

Execution Strategies for SQL Subqueries
Mostafa Elhemali, César A. Galindo-Legaria, Torsten Grabs, Milind M. Joshi

Microsoft Corp., One Microsoft Way, Redmond, WA 98052
{mostafae, cesarg, torsteng, milindj}@microsoft.com

ABSTRACT
Optimizing SQL subqueries has been an active area in database
research and the database industry throughout the last decades. Pre-
vious work has already identified some approaches to efficiently
execute relational subqueries. For satisfactory performance, proper
choice of subquery execution strategies becomes even more essen-
tial today with the increase in decision support systems and auto-
matically generated SQL, e.g., with ad-hoc reporting tools. This
goes hand in hand with increasing query complexity and growing
data volumes – which all pose challenges for an industrial-strength
query optimizer.

This current paper explores the basic building blocks that Microsoft
SQL Server utilizes to optimize and execute relational subqueries.
We start with indispensable prerequisites such as detection and
removal of correlations for subqueries. We identify a full spectrum
of fundamental subquery execution strategies such as forward and
reverse lookup as well as set-based approaches, explain the different
execution strategies for subqueries implemented in SQL Server, and
relate them to the current state of the art. To the best of our knowl-
edge, several strategies discussed in this paper have not been pub-
lished before.

An experimental evaluation complements the paper. It quantifies the
performance characteristics of the different approaches and shows
that indeed alternative execution strategies are needed in different
circumstances, which make a cost-based query optimizer indispen-
sable for adequate query performance.

Categories and Subject Descriptors
H.2.4 [Database Management Systems]: Subjects: Query process-
ing, Relational databases. Nouns: Microsoft SQL Server

General Terms
Algorithms, Performance.

Keywords
Relational database systems, Query optimization, Subqueries, Mi-
crosoft SQL Server.

1. INTRODUCTION
Subqueries are a powerful improvement of SQL which has been
further extended to scalar subqueries by the SQL/92 standard [1].
Most of its value derives from the ability to use subqueries or-

thogonally in all SQL clauses SELECT, FROM, WHERE, and
HAVING. This facilitates query formulation in important applica-
tion domains such as decision support, applications which automati-
cally generate SQL queries, and new query languages.

1.1 Application Scenarios
Decision Support. Decision support benchmarks such as TPC-H
and TPC-DS make extensive use of subqueries: out of the 22 que-
ries in the TPC-H benchmark, 10 queries use subqueries. Subqueries
occur in the WHERE clause for 9 of the TPC-H queries and one
query uses subqueries in the HAVING clause. A common practice
is to relate a nested subquery to the outer query such that the sub-
query only processes values relevant to the rows of the outer query.
This introduces a so-called correlation between the outer query and
the subquery. As we will discuss in more detail, correlations make it
challenging to find well-performing execution plans for queries with
subqueries.

Automatically Generated Queries. Today, end users oftentimes
use graphical interfaces to compose ad-hoc queries or to define
reports against an underlying data store. The application behind the
user interface then automatically generates SQL queries based on
the interactive input provided by the end user. Microsoft SQL
Server 2005 Reporting Services is an example of such an applica-
tion: customers can define a model on top of a data store and inte-
ractively query the data behind the model. These queries are com-
piled into SQL if the underlying data store is a relational database
system. The nesting capabilities and the orthogonality of the SQL
language simplify automatic SQL code generation. The implemen-
tation of SQL Server Reporting Services relies on these characteris-
tics of the SQL language and – depending on the user query against
the model – introduces subqueries in the SELECT or the WHERE
clause.

“Nested loops” languages. Unlike SQL, some query languages
incorporate the notions of iteration and parameterization as a basic
mechanism. XQuery is an example [2]. With XQuery, queries are
formulated using the clauses FOR, LET, WHERE and RETURN
which yields so-called FLWR-expressions. Nested FOR clauses are
a common programming pattern, and they are used to iterate over
XML elements at a given level in the document hierarchy and then
descend deeper. The concepts and techniques presented in this
paper are applicable to those scenarios as well. In fact, they are
used in our implementation of XQuery.

1.2 Subquery Processing Overview
Our overall compilation logic, as it pertains to subquery processing,
is shown in Figure 1. The framework shown separates distinct steps
for the generation of efficient execution plans, and it aims to maxi-
mally leverage the various optimizations.
A first step of SQL compilation is the subquery removal process,
which is covered in detail in Section 3 of this paper. The result is a
relational expression that uses the Apply operator to abstract param-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

993

eterized execution. A nested loop language is likely to be parseable
directly into this algebraic form.
The apply removal process is covered in Section 4 of this paper. It
eliminates the use of parameterization, which we identify with
decorrelating. The result is a relational expression that uses differ-
ent types of joins.
The optimizer then explores the decorrelated relational expression
and generates various alternatives with identical query semantics.
We call this the logical level of query optimization. This step aims
at producing enough interesting plan alternatives such that a good
query plan is among them. The optimizer computes cost estimates
for plans and picks the most cost-effective one. A sufficiently broad
search space obviously is a prerequisite for good performance.
Logical optimizations for subqueries are covered by Section 5 to 7
where we discuss strategies for logical exploration of semijoin and
antijoin, techniques to deal with subqueries in disjunctions, and
some Group By scenarios.
After exploration of the relational expression is complete, additional
optimizations at the physical level help to further improve perform-
ance. These techniques such as batch sort or prefetch are discussed
in Section 8.

1.3 Subquery Execution Strategies
The query optimizer explores different physical execution strategies
for the various logical query plan alternatives. This step generates
execution plan alternatives with different performance characteris-
tics. In the context of subquery optimization, the following execu-
tion strategies are possible: (1) navigational strategies, or (2) set-
oriented strategies. Navigational strategies rely on nested loop joins
for implementation while two interesting classes of navigational
strategies are conceivable, namely forward lookup and reverse
lookup. Forward lookup starts processing the outer query and, as
outer rows are being generated, invokes the subquery one outer row
at a time. Reverse lookup in turn starts with the subquery and proc-
esses the outer query one subquery row at a time. Set-oriented proc-
essing finally requires that the query could be successfully decorre-
lated. If this is the case, set operations such as hash and merge join
can implement the query.

1.4 Challenges and Contributions
Depending on the cardinalities of the outer query and the subquery
as well as the physical design of the database, different subquery
execution strategies may differ greatly in their performance charac-
teristics. This makes it a challenging topic for query optimization.
This is reflected by the attention the area has received in previous
work, e.g., [3, 4, 5, 6, 7, 8]. While [9] has specifically focused on
optimization of subqueries with grouping at the logical level, this
current paper takes a broader perspective on the problem. We do not
limit the discussion to grouping, and we cover both the logical level
and the physical level of plan generation. In particular, we investi-
gate subqueries introduced by existential or universal quantification.
Throughout the paper, we discuss rewrite strategies for subqueries at
the logical level and explain how this facilitates finding a good exe-
cution plan among navigational and set-oriented alternatives at the
physical level. In Section 10, our experimental evaluation of differ-
ent subquery execution strategies with Microsoft SQL Server 2005
investigates the different plan choices in quantitative terms. The
experiments also assess the effectiveness of a cost-based optimiza-
tion approach in the presence of subqueries.

2. ALGEBRAIC REPRESENTATION
OF SUBQUERIES
In this section we describe the algebraic representation of SQL sub-
queries. Having an algebraic representation is beneficial because it
abstracts the semantics of operations, making them independent of
query language, data structures or specific execution strategies. It
also allows algebraic analysis and reasoning, including capturing
reordering properties in the form of algebraic identities. Finally, it
fits well into algebraic query processors like that of SQL Server.

