
Ordering Pipelined Query Operators with Precedence
Constraints

Jen Burge∗

Duke University

jen@cs.duke.edu

Kamesh Munagala†

Duke University

kamesh@cs.duke.edu

Utkarsh Srivastava‡

Stanford University

usriv@cs.stanford.edu

ABSTRACT
We consider the problem of optimally arranging a collec-
tion of query operators into a pipelined execution plan in
the presence of precedence constraints among the opera-
tors. The goal of our optimization is to maximize the rate
at which input data items can be processed through the
pipelined plan. We consider two different scenarios: one in
which each operator is fixed to run on a separate machine,
and the other in which all operators run on the same ma-
chine. Due to parallelism in the former scenario, the cost of
a plan is given by the maximum (or bottleneck) cost incurred
by any operator in the plan. In the latter scenario, the cost
of a plan is given by the sum of the costs incurred by the op-
erators in the plan. These two different cost metrics lead to
fundamentally different optimization problems: Under the
bottleneck cost metric, we give a general, polynomial-time
greedy algorithm that always finds the optimal plan. How-
ever, under the sum cost metric, the problem is much harder:
We show that it is unlikely that any polynomial-time algo-
rithm can approximate the optimal plan to within a factor
smaller than O(nθ), where n is the number of operators,
and θ is some positive constant. Finally, under the sum cost
metric, for the special case when the selectivity of each op-
erator lies in [ǫ, 1− ǫ], we give an algorithm that produces a
2-approximation to the optimal plan but has running time
exponential in 1/ǫ.

1. INTRODUCTION
We consider the problem of optimizing queries consisting of
pipelined operators over a stream of input data items. We
primarily focus on the case when there may be precedence
constraints between the query operators. If there is a prece-
dence constraint from operator fi to operator fj , then in any
feasible query plan, fj can be evaluated on a data item only
after fi has been evaluated. The goal of our optimization
is to arrange the query operators, respecting all precedence
constraints between them, into a pipelined execution plan
that maximizes the rate at which input data items can be
processed through the plan, i.e., the throughput of the plan.

In this paper, we consider two very different scenarios in
which queries consist exclusively of pipelined operators. The
first scenario is that of query processing over web services [21]

∗Supported by the James B. Duke Graduate Fellowship and
a NSF Graduate Research Fellowship.
†Supported in part by NSF DDDAS-TMRP 0540347.
‡Supported by a Stanford Graduate Fellowship from Se-
quoia Capital and a fellowship from Microsoft Corporation.

as introduced in [19]. Most web services provide a function-
call like interface X → Y where X and Y are sets of at-
tributes: given values for the attributes in X , the web service
returns values for the attributes in Y. For example, a web
service may take a zip code and return the current temper-
ature at that zip code. Due to this very restricted interface,
fully pipelined query processing is natural: The input data
items are used one-by-one to query some web service. This
web service may then provide additional attributes for each
data item that may become a part of the final query re-
sult, or may be used to query another web service and so on
(effectively performing joins across web services). Thus, in
this scenario, each query operator is a call to a remote web
service, and precedence constraints arise because the output
from one web service may be required to query another one.

The other scenario we consider in this paper is that of pro-
cessing continuous queries over data streams [2]. In this
scenario, pipelining is essential because streams are poten-
tially unbounded and query results are required in a contin-
uous fashion. Here too, precedence constraints may arise for
the same reason as in the web-services scenario: The out-
put from one operator may be required as input to another
operator.

The two scenarios described above differ in one fundamen-
tal aspect: In the web-services scenario, each operator is a
remote web service and is thereby fixed to run on a sepa-
rate machine, while in the continuous-query scenario, each
operator runs on the same machine (assuming centralized
query processing, and that no query operator makes calls to
remote sources of data). This difference leads to fundamen-
tally different cost metrics for the two scenarios:

1. Bottleneck Metric: The web-services scenario ex-
hibits pipelined parallelism [6], i.e., multiple operators
can execute in parallel. Hence, the throughput of a
plan is limited by the slowest (or bottleneck) stage in
the pipelined plan. Thus, the cost of a plan is given
by the maximum cost incurred by any operator in the
plan. This cost metric is referred to as the bottleneck
metric.

2. Sum Metric: In the continuous query scenario, there
is no parallelism. Hence the cost of a plan is given by
the sum of the costs incurred by the operators in the
plan. This cost metric is referred to as the sum metric.

Suppose for each operator fi, we know the execution time of

fi per input data item (referred to as the cost of fi), and the
average number of data items output by fi per data item
input to it (referred to as the selectivity of fi). Under both
the bottleneck and the sum cost metrics, the problem of
optimally arranging pipelined operators, but in the absence
of precedence constraints, has been addressed in previous
work [5, 13, 19]. All these optimization techniques primarily
rely on evaluating those operators early that either have low
cost, or low selectivity (so that they reduce work for the
latter operators in the plan).

However, the presence of precedence constraints makes the
problem considerably harder: Suppose there is a precedence
constraint from operator fi having high cost to operator fj

having low selectivity. Without the precedence constraint,
we would just place fj before fi, thereby utilizing the low
selectivity of fj , as well as avoiding the high cost of fi. How-
ever, since this plan is infeasible due to the precedence con-
straint, we are faced with the tradeoff of either placing both
operators early (thereby incurring the high cost of fi but
utilizing the benefit of the low selectivity of fj), or placing
both operators later (thereby avoiding the high cost of fi

but giving up the benefit of the low selectivity of fj).

In this paper, under both the bottleneck as well as the sum
cost metrics, we develop principled approaches to address
the above general tradeoff without an exhaustive search
through all possible query plans. Under the bottleneck met-
ric, we give a greedy algorithm to arrive at the optimal plan.
At each stage, our algorithm picks the operator having the
minimum cost of adding it to the plan constructed so far,
and adds it to the current plan. We show that the optimal
way of adding an operator to a partial query plan can be
found efficiently by solving an appropriate linear program
through network-flow techniques. Under the sum cost met-
ric, the problem of finding the optimal plan is much harder,
and we primarily show a negative result: If a polynomial-
time algorithm can approximate the optimal plan to within
a factor smaller than O(nθ), where n is the number of op-
erators, and θ is some positive constant, it would imply an
improvement in the best-known approximation ratio for the
densest k-subgraph problem [8]. Since densest k-subgraph
is widely conjectured to be hard to approximate, such an
algorithm is unlikely to exist. Finally, under the sum cost
metric, we consider the special case when the selectivity of
each operator lies in the range [ǫ, 1 − ǫ], and give an algo-
rithm that results in a 2-approximation to the optimal plan,
but has running time exponential in 1/ǫ.

