policy

interesting highlight: allocations are re-scaled iteratively by 
computing appropriate aggregations



Classifying Allocation PoliciesClassifying Allocation Policies
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Experiments

No materialized views or indices were built on the data

Experiments using both a numeric measure and an uncertain measure 
(over a base domain of size 2) were conducted. All dimensions had 
hierarchical domains with three levels. For three of these hierarchical 
domains, the root of the corresponding tree had 5 children; every root 
child had 10 children each (resulting in 50 leaf nodes); the 
corresponding branching factors for the remaining dimension was 10 
and 10, respectively (100 leaf nodes). Thus, there are 12.5 million 
cells in the multidimensional space.

The initial data consisted of 1 million facts (density=1/12.5 = 8%), 
each generated by choosing (with uniform probability) a leaf node 
from the appropriate hierarchy for each dimension. Imprecision was 
introduced by replacing the leaf node for a dimension with an 
appropriate parent in the hierarchy.

For 50% of the imprecise facts, a second dimension was made 
imprecise as well (e.g., if 10% of the facts were imprecise, 5% were 
imprecise in 1 dimension and 5% imprecise in 2 dimensions).



Scalability of the Extended Data Model

Running time for Different allocation policies increase (almost) linearly with 
respect to the number of imprecise records.

The running time has 2 components, 

one for processing the input data 

and the other for writing out the facts to the extended data model



Scalability of the Extended Data Model

For EM the first component is high, since it is an iterative algorithm 
requiring multiple scans. This explains the reason for longer running 
time than Uniform and Count which require only a single scan. 

The larger running time for Uniform with respect to Count is due to the 
second component. Since the input data density is low, Uniform 
allocates to many empty cells, so the number of allocated facts 
created by Uniform is significantly larger than Count and EM. For 
example, with 25% imprecision, Uniform had 14.5 million facts 
whereas Count and EM each had 2.3 million facts. This relative 
difference between Uniform and Count should increase as the input 
data density decreases.



Query Running Time Performance

Figure shows the average query running time for SUM. 

In general the running time was dominated by the I/O cost for 
scanning the extended data model.

As seen above, this is much higher for Uniform than for Count or EM.



Quality of the Allocation Policies

These experiments evaluate how data characteristics affect the 
behavior of our proposed allocation policies. 

If all facts are precise, dependencies between dimensions are 
perfectly encoded in the cell counts. As facts become imprecise, a 
portion of this correlation information is lost. The strength of this 
encoding against such loss can be measured as the expected number 
of records in each non-empty cell.

The other characteristic that we chose to examine is measure 
correlation, which captures the effect of dimension values on the 
measure value.



Quality of the Allocation Policies

The results show that Uniform 
allocation policy has a lower 
relative error compared to Count 
and EM. The reason for this is the 
loss of dimension-value correlation 
information when a record is made 
imprecise.

For example, if a record r in cell c is 
made imprecise, c becomes empty, 
since r was the only record in that 
cell. During allocation, Count and 
EM will not allocate any portion of r 
to c. On the other hand, Uniform 
will allocate some of r to c, resulting 
in a better allocation (i.e., one that 
better reflects the correct answer).



Quality of the Allocation Policies

Since the pseudo-density is 
higher, less dimension-value 
correlation information is lost as 
more records become 
imprecise. Thus Count and EM 
result in better allocations, 
whereas Uniform suffers since 
it ignores the available 
correlation information and 
allocates to empty cells as well.



Quality of the Allocation Policies- high high 
correlation correlation 

The results show that EM now 
significantly outperforms both Count 
and Uniform. This is because EM 
uses the correlation between the 
measure and dimensions while 
performing allocation, whereas Count 
does not. 

For example, consider a record r in 
the left half of the grid that is made 
imprecise to overlap some cells in the 
right half. Count will allocate r to the 
cells in the right half, whereas EM will 
allocate r only to the cells in the left 
half since it notices the correlation 
between the measure value of r and 
cells in the left half.



SummarySummary

Allocation is the key to the framework 

Efficient algorithms for aggregation operators with appropriate 
guarantees of consistency and faithfulness 

Iterative algorithms for allocation policies
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