2.1 Terminology
The basics of our algebraic model were discussed in [9]. Here, we
briefly review this formulation and go over a number of optimiza-
tions and issues not covered in our earlier work. Since we deal with
SQL, all operators in this paper are bag-oriented and we assume no
automatic removal of duplicates. In particular, the union operator
for most of the remainder of the paper is UNION ALL and we repre-
sent it using UA. Distinct union in turn is denoted as U. Besides
union, we rely on the standard relational operators for grouping,

Apply removal,
aka decorrelation
Section 4

SQL with
subquery

SQL without
subquery

“nested loops”
languages

relational expr
with Apply

relational expr
without Apply

equivalent
logical re-
orderings
Sections 5, 6, 7

physical op-
timizations
Section 8

Parsing and normalization

Figure 1: Overview of plan generation for subqueries in SQL Server and structure of the paper

Subquery removal,
Section 3

Cost-based optimization

994

selection (filter) and projection: GA,FR stands for a GROUP BY over
relation R with a list A of grouping columns and a set F of aggregate
functions that are applied to each group. π[S]R denotes a projection
of relation R onto the set of columns in S. σ[p]R in turn represents a
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a
shorthand for a constant table which returns one row and no col-
umns.Our algebraic formulation of subqueries is based on the gen-
eral idea of a parameterized relational expression (PRE) and the
Apply operator, as described in [9]. A PRE is simply a relational
expression that has free variables or parameters, so it yields a rela-
tional result when values for those parameters are provided. It is
effectively a function. The Apply operator repeatedly invokes a
PRE with a series of parameters values and collects the results of
these multiple invocations. Formally,

R ApplyJN E(r) = UAr ∈ R ({r} JN E(r)).

Note that Apply does not take two relational inputs, but only one
relational input R that provides the set of parameter values, on
which PRE E(r) is applied. Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above. It
supports the common join types such as inner, outer, and semijoins
which we briefly review here:

An inner join (R JNp S) is defined as the subset of the Cartesian
product of R and S where all tuples that do not satisfy the predicate
p are filtered out.

A left outer join (R LOJp S) includes the result of an inner join be-
tween R and S with join condition p, plus all the unmatched tuples
of R extended with NULL values for columns of S. A right outer
join on the other hand contains the unmatched tuples of S along with
the result of the inner join.

A semijoin (R SJp S) is defined as all the tuples of R that match at
least one tuple of S on the predicate p, while an antijoin (R ASJp S)
is defined as the tuples of R that match no tuples of S on the predi-
cate p. Naturally, (R SJp S) UA (R ASJp S) = R.

For example, an Apply operator can use antijoin logic if it wants to
preserve row r when the result of E(r) is empty.

The Apply operator maps well to the nested loops execution strategy
with correlated parameters, but we treat it here as a logical operators
with the semantic definition described above.

We illustrate the use of Apply with a simple SQL subquery example.
Say you want to list all your ORDERS, and include the CUS-
TOMER name. It is convenient to have a function that takes a cus-
tomer key and returns the name of the CUSTOMER. Such function
can be written as follows

(SELECT C_NAME FROM CUSTOMER
WHERE C_CUSTKEY = O_CUSTKEY),

where the free variable O_CUSTKEY is the argument of the func-
tion – there is no explicit syntax to bind free variables in SQL, so
binding variables in subqueries is done simply by name. Free vari-
ables will be shown in bold throughout the paper. We can use this
“name extraction function” to report all ORDERS with the name of
the CUSTOMER as follows

SELECT *, (SELECT C_NAME
FROM CUSTOMER

WHERE C_CUSTKEY = O_CUSTKEY)
FROM ORDERS

An additional issue to note here is that we are crossing a bridge
between relational expressions and scalar domains. The subquery is
a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause. The rules to bridge this
relational/scalar divide are the following:

• If the relational result of the subquery is empty, then its scalar
value is NULL.

• If the relational result is a single row {a}, then the scalar value
is a.

• If the relational result has more than one row, then its scalar
value is undefined and a run-time error is raised.

For the sake of this example, assume that C_CUSTKEY is a key of
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared
foreign-key constraint. Then the subquery can return at most one
row. We represent this query algebraically as:

ORDERS ApplyOJ (π [C_NAME] σ [C_CUSTKEY =
O_CUSTKEY] CUSTOMER)

Note that this expression outputs exactly the rows from ORDERS,
adding an extra column for each row, with the result of the scalar
value of the subquery.

2.2 Language surface
In the early days, the SQL block with its SELECT, FROM, and
WHERE clauses was central to the language and there were many
syntactic restrictions around the use of multiple SQL blocks in a
single query, including subqueries. Current SQL implementations
allow the use of “sub-selects” in a fully composable way. There are
two cases to distinguish:

• A SQL block is used where a relational value such as a table is
expected, in the FROM clause. Such a “sub-select” is called a
derived table. This is simply about composability of relational
expressions and we don’t consider it further in this paper.

• A SQL block is used where a scalar expression is expected,
such as the SELECT or the WHERE clause. Such “sub-select”
is called a subquery. This subquery is called correlated if it
has free variables that are provided by the enclosing query.
Unlike derived tables, subqueries require going across rela-
tional and scalar domains.

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways:

• Existential test. These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty. The
result is of type Boolean, either TRUE or FALSE. For exam-
ple:

EXISTS(SELECT * FROM ORDERS
WHERE L_SHIPDATE < O_ORDERDATE).

• Quantified comparison. These test whether a particular com-
parison cmp holds for values returned by a subquery subq. The
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>. The
result is again of type Boolean, but unlike existential subque-
ries, quantified comparisons can return TRUE, FALSE or
UNKNOWN (when null values are involved in the compari-
son). For example:

L_SHIPDATE > ANY(
SELECT O_ORDERDATE
FROM ORDERS
WHERE L_ORDERKEY = O_ORDERKEY).

995

• IN / NOT IN. This is a shorthand for quantified comparison.
<expr> IN <subq> is equivalent to <expr> =ANY <subq>.
<expr> NOT IN <subq> is equivalent to <expr> <>ALL
<subq>.

• Scalar-valued. These return non-Boolean scalar values. For
example:

(SELECT C_NAME FROM CUSTOMER
WHERE C_CUSTKEY = O_CUSTKEY).

In addition to its internal use in query processing, the Apply operator
is also available in the surface syntax of SQL Server. The common
usage scenario is the invocation of parameterized table-valued func-
tions, which are a particular case of PREs. For example, suppose
you have a table-valued function that takes a string and chops it up
into words, outputting one row per word. You can use the following
to invoke this function on the values of column COL from MY-
TABLE:

SELECT *
FROM MYTABLE
OUTER APPLY CHOP_WORDS(MYTABLE.COL)

Each row of MYTABLE will be repeated as many times as rows
returned by the function – but if the function result is empty then the
row is still preserved, due to the use of OUTER.
Some implementations of SQL incorporated the ability to pass pa-
rameters across the “comma operator” of the FROM clause. We
adopted explicit syntax for parameter passing for conceptual clarity,
and also because “comma” doesn’t lend itself to clarifying what to
do when the PRE returns an empty set, i.e. preserve or reject the row
from the left relational input.