The rest of this paper is organized as follows. In the remain-
der of this section, we survey related work. In Section 2, we
define the problem of optimally arranging operators into a
pipelined execution plan, and formalize the bottleneck cost
metric. In Section 3, we give our greedy algorithm to find
the optimal plan under the bottleneck cost metric. In Sec-
tion 4, we formalize the sum cost metric, show the hardness
of finding the optimal plan under this metric, and give our
algorithm for the special case when each operator has selec-
tivity in the range [ǫ, 1 − ǫ]. We conclude in Section 5.

1.1 Related Work
Under the bottleneck cost metric, we consider optimization
of queries consisting of pipelined operators that are running

on different machines. Hence our problem can be consid-
ered a special case of the more general problems of parallel
and distributed query optimization, each of which has been
addressed extensively in previous work [6, 14, 17]. How-
ever, our problem has a considerably smaller search space
of query plans when compared with general distributed or
parallel query processing. In our setting, operators are fixed
to run on separate machines, and we do not have the flex-
ibility to move operators around (e.g., when operators are
web services). In traditional distributed or parallel query
processing, we can choose which machines to execute which
operator on. Operators may even be split across machines
e.g., fragment-replicate joins [17]. These possibilities lead to
a very large space of possible query plans in distributed or
parallel query optimization. Consequently, most query opti-
mization techniques in that setting are limited to a heuristic
exploration of the search space, with no guarantees of op-
timality. Similarly, our focus only on fully pipelined query
processing distinguishes our work from that on query opti-
mization in data integration systems that considers general
data sources, e.g. [9, 10, 16, 18, 22]. We are not aware of
any work for the above general problems that, when applied
to our specific problem, produces the optimal results. The
special case of our problem when there are no precedence
constraints between operators, or when the precedence con-
straint graph (see Section 2) is a tree has been considered
in our earlier work [19].

Under the sum cost metric, due to our focus on fully
pipelined query plans, our problem is a special case of gen-
eral query optimization in traditional relational DBMSs.
One specific case with fully pipelined processing is queries
involving a conjunction of predicates, which has been con-
sidered for DBMSs in [5, 13], and for data stream systems
in [4]. However, none of these contributions consider prece-
dence constraints between operators. Even in the context
of traditional DBMS query optimization, there are scenar-
ios where the focus is only on pipelined query plans, e.g.,
for online aggregation [12]. It is an interesting direction for
future work to investigate whether our results in this paper
can be applied to such scenarios.

Finally, under the sum cost metric, our execution model re-
sembles that of Eddies [1], and under the bottleneck cost
metric, it resembles that of distributed Eddies [20]. How-
ever, unlike our work, the Eddies framework does not per-
form static optimization of queries. Furthermore, Eddies-
style execution requires maintaining state in tuples, not
needed in our one-time plan-selection approach.

2. PRELIMINARIES
Consider the optimization of a query Q consisting of a set
F of operators f1, f2, . . . , fn that are to be evaluated in a
pipelined fashion on a stream of input data items. Query
Q also specifies certain precedence constraints between the
operators in F : If there is a precedence constraint from fi to
fj (denoted fi ≺ fj), then in any feasible query plan, oper-
ator fj can be evaluated on a data item only after operator
fi has been evaluated.

We assume that the precedence constraints are irreflexive (fi

does not have a precedence constraint with itself), asymmet-
ric (fi ≺ fj and fj ≺ fi do not simultaneously exist), and

transitive (fi ≺ fj and fj ≺ fk ⇒ fi ≺ fk). Thus, the prece-
dence constraints may be represented as a directed acyclic
graph (DAG) G in which there is a node corresponding to
each operator, and there is a directed edge from fi to fj if
there is a precedence constraint fi ≺ fj . We define Mi as
the set of all operators that are prerequisites for fi, i.e.,

Mi = {fj | fj ≺ fi} (1)

We also give the following definition that is used in the de-
scription of our algorithms.

Definition 2.1. (Precedence-Closed Set). A set of
operators S is precedence-closed if fi belonging to S implies
that all the prerequisite operators for fi also belong to S,
i.e., fi ∈ S ⇒ Mi ⊆ S.

The goal of our optimization is to arrange the operators in
F into a pipelined execution plan that respects all prece-
dence constraints specified by G, and maximizes the rate
of processing of input data items through the plan, i.e.,
the throughput of the plan. To arrive at an expression for
the throughput of a plan, we assume that for each operator
fi ∈ F , the following two quantities are known:

1. Cost: The per-item processing time of operator fi is
referred to as the cost of fi, and is denoted by ci.

2. Selectivity: The average number of items output by
operator fi per data item input to it is referred to as
the selectivity of fi, and is denoted by σi. If σi < 1,
e.g., if fi is a filter, then out of the data items input
to fi, only a fraction σi are required to be processed
further, while the rest are filtered out. In general, σi

may be > 1, e.g., if fi performs a one-to-many join of
the input data item with a stored table.

We assume independent operator selectivities, i.e., the selec-
tivity of an operator does not depend on which operators
have already been evaluated. Extension to correlated oper-
ator selectivities (when the selectivity of an operator may
change based on which operators have already been evalu-
ated) is left as future work.

We note that the problem of finding the optimal plan in the
special case when the precedence constraint graph G is a tree
instead of a general DAG has been addressed in [19] under
the bottleneck cost metric, and the algorithm there can be
adapted to the sum metric as well. However, the algorithms
in this paper are more general and can be applied for any
general precedence constraint graph G.

In the remainder of this section, we formalize the bottleneck
cost metric. We defer the formalization of the sum cost
metric to Section 4.

2.1 Bottleneck Cost Metric
Recall from Section 1 that the bottleneck cost metric arises
when each query operator is remote, i.e., fixed to run on a
separate machine, e.g., in query processing over remote web
services [19]. We assume that there is a single site referred
to as the coordinator, at which the input data items are

Figure 1: Two Basic Types of Plans

available, and which coordinates query execution by making
pipelined calls to these remote operators. We first describe
the possible query plans in such a scenario.

Consider a query consisting of two remote operators f1 and
f2 with no precedence constraint between them. Figure 1
shows two possible ways of arranging these operators into
an execution plan. In Plan 1, input data items are first
processed through f1 (or f2) and the results are then pro-
cessed through f2 (or f1) to obtain the final query results.
However, in Plan 2, data items are dispatched in parallel
(denoted by two outgoing arrows from the input) to both f1

and f2, and the results from both the operators are joined
locally at the coordinator to obtain the final query result.
Plan 1 is superior if at least one of f1 or f2 has selectivity
< 1 so that placing it first decreases work for the latter op-
erator. However, if both f1 and f2 have selectivity> 1, Plan
2 is superior (since placing any operator before the other
will increase work for the latter operator).