3. SUBQUERY REMOVAL
A straightforward implementation of subqueries requires tuple-at-a-
time processing in a very specific order – evaluate the PRE for each
row that requires evaluation of the scalar expression. It also intro-
duces mutual recursion between the scalar and relational execution
sub-systems. Conceptually, relational execution needs to make calls
to some scalar evaluation sub-system for predicates and other scalar
computations (there are multiple ways to implement scalar evalua-
tion, as they could be compiled in-place instead of having an actual
separate component). If scalar expressions contain subqueries, then
the scalar subsystem needs to bind the free variables and make a
recursive call back to relational execution. Subquery removal is
about eliminating this mutual recursion between the scalar and rela-
tional execution sub-components.
The general subquery removal algorithm takes three arguments: a
relational operator, a relational expressions and a scalar expression
with subqueries; and it returns new expressions to compute the re-
sult without the need of subqueries. For example, say you have a
selection of the form σ[p]R, and predicate p has subqueries. We
invoke SQREM(σ,p,R) to get (p’, R’), p’ does not use subqueries
and σ[p]R = σ[p’]R’.
Algorithm SQREM is implemented through a simple tree traversal
of scalar expression p, which moves all the subquery computation
from p over to relational expression R. For each subquery PRE(r)
found in p, we add a computation Apply PRE(r) on R and replace
the subquery in p by a scalar computation. A more detailed exam-
ple is found in [9].
For a correct and efficient translation, there are a number of special
cases to incorporate in the basic algorithm outlined above. They are
listed next.

3.1 Mapping multi-row relational
results to a single scalar value
This issue was brought up already in the example query in Section
2. For a scalar-valued subquery E(r), the subquery is computed in
general as

R ApplyOJ max1row(E(r)).

max1row is a special relational operator whose output is the same as
its input, but it raises a run-time exception if its input has more than
one row. Through static analysis, it is sometimes possible to deter-
mine at compile time that E(r) will return at most one row, regard-
less of the parameter value and database content – no max1row
operator is required then. This is a common case in actual applica-
tions.

3.2 Filtering through existential test
If an existential test on E(r) is used in the context of directly filter-
ing rows, then we incorporate the filtering operation with the
evaluation of the subquery. The computation of EXISTS and NOT
EXISTS subqueries is done as follows:

R ApplySJ E(r)

R ApplyASJ E(r)

In terms of the general rewrite procedure described above, the sub-
query occurrence in the original scalar expression S is replaced by
the constant TRUE and the result simplified to obtain S’. This is the
path followed when existential subqueries are ANDed together with
other conditions in the SQL WHERE clause.
Existential subqueries are also used in a context that does not di-
rectly filter rows. In general, they need to be treated like scalar-
valued subqueries, as described in the next scenario.

3.3 Conditional scalar execution
SQL provides a construct for conditional evaluation of scalar ex-
pressions, and subqueries can be used there as well. Implementing
this semantics properly require the incorporation of probe and pass-
through functionality in the Apply operator. Suppose your expres-
sion is of the form

CASE WHEN EXISTS(E1(r))
THEN E2(r) ELSE 0 END.

Note that the EXISTS subquery here is not used to directly filter
rows, but to determine the result of a scalar expression. The sub-
queries will be computed by the following expression:
(R Apply[semijoin, probe as b] E1(r)) Apply[outerjoin, pass-through

b=1] max1row(E2(r)).
Apply with probe preserves the rows from R and adds a new column
b, which is 1 whenever E1(r) is non-empty. Apply with pass-
through has a guard predicate and only executes its subquery if the
guard is TRUE. This implements the required conditional evalua-
tion.
Assuming the result of the scalar-valued subquery E2(r) is left in
column e2, the original scalar expression is replaced to be:
 CASE WHEN p = 1 THEN e2 ELSE 0 END.

3.4 Disjunctions of subqueries
When subqueries are used in disjunctions, it is not possible to filter
directly as we did in Sec. 3.2 with Apply-semijoin or Apply-antijoin.
Apply with probe can be used to collect the subquery results and
evaluate the entire disjunction afterwards, and pass-through can be

996

used to implement OR-shortcircuiting. But then it is difficult to
convert Apply into join, which, as we shall see later, is a major tool
for efficient execution.
Our mapping of subqueries in disjunctions is based on unions. Sup-
pose you have a scalar filter condition of the form p(r) OR EX-
ISTS(E1(r)) OR EXISTS(E2(r)), where p(r) is a scalar predicate over
r without subqueries. We map to a filtering relational expression of
the form:

R ApplySJ ((σp(r) CT(1) UA E1(r) UA E2(r))

The scalar predicate p is evaluated on top of the constant table
CT(1) (which returns one row and no columns). A row from R is
output when any of the relational expressions underneath the Un-
ionAll returns a non-empty result.

3.5 Dealing with quantified comparisons
Semantics. We deal with quantified comparisons by mapping them
to existential subqueries, which we have already discussed. But we
need to be particularly careful with universal quantification, whose
semantics in the presence of NULL values is illustrated through an
example. Say you have a predicate p of the form 5 NOT IN S,
which is equivalent to <>ALL. The result of this predicate is as
follows, for various cases of set S:

1. If S = {} then p is TRUE.
2. If S = {1} then p is TRUE.
3. If S = {5} then p is FALSE.
4. If S = {NULL, 5} then p is FALSE.
5. If S = {NULL, 1} then p is UNKNOWN.

Also, NULL NOT IN S is UNKNOWN for any S <> {}. Case 5 is
particularly counter-intuitive (for database implementers as well as
users), but it results from the rules of three-valued logic in SQL:
value <cmp> NULL is UNKNOWN; UNKNOWN AND TRUE is
UNKNOWN.
This quantified comparison can return values TRUE, FALSE and
UNKNOWN, and we want to transform it into an existential test,
which only returns values TRUE and FALSE. How can we do this
mapping?

Utilization context. We should note that FALSE and UNKNOWN
are undistinguishable for the purpose of selecting rows – i.e. if we
filter rows on predicate p, then we discard any rows for which p is
either FALSE or UNKNOWN. FALSE and UNKNOWN are also
undistinguishable in the predicate of conditional CASE WHEN
expressions.
Also, suppose you have a Boolean expression P(X1, X2, …) = Y,
using only logical connectives AND and OR. The impact of chang-
ing the value of any Xi from UNKNOWN to FALSE, is either Y
remains unchanged, or else Y changes from UNKNOWN to
FALSE.
From the above, it is valid to change the result of quantified com-
parisons from three-valued to two-valued, for Boolean expressions
used to filter rows or in CASE WHEN.
The mapping. To compute universal quantification we use anti-
join, which evaluates a NOT EXISTS predicate. We map through
the conventional equation:

(FOR ALL s ∈ S: p) = (NOT EXISTS s ∈ S: NOT p)

However, this equation holds only in two-valued logic, not in the
three-valued logic of SQL (the basic reason is that NOT UN-
KNOWN is UNKNOWN). So, we complete the mapping in two
steps: (1) change the universal quantification σ expression so it does
not involve UNKNOWN values; (2) negate the predicate.
A universal quantification predicate of the form p = A <cmp> B can
return UNKNOWN when either A or B are NULL. So we replace it
by a two-value predicate p’ = A <cmp> B AND A IS NOT NULL
AND B IS NOT NULL. Predicate p’ returns TRUE whenever p
returns TRUE, and p’ returns FALSE whenever p returns either
FALSE or UNKNOWN. As argued earlier, this mapping preserves
correctness under filtering and CASE WHEN contexts.
We then negate p’ to create the NOT EXISTS predicate, to obtain:

A <cmp’> B OR A IS NULL OR B IS NULL,
where <cmp’> is the comparison opposite <cmp>. Of course, if A
or B are not nullable, the expression can be simplified at compila-
tion time.

Example. Suppose you start out with a subquery of the form A
NOT IN S. This is first mapped to universal quantification A
<>ALL S. Then it gets mapped to a NOT EXISTS subquery of the
form

NOT EXISTS(σ[A = s OR A IS NULL OR s IS NULL] S).
This will then get mapped to an antijoin with a predicate that has
disjuctions. This is a common form in antijoin predicates, and its
efficient execution is considered in section 6.2.
An alternative to the above is to introduce a new, special aggregate
that has a Boolean input and it computes universal quantification
with three-valued logic. This provides a faithful implementation of
quantified comparisons in SQL (and a requirement if three-valued
Boolean results are allowed as parameters to opaque functions). But
this aggregate approach limits the set of execution strategies. Map-
ping to existential tests allows efficient use of index lookups and
navigational plans.

4. REMOVING APPLY
In the previous section we outline subquery removal, i.e. eliminating
the use of relational expressions in scalar expressions. The result is,
in general, a relational expression with Apply operators and param-
eterized expressions (PREs). In many cases, it is possible to do
further transformations and eliminate the use of Apply and parame-
terization. This is commonly known as a decorrelated form of the
query and it enables the use of a choice of join algorithms. It was
the main intuition behind efficient subquery processing in the first
papers on the subject, e.g., [3].
We don’t view the decorrelated form of subqueries as a preferable
execution strategy, but rather as a useful normal form. Different
surface formulations can end up in the same normal form, including
queries originally written with or without subqueries. Starting from
this normal form, cost-based optimization will consider multiple
execution strategies, including different evaluation orders and (re-
)introduction of Apply.

4.1 Categories for Apply Removal
Apply (without pass-through, which implement conditional execu-
tion and is foreign to relational algebra) does not add expressive
power to the five basic relational operators (select, project, cross
product, union, difference) [9, 13]. However, it does add concise-
ness. Removing Apply from some relational expression E may yield
an expression E’ that is exponentially larger than E. This is an im-

997

portant distinction for the three subquery removal categories pre-
sented in [9]. We briefly review those categories here and add a
fourth:

1. Apply removal that preserves the size of the expression.
For example, the Apply expression from the example query in
Section 2 can be rewritten as:
ORDERS ApplyOJ (σ[C_CUSTKEY = O_CUSTKEY] CUS-
TOMER) = ORDERS OJ [C_CUSTKEY = O_CUSTKEY]
CUSTOMER

2. Apply removal that duplicates subexpressions. The size of
an expression can be increased exponentially as a result of Ap-
ply removal, in particular when dealing with parameterized un-
ion and difference. For example, the following expression can
result from the use of subqueries in disjunctions, and its decor-
related form duplicates R:

R ApplyJN (σR.a = S.a S) UA σR.b = T.b T)

= R JNR.a = S.a S UA R JN R.b = T.b T

One could also write the above as a join with a complex OR
condition, on top of a union of S and T with a column that tags
the source of each union output row, thus preserving the size of
the original expression. However, we find little use in such
representation from a query processing perspective.
Note that if the same free variable, say R.a, were used in both
branches of the union, then the predicate can be factored out to
remove Apply without duplication. SQL Server identifies and
handles this case as category 1. In general, pulling up predi-
cates with free variables is part of the normalization process
that removes Apply for expressions in category 1.

3. Apply removal unfeasible due to special scalar-relational
bridge semantics. There are two cases here: (1) checking for
max1row for scalar-valued subqueries and (2) conditional
evaluation using pass-through predicates for CASE WHEN
expressions. SQL Server does not remove Apply for these
cases.

4. Opaque functions. This category was not called out in [9],
but it is a distinct case. Apply is not removed when dealing
with opaque functions like our earlier example of table-valued
function CHOP_WORDS:
MYTABLE Apply CHOP_WORDS(MYTABLE.COL)

Table-valued functions written in languages such as C++ are
always opaque. For functions defined through the SQL lan-
guage, we also support inlininig, in which case the function
definition simply gets expanded, as a view with parameters.
This brings back the expression to one of the three earlier cate-
gories.

4.2 Tradeoffs and Query Processing Strategy
All the categories outlined above are found in practice, and their
effective processing requires slightly different approaches. To de-
scribe the differences, we need to take into account the processing
flow of the optimizer in SQL Server:

• The compiler front-end parses the query text and resolves sym-
bolic references. It produces a tree representation of the state-
ment based on logical data operators.

• This operator tree is simplified and normalized, including con-
tradiction detection and removal of redundant operations. The
output is a simplified logical operator tree representing the
query.

• The simplified operator tree goes into cost-based optimization,
where an execution plan is selected based on available access
paths, data volume and distribution.

Query simplification / normalization is done using the same infra-
structure of tree transformations, so it is possible to utilize a particu-
lar tree transformation either as simplification or as a cost-based
alternative.
For expressions that fall in categories 3 and 4 above, Apply cannot
be removed. There is basically a single physical execution strategy
for the logical Apply operator: Use nested loops joins to repeatedly
execute the parameterized expression, in a straightforward imple-
mentation of the Apply definition. SQL Server considers a number
of optimizations on these parameterized nested loops, which are
discussed later in this paper.
For expressions that fall in category 1, the query is normalized to
the decorrelated form, which is fed to the cost-based optimization.
This process considers a number of logical execution orders and
implementation algorithms off of this decorrelated form. Going
through a normal form provides syntax independence to our optimi-
zation process. There are many cases of subqueries that can also be
written naturally without those in SQL, and the query optimizer has
the same behavior for both forms. For example, it is easy to see that
our example query in Section 2 could have been written using outer-
join directly – both the subquery or the outerjoin formulation will
map to the same normal form.
Particular optimizations for these decorrelated forms are covered
later in this paper, but it is worth pointing out here that one of the
alternatives considered during cost-based optimization is the intro-
duction (or re-introduction) of Apply, to target navigation strategies
that are very efficient in some cases.
For expressions that fall in category 2, we have a tradeoff to make:
Remove Apply but duplicate sub-expressions (as in category 1), or
else keep the original (as in category 3). We do not normalize to the
decorrelated form in this case for two reasons: (1) The explosion on
the size of the expression; (2) the added complication faced when
re-introducing Apply in cost-based optimization, which now requires
common subexpression detection to eliminate the redundancy intro-
duced.
We are still interested in resolving this tradeoff effectively in a cost-
based way, because there are instances where the decorrelated form
can perform much more efficiently, even with the duplicate subex-
pression. For this reason, we consider Apply removal for this cate-
gory of queries during cost-based optimization, for a number of
important special cases. Further details of this are covered later in
this paper.

5. OPTIMIZING SUBQUERIES USING
MAGIC SETS
In this section we briefly review the “complex query decorrelation”
approach presented in [8], and reformulate it using our framework,
to the best of our understanding.

5.1 The magic set technique
Magic set optimization in [8] starts out with a presentation of sub-
queries as functions, as we do in this paper with the Apply operator.
A key observation is that a function can be represented extension-
ally as a table, for a finite set of argument values. This extensional
representation has additional columns that hold the argument values

998

for which the function has been pre-computed. Function application
then turns into join:

R Apply E(r) = R JNR.r=R’.r’ DS,

assuming that DS stores the result of E(r) for all values of r from R.
The table DS is called the “decoupled query.” To obtain DS, you
need to compute the function for enough parameter values:

DS = R’ Apply E(r’),

where R’ is called the “magic set,” and it consists of (a superset of)
the set of parameter values to be used from R. A possible choice is
R’ =distinct[R.r] R. Of course, the two equations can be put to-
gether and there is no need to explicitly store the value of DS. The
result can be seen as a generalization of the semijoin reduction strat-
egy used in distributed systems.
The intent of [8] is that DS has a decorrelated form, which when
plugged above yields a fully decorrelated expression. However, this
does not really address decorrelation, in the sense we use in this
paper. Removing Apply in the original expression is the same alge-
braic problem as removing it in the computation of DS.