Using the plans in Figure 1 as building blocks, it is easy
to see that a general query plan is an arrangement of the
query operators into a DAG with arbitrary parallel dispatch
of data (denoted by multiple outgoing edges from a single
operator), and rejoining of data (denoted by multiple in-
coming edges into an operator). The input data items are
dispatched in parallel to all the source nodes in the DAG
(all operators that do not have any incoming edges), and
the final query result is obtained by joining the results from
all sink nodes (all operators that do not have any outgoing
edges).

Consider such a query plan H specified as a DAG on the
query operators. We define the following:

Pi(H) = {fj | fj has a directed path to fi in H} (2)

Intuitively, Pi(H) consists of all the predecessors of fi in
H, i.e., all operators that are evaluated before operator fi

in the plan. Note that if plan H is feasible, we must have
Mi ⊆ Pi(H) for every operator fi (recall definition of Mi

from (1)).

Given a set S of operators, we define the combined selectiv-
ity of all the operators in S as R[S]. Since operator selec-
tivities are independent, R[S] is given by:

R[S] =
∏

i | fi∈S

σi (3)

Then, for every data item input to plan H, the average num-
ber of items that fi needs to process is given by R[Pi(H)].
Hence the average processing time required by operator fi

(or intuitively, the cost incurred by fi) per original input
data item is R[Pi(H)] · ci. Due to parallelism among the

operators that are each running on a separate machine, the
throughput of a pipelined plan is given by the slowest (or
bottleneck) stage in the pipeline. Thus the cost of a plan is
given by the maximum cost incurred by any operator in the
plan (referred to as the bottleneck cost metric), i.e.,

cost(H) = max
1≤i≤n

(

R[Pi(H)] · ci

)

(4)

It may appear that the bottleneck cost metric ignores the
cost of the local joins performed at the coordinator (recall
Plan 2 in Figure 1). Formally, we can treat all the work
done at the coordinator as just another call in the pipeline.
The bottleneck cost metric and our algorithms are designed
under the assumption that the pipeline stage constituted by
the coordinator is never the bottleneck, which seems real-
istic since it is much more expensive to invoke remote web
services than to perform local operations (shown by experi-
ments in [19]).

We can now formally define the problem of optimizing a
query under the bottleneck cost metric.

Definition 2.2. (Query Optimization Under the
Bottleneck Cost Metric). Given a query Q consist-
ing of a set F of operators, and a DAG G of precedence
constraints among the operators in F , find a query plan ar-
ranging the operators in F into a DAG H such that for every
fi ∈ F , Mi ⊆ Pi(H), and cost(H) given by (4) is minimized.

3. GREEDY ALGORITHM
In this section, we develop a general, polynomial-time algo-
rithm for the problem specified by Definition 2.2. We first
consider a special case the algorithm for which forms the
crux of our general algorithm (Section 3.1). We then give
our greedy algorithm for the general case in Section 3.2, and
prove its correctness in Section 3.3.

3.1 Special Case: Single Expensive Operator
Consider the special case when there is exactly one operator
fe with non-zero cost, while other operators in F have cost
0. Then minimizing cost(H) according to (4) amounts to
finding a set of operators S to place before fe such that:

• S does not contain fe or any operator fi such that
fe ≺ fi (since the operators in S have to be placed
before fe).

• Me ⊆ S (so that it is feasible to place fe after S).

• S is precedence-closed (so that is feasible to place the
operators in S before fe, recall Definition 2.1).

• The combined selectivity R[S] is minimized (so that
cost(H) is minimized).

The problem of finding such a set S can be solved using
linear programming. Let F ′ be the set of operators F ′ =
F − ({fe} ∪ {fi | fe ≺ fi}). We have a variable zi for each
operator fi ∈ F ′. zi is set to 1 if fi ∈ S and to 0 otherwise.
Then, from (3), we have:

R[S] =
∏

i | fi∈F′

(σi)
zi (5)

The linear program for finding S is as follows:

Minimize
∑

i | fi∈F′ zi log σi subject to:

zi = 1 ∀i | fi ∈ Me

zi ≥ zj ∀i, j | fi ≺ fj

zi ∈ [0, 1] ∀i

(6)

The objective function of the above linear program mini-
mizes log(R[S]) that is equivalent to minimizing R[S]. This
is done to ensure that the objective function is linear. The
constraints of the above linear program are easily seen to
correspond directly to the requirements for S enumerated
at the beginning of this section. The first constraint ensures
that Me ⊆ S, and the second constraint ensures that S is
precedence-closed. Note that the third constraint relaxes
the linear program to include fractional zi’s instead of just
integers. However, there always exists an optimal integer so-
lution to the above linear program as shown by the following
theorem.

Lemma 3.1. The linear program (6) has an optimal solu-
tion where each zi is set to either 0 or 1.

Proof. Consider any optimal solution to the program.
Choose r uniformly at random in the range [0, 1]. If zi > r,
set zi to 1 and to 0 otherwise. Clearly, E[zi] is equal to
the original value of zi. Hence, the expected value of the
constructed integer solution is the same as the cost of the
optimal solution. Moreover, the constructed integer solution
satisfies all the constraints of the linear program (6). Hence,
there must exist an integer solution that is optimal.

We will show in Section 3.1.1 that the optimal integer solu-
tion to (6) can be computed in O(n3) time (where n is the
number of operators) by converting the linear program into
a network flow problem. Once the optimal integer solution
to (6) had been found, all operators fi ∈ F ′ having zi = 1
define the set S. The optimal plan H then consists of the
operators in S in any feasible order, followed by fe, followed
by all remaining operators in any feasible order.

3.1.1 Solution to Linear Program using Flows
To solve the linear program (6), we construct a network flow
graph W as follows. In W , let there be a node for every
operator fi ∈ F ′, a source node s, and a sink node t. Let
D = maxi | fi∈F′ | log σi|. For every operator fi ∈ F ′, add a
directed edge s → fi with capacity D, and a directed edge
fi → t with capacity D + log σi. Note that the choice of D
ensures that all capacities are non-negative. If for operators
fi, fj ∈ F ′, there is a precedence constraint fi ≺ fj , add a
directed edge (fj , fi) with infinite capacity. For every i such
that fi ∈ Me (i.e., fi ≺ fe), the capacity of the edge (s, fi)
is set to infinity. An example of how W is constructed is
shown in Figure 2.