5.2 Magic on join / group by scenarios
In addition to the general definition of magic set reduction, [8] also
shows a specific strategy that can be very efficient to deal with some
Join and GroupBy queries. It transforms expression A below to an
expression M with magic-set reduction:

 A: R JNp(r,s) and p(r,x) Gs,x=agg S

 M: R JNr = r’ and p(r,x) (Gs,x=agg R’ JNp(r’,s) S)

with R’ being the distinct values of R used in the join with S. There
are at least two other possible expressions to execute A [9]: Call B
the result of moving up the GroupBy operation above the Join; call
C the segmented execution over R, which is possible when R and S
are common subexpressions. Magic set strategy M can be much
better than the other alternatives when all the following conditions
hold (which is not a very common scenario, in practice):

• Many of the values in R.r do not appear in S.s. Otherwise, A is
probably quite effective, as it is not computing unnecessary
groups.

• R.r is a low selectivity column (i.e. there are relatively few
distinct values of r in R) and also S.s is a low selectivity col-
umn. Otherwise, B is probably quite effective, since the early
join will filter out any unnecessary rows and no extra work is
created for the final aggregation.

• R and S are not common subexpressions. Otherwise, strategy
C requires a single pass and can be very efficient.

From the point of view of our framework, the magic set strategy is
an alternative for queries with Join and GroupBy, and it needs to be
considered in a cost-based way along with other choices.
As with Apply removal over parameterized unions, magic set reduc-
tion requires the duplication of subexpressions, which introduces
additional complications during optimization.

6. OPTIMIZING SEMIJOIN
AND ANTIJOIN
The process of removing correlation generates trees which contain
semijoins, antijoins and outer joins. Optimization of semijoins, anti-
joins and outer joins is therefore an important part of handling

subqueries. The paper [11] discusses outer join optimization in de-
tail. In this section we will concentrate on semijoins and antijoins.
Note that SQL does not expose semijoins and antijoins as language
constructs. Therefore for SQL, subquery removal is the only way
these operators make an appearance in the query tree.

6.1 Reordering semijoins and antijoins
From the reordering perspective, semijoins and antijoin are very
similar to filters. They can be pushed or pulled through an operator
whenever a filter can be pushed or pulled. E.g. a filter can be pushed
through a GroupBy operator whenever the predicate does not use
the results of the aggregate expressions. Similarly a semijoin or an
antijoin can be pushed through a GroupBy as long as the join predi-
cate does not use the results of the aggregate expression. i.e.

(GA,FR) SJp(A,S) S = GA,F (R SJp(A, S) S)

(GA,FR) ASJp(A, S) S = GA,F (R ASJp(A, S) S)

Reordering semijoins and antijoins as though they were filters is a
powerful tool but it still keeps the tables in relation S together as a
block. If we want to reorder individual tables of S, we have to be
careful about the number of duplicate rows in the result and the
columns that are visible. An identity which gives us a simple and
general solution for this problem is:

R SJp(R,S) S = Gkey(R),Any(R) (R Joinp(R, S) S)

This transformation converts a semijoin into a join. Reordering of
tables around a join is a well understood problem.
Here is an example that illustrates the benefits of this ability to
freely reorder tables. Consider the query that tries to find the num-
ber of orders placed on the New Year’s Day in 1995 for which at
least one of the suppliers is in the same country as the customer and
the item was shipped within seven days of the order. The SQL for
this query looks something like this:
SELECT COUNT(*)
FROM ORDERS
WHERE O_ORDERDATE = '1995-01-01'
 AND EXISTS(SELECT *
 FROM CUSTOMER, SUPPLIER, LINEITEM
 WHERE
 L_ORDERKEY = O_ORDERKEY
 AND S_SUPPKEY = L_SUPPKEY
 AND C_CUSTKEY = O_CUSTKEY

AND C_NATIONKEY = S_NATIONKEY
AND L_SHIPDATE BETWEEN '1995-01-01'
AND dateadd(dd, 7, '1995-01-01')

The EXISTS clause of the subquery is transformed into a semijoin.
The transformed query looks like:
ORDERS SJ (CUSTOMER JN SUPPLIER JN LINEITEM)

The inner side of the semijoin contains an inner join of three tables.
These three tables cannot be reordered freely with the ORDERS
table as otherwise the count(*) may see incorrect number of rows.
We are therefore forced to do one of the following. Either join the
CUSTOMER, SUPPLIER and LINEITEM table before we join the
result with ORDERS (if we choose to do the semijoin as a hash or
merge join) or join the three tables for every row of ORDERS that
qualifies the date predicate (if we choose to do the semijoin as a
nested loop or an index lookup join). Both these alternatives are
quite slow. Since the predicates on both ORDERS and LINEITEMS
are quite selective, it is better to join the two tables first and then
join the small result with the remaining tables. This is exactly what
converting a semijoin to a join lets us do.

999

This ability to freely reorder tables may tempt us to convert all
semijoins to inner joins as a normalization step. The problem is that
it creates a GroupBy(distinct) operator for every semijoin that is
converted. We need to find an optimal place for these GroupBys in
the final plan. GroupBy placement is not an easy task and can in-
crease compilation time dramatically. Therefore converting semi-
joins to inner joins as a normalization step may not be a good idea
and it is preferable to do this on a case-by-case basis.

The tables from the two sides of an antijoin cannot be mixed this
way since there is no simple identity to convert them to inner joins.
Converting antijoins to inner joins requires introduction of a sub-
traction since inner joins don’t allow us to do universal quantifica-
tion. Evaluation of subtraction requires an antijoin on keys taking us
back to where we started. Therefore the tables used on the inner side
of an antijoin are forever separated from the rest of the query and
can only be reordered amongst themselves.

6.2 Evaluating semijoins and antijoins
efficiently
Semijoins and antijoins can be evaluated using all the standard join
implementations viz. nested loop join, hash join, merge join and
index lookup join. Nothing special is required when evaluating a
semijoin using any of these join algorithms. Evaluating antijoins as
a hash join requires some special considerations. For the antijoin (R
ASJp S), if the relation R is used to build the hash table, we have to
mark and rescan the hash table to decide which rows to output [14].
Implementing the antijoin (R ASJp S) as nested loop join requires
that the relation R be on the outer side.

Evaluating the semijoin (R SJp S) or the antijoin (R ASJp S) by using
the relation R as the source of the lookup in an index-lookup join is
also easy. We take a row of relation R and look it up in the index on
the relation S. For a semijoin, we output the row if the index lookup
yields a matching row. For an antijoin, we output the row if the
index lookup fails to find a match.