Lemma 3.2. The minimum cut separating s from t in W
yields the optimal integer solution to the linear program (6).

Proof. Consider any feasible integer solution to program
(6). Recall that the set of operators fi ∈ F ′ having zi = 1

Figure 2: Solving (6) using Network Flows

define the set S. Consider the cut in W defined by placing
the operators in S on the same side as s and the remaining
operators in F ′ (say S̄) on the other side, i.e., on the same
side as t. Since S is precedence-closed, there is no directed
edge (fi, fj) in W such that fi ∈ S and fj ∈ S̄. Therefore,
no infinite capacity edge of the form (fi, fj) crosses the cut.
Since Me ⊆ S, no infinite capacity edge of the form (s, fi)
crosses the cut. Therefore, the cut has finite capacity. The
capacity of the cut is

∑

i | fi∈S(D + log σi) +
∑

i | fi∈S̄ D =

nD +
∑

i | fi∈S log σi.

Conversely, consider any cut separating s and t in W where
the set of operators on the side of s is S and that on the side
of t is S̄. If the cut has finite capacity, the set S must be
precedence-closed and Me ⊆ S. The capacity of this cut is
precisely nD+

∑

fi∈S log σi. Therefore, the minimum cut in

W finds the set S that optimizes the linear program (6).

For example, in Figure 2, the only cuts separating s and t in
W that have finite capacity are C1 and C2 as shown. C1 is
the minimum cut if σ1σ2σ3 is smaller than σ1σ2, otherwise
C2 is the minimum cut.

The only hurdle to using an efficient network flow algorithm
to compute the minimum cut in W in O(n3) time (where
n is the number of operators) is that the capacities need
not be rational numbers since they involve logarithms. In
practice, this is not a problem since numbers are represented
using a fixed number of bits. However, to handle the general
case, we perform discretization and set γi = ⌈n2 log σi⌉, and

D̃ = maxi |γi|. We then construct a modified network flow
graph W ′ exactly as W except that we use γi instead of
log σi and D̃ instead of D. This discretization does not
result in any significant loss in accuracy as shown by the
following theorem.

Theorem 3.3. The minimum cut in W ′ gives a (1 +
O(1/n)) approximation to the optimal plan.

Proof. For each operator fi, we have log σi ≤ γi/n2 ≤
log σi + 1/n2. The effective selectivity of fi after the dis-

cretization is σ′
i = eγi/n2

. Thus we have σi ≤ σ′
i ≤

σie
1/n2

≤ σi(1 + 2/n2). Therefore, for any set S of op-
erators, we have:

∏

i | fi∈S

σi ≤
∏

i | fi∈S

σ′
i ≤ (1 + 3/n)

∏

i | fi∈S

σi

Figure 3: Placing fx after a cut Cx in H̄

Thus, on using the effective selectivities σ′
i, we get a (1+3/n)

approximation to R[S], i.e., the cost of the optimal plan.

Since the capacities in W ′ are all non-negative integers, the
minimum cut in W ′ can be found in O(n3) time [15].

3.2 General Case
We now present a polynomial-time algorithm for the general
case of the problem given by Definition 2.2. Our algorithm
builds the plan DAG H incrementally by greedily augment-
ing it one operator at a time. At any stage the operator
that is chosen for addition to H (say fi) is the one that can
be added to H with minimum cost, and all of whose prereq-
uisite operators, i.e., all operators in Mi, have already been
added to H. The minimum cost of adding an operator to H
is found by a procedure similar to that in Section 3.1.

Suppose we have constructed a partial plan DAG H̄. We
first define the frontier set T (H̄) as the set of all operators
that are candidates for addition to H̄, since all their prereq-
uisite operators have already been added to H̄. Formally
(overloading H̄ to also denote the set of operators in the
DAG H̄):

T (H̄) = {fi | fi /∈ H̄, Mi ⊆ H̄} (7)

For every operator fx ∈ T (H̄), we compute the optimal cost
of adding fx to H̄ (without modifying H̄) as follows: We
compute the best cut Cx in the DAG H̄, such that on placing
edges from the operators in Cx to fx, the cost incurred by fx

is minimized. An example is shown in Figure 3. Formally,
a cut C in a DAG H is defined as any set of operators in
H such that there does not exist a directed path in H from
one operator in the cut to another. Thus, if fi ∈ C, then
for all fj ∈ C, fi /∈ Pj(H) and fj /∈ Pi(H) (recall definition
of Pi(H) from (2)). For the cut Cx in H̄, we also define
the set PCx (also shown in Figure 3) as consisting of all the
operators in Cx and all their predecessors in H̄, i.e.,

PCx = Cx ∪ {fi | fi ∈ Pj(H̄) for fj ∈ Cx} (8)

Note that given PCx , the cut Cx can be easily computed
as only those operators in PCx that are not predecessors of
some other operator in PCx .

Recall definition of R[S] from (3). When we place edges
from the operators in Cx to fx (as shown in Figure 3), the
total cost incurred by fx is given by R[PCx] · cx. To find
the optimal set PCx (and hence the optimal cut Cx) such
that the cost incurred by fx is minimized, we solve a linear
program. We have a variable zi for every fi ∈ H̄ that is set
to 1 if fi ∈ PCx , and to 0 otherwise. The linear program is
as follows:

Algorithm Greedy

1. H̄ ← φ; T (H̄) → {fi |Mi = φ}
2. while (H̄ does not include all operators in F)
3. for each operator fx in T (H̄)
4. vx ← optimal value of linear program (9)
5. Cx ← optimal cut in H̄ from the solution to (9)
6. fopt ← operator fx with minimum vx

7. add fopt to H̄ placing edges from Copt to fopt

8. update T (H̄) according to Equation (7)

Figure 4: Greedy Algorithm for Bottleneck Cost

Metric

Minimize log cx +
∑

i | fi∈H̄ zi log σi subject to

zi = 1 ∀i | fi ∈ Mx

zi ≥ zj ∀i, j | fi ∈ Pj(H̄)
zi ∈ [0, 1] ∀i

(9)

Note that the above linear program is of the same form as
(6) in Section 3.1. Similar to (6), the objective function of
(9) minimizes log(R[PCx] · cx). The first constraint ensures
that Mx ⊆ PCx (so that it is feasible to add fx after the
cut Cx). The second constraint ensures that the set PCx is
chosen according to the current structure of H̄, i.e., if an
operator fi is chosen in PCx , all predecessors of fi in H̄ are
also chosen in PCx . By a similar argument as in Lemma 3.1,
the linear program (9) has an optimal integer solution. The
operators with zi = 1 in the solution define the optimal set
PCx , which in turn defines the optimal cut Cx.