Doing index lookups from the relation S into the relation R requires
a lot more care. Suppose we want to find out the number of urgent
orders that had at least one item that was shipped on January 1, 1995
but was committed for December 31, 1994. The query would look
like:

Example 6.1:
SELECT COUNT(*)
FROM ORDERS
WHERE O_ORDERPRIORITY = '1-URGENT'
AND EXISTS (SELECT *
 FROM LINEITEM
 WHERE L_SHIPDATE = '1995-01-01'
 AND L_COMMITDATE = '1994-12-31'
 AND L_ORDERKEY = O_ORDERKEY
)

The query does a semijoin between urgent ORDERS and LINEI-
TEMs shipped on a specific date and committed for a specific date
(ORDERS SJ LINEITEM). Since the predicate on LINEITEM is a
lot more selective than the predicate on ORDERS and can be solved
with an index, a natural strategy would be to use an index seek to
get the qualifying LINEITEMs and then look them up in the OR-
DERS table using the index on O_ORDERKEY. This of course
does not work for semijoins. There are multiple LINEITEMs per
ORDER. Therefore if two items in an ORDER shipped on the New
Year’s Day in 1995 but were committed for the New Year’s Eve,

that ORDER will get looked up twice, giving us an incorrect count
of orders.
The identity to convert semijoins to joins described in the previous
section comes to our rescue. For an inner join it is legal to do look-
ups in any direction. This is the second benefit of converting semi-
joins to inner joins. It gives us the freedom to choose either table as
a lookup table. If the predicate on ORDERS is more selective and
easily solvable we can first find the ORDERS and then look up
matching LINEITEMs. If on the other hand if the predicate on
LINEITEMs is more selective we can do a reverse lookup.
As we discussed earlier, antijoins do not have a corresponding iden-
tity to convert them to joins and therefore do not yield to reverse
lookups. Even worse, subquery removal sometimes generates anti-
joins that are hard to do even as regular lookups. The reason for this
is NULL semantics in SQL. Consider the query that gets the count
of all the LINEITEMS that were shipped on a day on which no
order was placed. Assume we have a modified version of TPCH
where the unshipped LINEITEMs are identified with L_SHIPDATE
as NULL.

SELECT COUNT(*)
FROM LINEITEM
WHERE L_SHIPDATE != ALL(SELECT O_ORDERDATE
from ORDERS)

As we saw in Section 2 this generates an antijoin with the predicate
L_SHIPDATE = O_ORDERDATE OR L_SHIPDATE IS NULL.
(We assume here that O_ORDERDATE cannot be NULL.) If we
don’t include the L_SHIPDATE is NULL predicate, we will count
unshipped orders. The reason is that the predicate (L_SHIPDATE =
O_ORDERDATE) evaluates to unknown for every ORDER when
L_SHIPDATE is NULL and an antijoin outputs a row if the predi-
cate does not evaluate to true for any of the rows of the inner rela-
tion.
The set based join algorithms viz. hash and merge cannot be used
for this query, since the predicate for the antijoin is (L_SHIPDATE
= O_ORDERDATE OR L_SHIPDATE IS NULL). Hash or merge
join require at least one conjunct that is a simple equality so that it
has columns that can be used to hash or sort the relations. Since we
are evaluating (LINEITEM ASJp ORDERS), ORDERS has to be the
lookup table for the reasons mentioned earlier. But it is very hard to
do lookups into ORDERS with the predicate (L_SHIPDATE =
O_ORDERDATE OR L_SHIPDATE IS NULL). Therefore the
only choice we are left with is nested loop join. A nested loop join is
going to be excruciatingly slow given the size of LINEITEMS and
ORDERS. The solution is to use the identity

(R ASJ(p1 OR p2) S) = ((R ASJp1 S) ASJp2 S)

This gives us one antijoin with the predicate L_SHIPDATE =
O_ORDERDATE which can be implemented either as a set based
join or as a lookup join and another antijoin with a predicate only on
LINEITEMS which can be evaluated without looking at all rows of
ORDERS.

Quantified comparisons frequently contain inequalities of the form
>ANY, <=ALL etc. Removing correlations for such queries gives
us expressions of the form (R SJ(R.a .cmp. S.a) S) or (R ASJ(R.a .cmp. S.a) S).
Consider the case when .cmp. is one of (<, >, <=, >=). A semijoin or
an antijoin with such a predicate cannot use hash joins. It may be
very expensive to implement it using a merge or an index-lookup
join if the proper indices do not exist. We may therefore have to
implement it as a nested loop join. An interesting strategy that can
be used to improve performance in this case is to use a max or a min

1000

aggregate on the relation S. e.g. (R SJ(R.a > S.a) S) can be transformed
to (R SJ(R.a > x) (GΦ,x=min(S.a) S)). Here is the intuition behind this trans-
formation. (R SJ(R.a > S.a) S) outputs a row of R if there is at least one
row of S for which R.a > S.a. But in that case it is enough to check
if R.a > min(S.a). The min/max aggregate can be calculated once
and saved so that the relation S does not have to be scanned multiple
times. The same strategy works for antijoins.

7. OPTIMIZING PARAMETERIZED
UNIONS (SUBQUERY DISJUNCTIONS)
In the previous section we discussed cases where the semijoin or
antijoin predicate was a disjunction. A more complicated case is
when the disjunctions of the original query are subqueries.

Consider a query where we try to get a count of LINEITEMs which
were either shipped after the commit date or were shipped more
than 90 days after the order date.

Example 7.1:
SELECT COUNT(*)
FROM LINEITEM
WHERE L_SHIPDATE > L_COMMITDATE
 OR EXISTS (SELECT *

FROM ORDERS
WHERE DATEADD(DD, 90, O_ORDERDATE) <
L_SHIPDATE AND O_ORDERKEY =
L_ORDERKEY)

As we saw earlier, whenever we have subqueries in a disjunction,
we end up with a tree of the form

R ApplySJ (E1(r1) UA E2(r2)UA E3(r3) …)

where ri are the correlated columns of R and Ei are the transformed
subqueries. When we try to remove correlations from a tree of this
form, we encounter two possibilities.

7.1 Simple correlation
The simple correlation case is when we can transform

E1(r1) UA E2(r2)UA E3(r3) … → σp(r) (F1 UA F2UA F3…)

where the expressions Fi are free of correlation from R. This is pos-
sible if and only if the following two conditions are met: (1) The
correlated predicates in each branch are identical in form except for
the columns of Ei that they use. (2) The columns of Ei that they use
are such that the ones appearing in the same position in the corre-
lated predicates are mapped to the same resulting column by the
union-all. If we manage to do this transformation our expression
becomes

R SJp(r) (F1 UA F2UA F3 …)

and we have reduced our problem back to the optimization of semi-
joins.

7.2 Complex correlation
Given the severe restrictions on the predicates in the previous sec-
tion, such a transformation is possible only in very few cases. For
example it does not work for our query because the correlated predi-
cate on one branch is L_SHIPDATE > L_COMMITDATE while
that on the other branch is DATEADD(DD, 90, O_ORDERDATE)
< L_SHIPDATE AND O_ORDERKEY = L_ORDERKEY. The
two predicates are not even close in form to each other and the only
way that they can be pulled above the union-all is by introducing
new columns to distinguish the two branches. This method of intro-

ducing columns to remove correlation generates a complicated dis-
junction which can neither be used for set based implementations
like hash and merge join, nor for index lookups. Therefore, we will
not discuss it further in this paper.
A more common case, like our example, is when we cannot pull the
correlations above the union-all, but we can remove correlations for
some (or maybe all) of the expressions R ApplySJ Ei(ri). In that case
we can use the distributivity of Apply over union-all to transform