The overall greedy algorithm in shown in Figure 4. We start
by initializing H̄ as empty, and the frontier set T (H̄) as all
those operators that do not have any prerequisite operators
(Line 1). Then for each operator fx ∈ T (H̄), we solve the
linear program (9) to determine the optimal cost of adding
fx to H̄ (Line 4). Let fopt be the operator having least such
cost (Line 6), and let the optimal cut for adding fopt be Copt

as given by the solution to the linear program. fopt is then
added to H̄ by placing directed edges from the operators in
cut Copt to fopt (Line 7). We update the frontier set T (H̄)
according to Equation (7), and continue in this fashion until
the DAG H̄ includes all the operators.

3.3 Analysis of Greedy Algorithm
In this section, we show the correctness of our algorithm
Greedy (Figure 4) for the bottleneck cost metric. Note that
since the cost of a plan is determined only by the bottleneck
in the plan, in general there are many possible optimal plans.
We show that our greedy algorithm finds an optimal plan.
The proof is by induction on the number of operators added
by Greedy to the partial plan H̄.

Our inductive hypothesis is that when k operators have been
added to the DAG H̄ constructed by Greedy, H̄ agrees (in
terms of edges placed) with some optimal solution restricted
to just the operators in H̄, i.e., there exists an optimal so-
lution that has H̄ as a subgraph. The base case for our in-
duction is k = 0 which is trivially satisfied since the empty
DAG is a subgraph of any DAG.

Figure 5: Modifying Hopt to H′
opt

Lemma 3.4. When Greedy adds the (k + 1)th operator,
the inductive hypothesis still holds.

Proof. Let H̄ denote the partial DAG when k operators
have been added by Greedy. Let H̄ be a subgraph of some
optimal plan Hopt (by the inductive assumption). Suppose
the (k + 1)th operator chosen by Greedy to be added to H̄
is fx. Let the optimal cut in H̄ for adding fx be Cx. An
example is shown in Figure 5.

Consider the position of fx in Hopt. Suppose Hopt places
some other operator fy ∈ T (H̄) with input only from opera-
tors in H̄, and places fx so that fy ∈ Px(Hopt) (see Figure 5).
In general, there could be many such fy’s that are predeces-
sors of fx in Hopt; the proof remains unchanged. Modify
Hopt to H′

opt as follows. Remove the input to fx in Hopt

and make its input the cut Cx (just as Greedy does). The
output of fx in Hopt is replaced by the join of the output of
fx in H′

opt and the input to fx in Hopt. An example of this
modification is shown in Figure 5. We now show that H′

opt

is also an optimal plan.

Claim 3.5. On modifying Hopt to H′
opt, the cost incurred

by any operator except fx cannot increase.

Proof. The only operators except fx whose cost in H′
opt

may be different from their cost in Hopt are those for which
fx is a predecessor in Hopt. Let S = {fi | fx ∈ Pi(Hopt)} de-
note the set of these operators. Let A be the set Px(Hopt)∩H̄
and B be the set Px(H′

opt). See Figure 5 for examples of the
sets S, A, and B. Note that B is the same as PCx , i.e.,
the set that Greedy chooses to place before fx. The com-
bined selectivity of the set B − A, i.e., R[B − A], can be
at most one; if not, Greedy would have chosen PCx to be
B ∩A instead of B. Note that PCx = B ∩A is feasible since
A and B are both feasible sets of operators to place before
fx. In Hopt, the operators in S had input from the set of
operators A ∪ {fx} ∪ {other operators /∈ H̄}. In H′

opt, the
operators in S have input from the expanded set of oper-
ators A ∪ B ∪ {fx} ∪ {same other operators /∈ H̄}. Since
R[B − A] is at most 1, the number of data items seen by
operators in S in H′

opt is at most as many as in Hopt. Thus
the cost of any operator in S cannot increase on modifying
Hopt to H′

opt.

Now consider the cost incurred by fx in H′
opt. If

R[Px(H′
opt)] ≤ R[Px(Hopt)], the cost incurred by fx also

does not increase, hence combined with Claim 3.5, we have

cost(H′
opt) ≤ cost(Hopt). If R[Px(H′

opt)] > R[Px(Hopt)],
there are two cases:

1. Suppose fx is the bottleneck in H′
opt. Then the cost

incurred by any other operator, specifically by fy in
H′

opt, is smaller. But then since fy ∈ T (H̄), Greedy
would have chosen fy to add to H̄ instead of fx. Hence
this case is not possible.

2. If fx is not the bottleneck in H′
opt, then cost(H′

opt)
is given by the cost incurred by some other operator.
Hence, by Claim 3.5, we have cost(H′

opt) ≤ cost(Hopt).

Thus in all cases, cost(H′
opt) ≤ cost(Hopt). Since Hopt is an

optimal plan, H′
opt is also optimal. After Greedy adds fx to

H̄, H̄ is a subgraph of H′
opt. Hence assuming that the in-

ductive hypothesis holds when k operators have been added
to H̄, it still holds on adding the (k + 1)th operator.

Theorem 3.6. Algorithm Greedy computes an optimal
plan in O(n5) time where n is the number of operators.

Proof. The correctness is immediate from Lemma 3.4
by induction on the number of operators added to H̄. The
running time of Greedy is at most the time taken to solve
the linear program (9) O(n2) times. Since the linear pro-
gram (9) is of the same form as the linear program (6) in
Section 3.1, it can be solved in O(n3) time using the mini-
mum cut algorithm in Section 3.1.1. Thus the total running
time of Greedy is O(n5).

4. SUM COST METRIC
Recall from Section 1 that the sum cost metric arises
when each query operator runs on the same machine, e.g.,
in centralized processing of continuous queries over data
streams [2].

Under the sum cost metric, we only consider the case when
the selectivity of each operator is at most 1. This is sufficient
to capture many common cases [3], e.g., queries with con-
junctive predicates, foreign-key joins to stored tables, and
aggregation. As will be shown in Sections 4.1 and 4.2, even
this special case of the problem is extremely hard. Exten-
sion to the general case when the selectivity of operators
may be > 1 (e.g., one-to-many joins with a stored table) is
left as future work.

Given that σi ≤ 1 for every operator fi, we only need to
consider plans that are a linear ordering of the operators
into a pipeline (plans that are general DAGs need not be
considered, recall Figure 1). For consistency with Section 3,
we still use H to represent a query plan, but now H can only
be a linear order instead of a general DAG as in Section 3.