R ApplySJ (E1(r1) UA E2(r2)UA E3(r3) …) →

 (R ApplySJ E1(r1)) U (R ApplySJ E2(r2))U (R ApplySJ E3(r3)) …

and then remove correlations from individual expressions. Note that
distributing an ApplySJ requires that we change a union-all to a dis-
tinct-union to avoid the duplicates generated by the multiple occur-
rences of R. The advantage of this transformation is that for the sub-
expressions for which we can remove correlations, all the optimiza-
tion strategies in our repertoire, like set based implementation, re-
verse lookup etc. are available. The disadvantage of course is that
the relation R gets duplicated many times and therefore has to be
either evaluated multiple times or spooled.
The paper [12] suggests an interesting way of avoiding the duplica-
tion of relation R by using a bypass operator. The query is converted
into a DAG where the bypass operator dispatches the rows to the
branches of the DAG and a union-all at the top combines them to-
gether again. The bypass operator is nice in its generality, but we
think that there are two issues with it. The first issue relates to query
execution engines that use the pull model i.e. each operator asks its
child for a row (pulls a row) whenever it needs one. The union-all
which combines the rows from the two streams that are created by
the bypass operator cannot be implemented as a pull operator unless
all but one of its streams is spooled away. Otherwise it has to be
clairvoyant about which of its child will produce the next row. This
means that in reality it has to spool data and cannot avoid duplica-
tion. The other issue is that the bypass operator makes reverse look-
ups impossible. It blocks the access to the original relation into
which we can do reverse lookups.
In case both strategies described in this section, that allow us to
remove correlations from disjuncts, do not work, we can still do
some minor optimization. The ApplySJ operator can be implemented
such that it stops reading its right child as soon as it gets a row back.
This allows us to shortcut evaluation of unnecessary expressions. If
we reorder the children of the union-all such that either cheaper sub-
expressions or the sub-expressions that are most likely to return
rows are evaluated first, we can save the cost of evaluating the ex-
pensive sub-expressions in many cases.

8. OPTIMIZING GENERAL APPLY
As we discussed earlier there are cases where the correlation cannot
be removed and the only option available is to execute the corre-
lated query as a nested loop join. Even after the correlation is re-
moved, the join predicate may be an inequality which prevents us
from using the set based join algorithms like hash and merge. In
addition, in some situations it’s more efficient to evaluate the query
as a straightforward Apply than in a set-based fashion. In all these
situations, we can still improve on a naïve nested loop implementa-
tion. In fact Microsoft SQL Server utilizes several mechanisms to
optimize the IO and throughput of queries with nested loop joins.

1001

8.1 Caching
In many situations, we can efficiently avoid a lot of IO if we cache
the results for the inner side of the nested loop operator. If the sub-
query contains no correlations, e.g. when the query processor suc-
cessfully decorrelates the subquery, then a simple caching mecha-
nism is appropriate and will be chosen if the subquery is complex
enough, and the result set small enough, that is worth caching. This
caching mechanism is applicable and utilized in a wide variety of
plans beyond nested loop joins and will not be discussed here.
If there are correlations, the query processor might also cache the
results in a temporary index that is keyed on the correlated columns
(aka “memoize” the results as described in [16], [17]). The query
processor in this case takes into consideration the cost of seeking
into this temporary index for each outer reference, as well as the
cost of building the index itself. As hinted at in [14], these are com-
plex decisions and need to be decided on a case-by-case basis, but
this complexity is overcome by the cost-based approach of the Mi-
crosoft SQL Server query optimizer.

8.2 Asynchronous IO (Prefetch)
With modern server IO subsystem, there are often many more disk
controllers than CPU’s available for query processing. Utilizing
these disk controllers efficiently results in big gains in query proc-
essing throughput and response time. In order to achieve that, many
database products (including Microsoft SQL Server) issue asyn-
chronous IO operations while keeping the processing thread busy
processing other rows.
When implementing an Apply operator, Microsoft SQL Server
utilizes this in the following way: whenever a row is obtained from
the outer input to the Apply, this is used to issue a prefetch request
for the required pages of the corresponding underlying table in the
subquery so that the row is already in-memory by the time the sub-
query is ready to process it. Consider the following example:

Example 8.1:
SELECT S_ACCTBAL, S_NAME, P_PARTKEY, P_MFGR,
S_ADDRESS, S_PHONE, S_COMMENT
FROM PART, SUPPLIER, PARTSUPP
WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY
AND P_SIZE = 1
AND P_TYPE LIKE '%TIN'
AND PS_SUPPLYCOST = (
SELECT MIN(PS_SUPPLYCOST)

 FROM PARTSUPP, SUPPLIER
 WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY)

This is a simplified version of Query 2 of TPC-H, which is just
asking for the suppliers who can supply tin parts of a specific size at
the lowest cost. In this case, because of the restrictive filter on the
PART table, Microsoft SQL Server estimates that it is best to
calculate the minimum supply cost for each qualifying part, then use
the part key to seek into the index for the PARTSUPP and filter the
qualifying rows on the cost. In other words, let

R = GP_PARTKEY;m=min(PS_SUPPLYCOST) (PART JN SUPPLIER JN
PARTSUPP)

SQL Server evaluates:
R ApplyJN (σ[R.m = PS_SUPPLYCOST]
(SeekR.P_PARTKEY=PS_PARTKEY PARTSUPP))

(The plan for evaluating R is not relevant to this discussion).

To improve the efficiency of this query, the query processor uses IO
prefetching as follows: for each (P_PARTKEY, m) tuple obtained
for R, an asynchronous prefetch request is issued for the PART-
SUPP table to fetch the suppliers for this part into memory immedi-
ately for use by the right subtree of the Apply when it is ready. So in
a production server with 4 CPU’s and 8 disk controllers, this plan
can easily utilize all these resources efficiently to process this query
by keeping all the disk controllers fetching pages from the PART-
SUPP tables (assuming they are not cached before this query) while
the CPU’s are processing the rest of the query tree.

8.3 Improving locality of reference
(Batch Sort)
Introducing a local (batch) sort operation for better performance is
another mechanism to reduce the IO cost of query processing with
nested iterations. With this technique, Microsoft SQL Server locally
sorts portions of the outer input of Apply operators (where it feels
this will be effective) in order to localize the references in the inner
subtree. This technique has been shown by researches to give sig-
nificant performance gains for nested loop join performance [15],
and indeed we have observed such performance gains when the
query processor judiciously applies this technique to select queries –
for example, this technique is not applied if the inner side is so small
that it would fit in memory anyway so it’s not worth the effort of the
extra sorts.
Continuing the example above, the query processor would apply
this technique to the Apply operator as follows: for each set of tu-
ples (P_PARTKEY, m) obtained from the outer subtree, the query
processor sorts them in ascending order of P_PARTKEY before
passing each row to the inner subtree (and before issuing the pre-
fetches). This has the advantageous effect that sets of rows within a
page in the PARTSUPP B-tree are read together, reducing random
IO and the total number of pages accessed. The size of each sorted
batch is ramped up dynamically so the query processing starts with
small batches that pipeline the first few rows quickly up the query
plan, then the size of each batch gets bigger to better improve local-
ity of reference and sequential IO.

9. SUMMARY OF STRATEGIES
This paper has described a large number of strategies that are used
in SQL Server to efficiently evaluate queries that contain subque-
ries. Here is a summary of these strategies along with the section
number where they are described. In the next section we show ex-
perimental results for some of these techniques.