Recall the definition of Pi(H) (2) and the definition of R[S]
from (3). Then, as in Section 2.1, the average processing
time required by operator fi (or intuitively, the cost incurred
by fi) per input data item is R[Pi(H)]·ci. Since all operators
run on the same machine, the cost of the plan H is given by
the sum of the costs incurred by the operators in the plan

(referred to as the sum cost metric), i.e.,

cost(H) =
n

∑

i=1

(

R[Pi(H)] · ci

)

(10)

We can now formally define the problem of optimizing a
query under the sum cost metric.

Definition 4.1. (Query Optimization Under the
Sum Cost Metric). Given a query Q consisting of a set F
of operators, and a DAG G of precedence constraints among
the operators in F , find a query plan arranging the opera-
tors in F into a linear order H such that for every fi ∈ F ,
Mi ⊆ Pi(H), and cost(H) given by (10) is minimized.

We find that the above problem is much harder than the cor-
responding problem under the bottleneck cost metric given
by Definition 2.2 (some intuition for this fact is provided in
Section 4.2). Thus, under the sum cost metric, our main
results are negative: We first show the NP-hardness of the
above problem in Section 4.1, and then its hardness of ap-
proximation in Section 4.2. Finally, in Section 4.3, we give
an algorithm for the special case when the selectivity of each
operator lies in the range [ǫ, 1 − ǫ].

4.1 NP-hardness
We show the NP-hardness of our problem by reduction from
the following problem known to be NP-hard [11].

Definition 4.2. (Average Completion Time
Scheduling). Given jobs 1, . . . , n with job i hav-
ing processing time pi (pi’s are positive integers), and
precedence constraints between jobs, find an ordering
π = π(1), . . . , π(n) of the jobs such that π respects all
precedence constraints, and minimizes the sum of the
completion times of the jobs, where the completion time of
job π(i) is defined as

∑i
j=1 pπ(j).

Theorem 4.3. Query optimization under the sum cost
metric (Definition 4.1) is NP-hard even when every oper-
ator has unit cost.

Proof. We reduce from the average completion time
scheduling problem (Definition 4.2). Given an instance of
the average completion time scheduling problem with n jobs,
we construct a operator fi for each job i. We reverse all the
precedence constraints, i.e., if i ≺ j is a precedence con-
straint for the jobs, we place the constraint fj ≺ fi. Let
pmax = max1≤i≤n pi. Let P = n4p3

max. For each operator fi

we set its cost ci = 1, and its selectivity σi = 1
1+pi/P

.

We show that finding the optimal ordering for the con-
structed operators (in terms of cost) is equivalent to finding
the optimal ordering for the jobs (in terms of completion
time). Consider the optimal operator ordering HO. Con-
struct a job schedule HJ by reversing HO. Clearly, HJ is
feasible since HO was feasible and all precedence constraints
were reversed for the operators. Let R =

∏n
i=1 σi and let

Di denote the set of all operators appearing later than fi

(including fi) in HO. Then the cost incurred by fi in HO is
given by (recall ci = 1):

c̄i = R ·
∏

j | fj∈Di

1

σj
= R ·

∏

j | fj∈Di

(

1 +
pj

P

)

(11)

Let ti denote the completion time of job i in HJ . Since HJ

is reverse of HO, we have ti =
∑

j | fj∈Di
pj . Then, from

(11), c̄i ≥ R · (1 + ti/P) and also:

c̄i ≤ R · (1 + ti/P + n2p2
max/P 2 + n3p3

max/P 3 + . . .

Since P = n4p3
max, we have c̄i ≤ R · (1 + ti/P + 1

n2P
). Since

cost(HO) =
∑n

i=1 c̄i, we have:

R · (n +

n
∑

i=1

ti/P) ≤ cost(HO) ≤ R · (n +

n
∑

i=1

ti/P +
1

nP
)

Since ti’s are integers the 1
nP

term is insignificant, and op-
timizing cost(HO) is the same as optimizing

∑n
i=1 ti which

is precisely the sum of the completion times of the jobs.
Thus, the problem of finding the optimal operator ordering
is NP-hard.

4.2 Hardness of Approximation
In this section, we show that the problem given by Defini-
tion 4.1 is hard to approximate by showing its connection
to the hard graph problem densest k-subgraph [8].

Definition 4.4. (Densest k-subgraph Problem).
Given an undirected graph G and a number k > 0, find the
subgraph of G having k vertices and maximum number of
edges.

The densest k-subgraph problem is well-studied with its best
known approximation ratio being O(n−1/3) [8] where n is the
number of vertices in the graph. It is widely conjectured
that densest k-subgraph is hard to approximate to better
than n−ρ for some constant ρ > 0.

Lemma 4.5. Let ρ be a positive constant. If there exists
a polynomial-time algorithm that, given an undirected graph
G with n vertices, where the densest k-subgraph of G has m∗

edges, finds a subgraph Ḡ of G with at most nαk vertices and

at least (α/2)m∗ edges where α = ρ−o(1)
lg 6

, then the densest

k-subgraph has a better than n−ρ approximation.

Proof. Consider a subgraph Ḡ of G with at most
nαk vertices and at least (α/2)m∗ edges found by the
polynomial-time algorithm. We repeatedly split Ḡ in half
by using a greedy procedure from [8] to obtain a dense k-
subgraph. Let n̄ be the number of vertices, and m̄ be the
number of edges in Ḡ. Construct a subgraph Ḡ′ of Ḡ as
follows. Add the set A consisting of the n̄/4 highest-degree
vertices in Ḡ to Ḡ′. Sort the remaining vertices of Ḡ in de-
creasing order by the number of neighbors they have in A.
Add the first n̄/4 of the vertices in this sorted order to Ḡ′.

Claim 4.6. Ḡ′ has n̄/2 vertices and at least m̄/6 edges.

Proof. (Adapted from [8]) The number of nodes in Ḡ′

is clearly n̄/2 by construction. Let dA be the average degree
of a vertex in A before splitting, i.e., with respect to graph
Ḡ. Let mA be the number of edges with both its vertices in
A. The number of edges between vertices in A and vertices
not in A is then eA = dA(n̄/4) − 2mA. The vertices in
Ḡ′ − A must make up at least 1/3 of the other endpoints
for these eA edges. Thus the number of edges in Ḡ′ is ≥
mA + 1

3

(

dA(n̄/4)− 2mA

)

≥ n̄dA/12. Since A consists of the

highest degree vertices from Ḡ, dA ≥ 2m̄/n̄. Thus the claim
follows.

We then continue the splitting procedure on the subgraph
Ḡ′. After repeating the splitting procedure α lg n times, we
are left with a subgraph having at most k vertices (since
the number of vertices reduces by a factor of 2 at every
step and n̄ ≤ nαk) and m̄/nα lg 6 edges (since the number
of vertices reduces by a factor of 6 at each step). Since

m̄ > (α/2)m∗ and α = ρ−o(1)
lg 6

, the number of edges is >

n−ρm∗(α/2)no(1) > n−ρm∗. Thus, densest k-subgraph can
be approximated to better than n−ρ.

Theorem 4.7. Let ρ be a positive constant. If query op-
timization under the sum cost metric (Definition 4.1) has a

better than nα/2 approximation where α = ρ−o(1)
lg 6

, then the

densest k-subgraph problem has a better than n−ρ approxi-
mation.

Proof. Given an undirected graph G with n vertices and
where the densest k-subgraph (say Ḡ) of G has m∗ edges, we
construct an instance of our problem as follows. We have
an “edge operator” fe for every edge e with ce = 0 and
σe = n−1/m∗

, and a “vertex operator” fv for every vertex
v with cv = 1 and σv = 1. Corresponding to every edge
e = (u, v), we have the precedence constraints u ≺ e and
v ≺ e.

Consider an ordering H of the operators in which we first
place the operators corresponding to the vertices in Ḡ, fol-
lowed by the operators corresponding to the edges in Ḡ,
followed by the remaining operators in any feasible order.
Clearly, this order is feasible. The combined selectivity of
the operators corresponding to the vertices and edges of Ḡ
is (n−1/m∗

)m∗

= 1/n. Since the edge operators are free and
all the vertex operators have unit cost, cost(H) using (10)
is k + (n − k) · 1/n ≈ k.

Now consider any ordering H′ of the operators found in poly-
nomial time. Consider the set S of the first nαk vertex oper-
ators in H′. Any edge operators that are placed in between
the operators in S by H′ must correspond to edges in the
subgraph of G induced by the vertices that operators in S
correspond to. Let m̄ be the number of such edge opera-
tors, and their combined selectivity is hence n−m̄/m∗

. By
Lemma 4.5, unless densest k-subgraph has a better than
n−ρ approximation, m̄ ≤ (α/2)m∗. Thus the combined se-

lectivity of these edge operators is ≥ n−α/2. Thus the cost
incurred by the operators in S is ≥ nαk · n−α/2. Hence
cost(H′) ≥ k · nα/2. Comparing with cost(H), the approx-

imation ratio is ≥ nα/2. Doing any better would imply

that densest k-subgraph has a better than n−ρ approxima-
tion.

Note that the above proof also provides intuition why our
problem under the sum cost metric is much harder than un-
der the bottleneck cost metric. Under the bottleneck cost
metric, for the problem instance constructed in the above
proof, we could have placed all the vertex operators in par-
allel, thereby incurring a bottleneck cost of only 1, and then
placing the edge operators in any order. However, under
the sum cost metric, we are forced to find a dense subgraph,
which is hard.

Assuming the best possible approximation ratio for densest
k-subgraph is n−1/3 as known currently [8], Theorem 4.7
implies that the best possible approximation for our problem
of query optimization under the sum cost metric is n0.064.

4.3 Algorithm for Special Case
The hardness results in Sections 4.1 and 4.2 practically rule
out any interesting approximation algorithms for the gen-
eral case of the problem given by Definition 4.1. However,
we note that all our hardness proofs required operators with
selectivity either 1 or 1−o(1). Hence in this section, we con-
sider the special case when the selectivity of each operator
lies in the range [ǫ, 1− ǫ] for some constant ǫ > 0. We give a
polynomial-time algorithm that is a 2-approximation for this
special case. However, the running time of our algorithm is
exponential in 1

ǫ
.

Assume for simplicity that all operator selectivities are pow-
ers of 1 − ǫ. This assumption is without loss of generality
(we omit the proof of this claim). Our algorithm SumMetric
is shown in Figure 6. First in Lines 1-5, for every operator
fi, if σi = (1 − ǫ)ni , we replace fi with ni “mini opera-
tors”, each having selectivity 1 − ǫ (so that the combined
selectivity remains unchanged). These mini operators for fi

have precedence constraints as a chain. The earliest mini
operator for fi has the entire cost of fi, i.e., ci, while the
remaining mini operators for fi have cost 0. Note that the
number of mini operators ni for any original operator fi is at
most log ǫ

log(1−ǫ)
. Since ǫ is a constant, the number of mini op-

erators is O(n), where n is the number of original operators.
Then in Lines 6-7, we add a precedence constraint between
the first mini operator for fi and the first mini operator for
fj if there is a precedence constraint fi ≺ fj .

In a feasible ordering H of the mini operators, it is not neces-
sary for all the mini operators corresponding to an operator
fi to occur consecutively. However, H can be used to con-
struct a feasible ordering H′ of the original operators such
that cost(H) = cost(H′): H can be modified, without in-
crease in cost, such that for every operator fi, all the mini
operators corresponding to fi occur consecutively. Hence-
forth, we ignore this detail and focus on the problem of find-
ing the optimal ordering for the set of all mini operators.

Assume there is an integer k such that (1 − ǫ)k = 0.5. This
assumption is again without loss of generality. Then k =
O(1

ǫ
) and is a constant. In Lines 10-11 of Figure 6, we

repeatedly solve the knapsack-type problem of finding the
precedence-closed set S of exactly k mini operators (so that

Algorithm SumMetric

1. for each operator fi having σi = (1 − ǫ)ni

2. construct mini operators f1
i , . . . , fni

i

3. selectivity(f j
i) = 1 − ǫ for all j

4. cost(f1
i) = ci; cost(f j

i) = 0 for j > 1
5. add precedence constraints f1

i ≺ . . . ≺ fni

i

6. for each precedence constraint fi ≺ fj

7. add precedence constraint f1
i ≺ f1

j

8. H = φ; k = log1−ǫ(0.5)
9. while (H does not include all mini operators)

10. from all possible sets of k mini operators /∈ H
11. choose precedence-closed set S with least cost
12. add mini operators in S to H in optimal order

Figure 6: Algorithm for Special Case of Sum Cost

Metric

they have combined selectivity exactly 0.5) having minimum
total cost when placed in their optimal order. Since k is
a constant, S can be found by brute force enumeration in
time polynomial in the number of operators (but exponential
in k). These mini operators ∈ S are then placed in their
best order in the plan H being constructed (Line 12). We
continue in this fashion until H contains all mini operators.

Theorem 4.8. Algorithm SumMetric achieves a 2-
approximation to the optimal ordering.