Operator Strategies
Semijoin Forward-lookup (Section 6.2)

Reverse-lookup (Section 6.2)
Set-based evaluation (Section 6.2)
Conversion to inner join (Section 6.1)
Use of max/min (Section 6.2)

Antijoin Forward-lookup (Section 6.2)
Set-based evaluation (Section 6.2)
Split antijoin with disjunction (Section 6.2)
Use of max/min (Section 6.2)

Join with GroupBy See [9]

Apply Subqueries in disjunctions. (Section 7)
Caching the PRE (Section 8.1)
Prefetching the PRE (Section 8.2)
Sorting the outer relation (Section 8.3)

1002

10. EXPERIMENTAL EVALUATION
10.1 Experimental Setup
The experiments were performed on a Dell 2950 Dual core 2.66
MHz machine with 16 GB RAM running Microsoft Windows 2003
X64 SP1. We used the TPC-H benchmark schema for our experi-
ments and populated the database with the TPC-H data at scale 30
GB. We created indexes on the tables as required by the TPC-H
benchmark specification and provided additional indexes to facili-
tate all navigational and set-oriented subquery execution strategies
relevant to this paper.

10.2 Execution strategies for semijoin
To compare the different strategies for evaluating semijoins, we
relied on variants of the query in Example 6.1. The variants modi-
fied the filter predicates in the query so that their selectivity on the
ORDERS and the LINEITEM tables can yield up to 20 rows (high
selectivity) or up to 2,000,000 rows (low selectivity).
The different strategies compared were: forward lookup, reverse
lookup and set-based join (viz. hash join). For each strategy, the
response time was measured in milliseconds. Before running these
queries we made sure that supporting indexes for all strategies were
present. The above chart plots response times for the strategies and
also indicates which strategy was automatically picked by the SQL
Server query optimizer.
As expected, lookup from the table with the highly selective predi-
cate into the other table yields the best performance, while set-based
evaluation gives good performance when neither predicate is selec-
tive enough to do a small number of lookups.

Note that the difference in performance between the best alternative
and the second best strategy is dramatic: it is at least one order of
magnitude for the selectivity combinations explored in the above
figure.
Another important observation is that no single execution strategy
provides satisfactory performance across all selectivity combina-
tions. Cost-based optimization therefore is required to inspect selec-
tivity estimates and pick an appropriate strategy for subquery execu-
tion. As the results show, Microsoft SQL Server succeeds at this
task as it consistently chooses the best performing strategy for the
selectivity ranges investigated.

10.3 Execution strategies for antijoin
We conducted this series of experiments with variants of Example
6.1. The variants again modified the filter predicates of the query so
that their selectivity on the ORDERS table varies in from 10% of
the rows to 100%. We compared query performance when the anti-

join was applied directly versus when the optimizer splits the anti-
join and does a set-based join (hash join).

As the figure shows, splitting the antijoin in this case gives a per-
formance gain of an order of magnitude and scales much better
compared to the straightforward evaluation.

10.4 Strategies for subquery disjunctions
We evaluated the performance of the variants of Example 7.1 when
the optimizer transformed the disjunction as explained in Section
7.2 compared with when this transformation was disabled. For this
experiment we varied the percentage of qualifying rows from the
LINEITEM table from 20% to 100%.
We see that in this query splitting the disjuncts gave an
improvement of more than an order of magnitude and better scaling
performance than the straightforward implementation.

10.5 Optimizations for general Apply
To evaluate the effect of the two optimizations described for im-
proving the performance of Apply, we ran Example 8.1 using the
reverse lookup strategy. Variants of the query modified the predi-
cate on the LINEITEM table to range from high to low selectivity.
We compared the response time of straightforward Apply to Apply
with Prefetch and Batch sort.

1003

As the figure shows, these optimization techniques yield a signifi-
cant performance gain (about 88% reduction in response time).

11. CONCLUSIONS
Subqueries are a powerful addition to the SQL language. They fa-
cilitate query formulation in important application scenarios such as
decision support or automatic query formulation by ad-hoc report-
ing tools. This paper has explained how Microsoft SQL Server 2005
represents subqueries by introducing the Apply operator to its inter-
nal algebra. We have discussed how Apply is transformed into the
common join operators such as inner join, outer join, semi-join or
anti-join during query decorrelation. The main contribution of the
paper is our detailed discussion of (1) how alternative query plans
for subqueries are generated by equivalence rewrites at the logical
query optimization level, (2) which different execution strategies
they can be mapped to at the physical level, and (3) which further
performance optimizations they lend themselves to. Our experimen-
tal evaluation shows that proper choice of execution strategy from
forward or reverse lookup plans to set-oriented processing is essen-
tial for satisfactory performance. It turns out that no single strategy
yields acceptable performance across important selectivity ranges.
Therefore, all aforementioned execution strategies for subqueries
need to be available to an industrial-strength query processor and
cost-based optimization is crucial to pick the appropriate alternative.
In the future, we expect to see even increasing interest into the topic
of subquery execution as relational database vendors gain more
experiences with "nested loop languages" for semi-structured data
processing such as XQuery. Like Microsoft SQL Server, other ven-
dors have also chosen to map XQuery to an (extended) relational
algebra inside the database engine. With XQuery's navigational
programming paradigm and its existentially quantified semantics for
filter predicates, subqueries are a frequent guest in the underlying
relational query algebra. The techniques and strategies for subquery
optimization and execution discussed in this paper will help data-
base vendors achieve competitive performance as their customers

deploy their semi-structured offerings to more challenging applica-
tion scenarios.

12. REFERENCES
[1] International Organization for Standardization (ISO): Database

Language SQL, Document ISO/IEC 9075: 1992.
[2] XQuery 1.0: An XML Query Language,

http://www.w3.org/TR/xquery/
[3] W. Kim. On Optimizing an SQL-like Nested Query. ACM

TODS, 7, September 1982.
[4] W. Kießling: On Semantic Reefs and Efficient Processing of

Correlation Queries with Aggregates. VLDB 1985: 241-250.
[5] R. A. Ganski, H. K. T. Wong: Optimization of Nested SQL

Queries Revisited. SIGMOD Conference 1987: 23-33.
[6] G. von Bültzingsloewen: Translating and Optimizing SQL

Queries Having Aggregates. VLDB 1987: 235-243.
[7] M. Muralikrishna: Improved Unnesting Algorithms for Join

Aggregate SQL Queries. VLDB 1992: 91-102.
[8] P. Seshadri, H. Pirahesh, T. Y. C. Leung: Complex Query

Decorrelation. ICDE 1996: 450-458
[9] C. A. Galindo-Legaria, M. Joshi: Orthogonal Optimization of

Subqueries and Aggregation. SIGMOD Conference 2001: 571-
581

[10] J. Zhou, P. Larson, J. Goldstein, L. Ding: Dynamic Material-
ized Views, to appear in: ICDE 2007.

[11] C. A. Galindo-Legaria, A. Rosenthal: Outerjoin Simplification
and Reordering for Query Optimization. ACM TODS 22(1):
43-73 (1997)

[12] M. Brantner, N. May, G. Moerkotte: Unnesting Scalar SQL
Queries in the Presence of Disjunction, to appear in: ICDE
2007.

[13] C. A. Galindo-Legaria. Parameterized queries and nesting
equivalences. Technical report, Microsoft, 2001. MSR-TR-
2000-31.

[14] Goetz Graefe: Query Evaluation Techniques for Large Data-
bases. ACM Comput. Surv. 25(2), 1993: 73-17.

[15] David J. DeWitt, Jeffrey F. Naughton, Joseph Burger: Nested
Loops Revisited. PDIS 1993: 230-242.

[16] D. Michie: “Memo” Functions and Machine Learning. Nature
(218), April 1968: 19-22.
Hellerstein, J. M.,Naughton, J. F.: Query execution techniques
for caching expensive methods. SIGMOD Conference 1996:
423-434.

1004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