Proof. The proof idea is from [7]. Let Hopt be the op-
timal ordering of the original operators. We first replace
each operator in Hopt by the sequence of its mini operators
constructed just as in algorithm SumMetric. We then parti-
tion Hopt into contiguous segments of mini operators, with
each segment having exactly k mini operators and hence
combined selectivity exactly 0.5. Let m be the number of
segments and let OPTi denote the cost of the ith segment.
Then from (10), cost(Hopt) =

∑m
i=1

1
2i−1 OPTi.

When SumMetric is choosing the ith set of k mini operators
for H, since so far it has only chosen i − 1 sets of k mini
operators each, there exists a set of at least k unchosen mini
operators from the first i segments of Hopt. Choose the
earliest k of such operators from Hopt, which is clearly a
feasible choice for the ith set.

The cost of the ith set chosen by SumMetric is therefore at
most

∑i
j=1 OPTj . Thus the cost incurred by the ith set in

the plan H is at most 1
2i−1

∑i
j=1 OPTj . Thus cost(H) ≤

∑m
i=1

∑i
j=1

1
2i−1 OPTj . Interchanging summations we get:

cost(H) ≤

m
∑

j=1

OPTj

m
∑

i=j

1

2i−1

≤ 2
m

∑

j=1

1

2j−1
OPTj = 2 · cost(Hopt)

5. CONCLUSIONS
We have considered the problem of finding the optimal ex-
ecution plan for queries consisting of pipelined operators

over a stream of input data, where there may be precedence
constraints between the operators. We considered two very
different scenarios, one in which each operator is fixed to
run on a separate machine (e.g., when an operator is a call
to a web service), and the other in which each operator runs
on the same machine (e.g., an operator in a query plan for a
continuous query over a data stream). We showed that these
two scenarios lead to two completely different cost metrics
for optimization. When each operator runs on a separate
machine, due to parallelism, the cost of a plan is given by
the maximum cost incurred by any operator (the bottleneck
metric). When each operator runs on the same machine,
the cost of a plan is given by the sum of the costs incurred
by the operators (the sum metric). We showed that under
the bottleneck cost metric, the optimal plan can be found
using a greedy algorithm in polynomial time. However, un-
der the sum cost metric, we showed that the problem is
NP-hard, and most likely, cannot be approximated to bet-
ter than O(nθ) for some positive constant θ. We also gave
a polynomial-time algorithm for the special case when the
operator selectivities lie in the range [ǫ, 1 − ǫ].

An obvious direction for future work is to do away with the
assumption of independent selectivities that has been made
throughout this paper, and to extend our algorithms to the
case when operator selectivities may be correlated. It is also
interesting to investigate whether the techniques developed
in this paper can be used to optimize traditional DBMS
query plans when the focus is only on pipelined processing,
e.g., for online aggregation.

Acknowledgements
We are grateful to Shivnath Babu, Rajeev Motwani, and
Jennifer Widom for helpful discussions and suggestions.

6. REFERENCES
[1] R. Avnur and J. Hellerstein. Eddies: Continuously

adaptive query processing. In Proc. of the 2000 ACM
SIGMOD Intl. Conf. on Management of Data, pages
261–272, May 2000.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. of the 2002 ACM Symp. on Principles of
Database Systems, pages 1–16, June 2002.

[3] B. Babcock, M. Datar, and R. Motwani. Load
shedding for aggregation queries over data streams. In
Proc. of the 2004 Intl. Conf. on Data Engineering,
pages 350–361, 2004.

[4] S. Babu et al. Adaptive ordering of pipelined stream
filters. In Proc. of the 2004 ACM SIGMOD Intl. Conf.
on Management of Data, pages 407–418, 2004.

[5] S. Chaudhuri and K. Shim. Optimization of queries
with user-defined predicates. ACM Trans. on Database
Systems, 24(2):177–228, 1999.

[6] D. DeWitt et al. The Gamma Database Machine
Project. IEEE Trans. on Knowledge and Data
Engineering, 2(1):44–62, 1990.

[7] O. Etzioni et al. Efficient information gathering on the
internet. In Proc. of the 1996 Annual Symp. on

Foundations of Computer Science, pages 234–243,
1996.

[8] U. Feige, G. Kortsarz, and D. Peleg. The densest
k-subgraph problem. In Proc. of the 1993 Annual
Symp. on Foundations of Computer Science, pages
692–701, 1993.

[9] D. Florescu, A. Levy, I. Manolescu, and D. Suciu.
Query optimization in the presence of limited access
patterns. In Proc. of the 1999 ACM SIGMOD Intl.
Conf. on Management of Data, pages 311–322, 1999.

[10] H. Garcia-Molina et al. The TSIMMIS approach to
mediation: Data models and languages. Journal of
Intelligent Information Systems, 8(2):117–132, 1997.

[11] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

[12] J. Hellerstein, P. Haas, and H. Wang. Online
aggregation. In Proc. of the 1997 ACM SIGMOD Intl.
Conf. on Management of Data, pages 171–182, May
1997.

[13] J. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates. In Proc. of the 1993 ACM SIGMOD Intl.
Conf. on Management of Data, pages 267–276, 1993.

[14] W. Hong and M. Stonebraker. Optimization of
parallel query execution plans in XPRS. In
Proceedings of the First Intl. Conf. on Parallel and
Distributed Information Systems, pages 218–225, 1991.

[15] A. Karzanov. Determining the maximal flow in a
network by the method of preflows. Soviet Math.
Dokl., 15:434–437, 1974.

[16] M. Ouzzani and A. Bouguettaya. Query processing
and optimization on the web. Distributed and Parallel
Databases, 15(3):187–218, 2004.

[17] M. Ozsu and P. Valduriez. Principles of distributed
database systems. Prentice-Hall, Inc., 1991.

[18] M. Roth and P. Schwarz. Don’t Scrap It, Wrap It! A
Wrapper Architecture for Legacy Data Sources. In
Proc. of the 1997 Intl. Conf. on Very Large Data
Bases, pages 266–275, 1997.

[19] U. Srivastava, J. Widom, K. Munagala, and
R. Motwani. Query optimization over web services.
Technical report, Stanford University, October 2005.
http://dbpubs.stanford.edu/pub/2005-30.

[20] F. Tian and D. DeWitt. Tuple routing strategies for
distributed Eddies. In Proc. of the 2003 Intl. Conf. on
Very Large Data Bases, pages 333–344, 2003.

[21] Web Services, 2002. http://www.w3c.org/2002/ws.

[22] V. Zadorozhny et al. Efficient evaluation of queries in
a mediator for websources. In Proc. of the 2002 ACM
SIGMOD Intl. Conf. on Management of Data, pages
85–96, 2002.

