Least Expected Cost Query Optimization:
What Can We Expect?

Francis Chu>k

Joseph Halpern*

Johannes GehrkeT

Department of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853-7501, USA

{fcc,halpern,johannes}@cs.cornell.edu

ABSTRACT

A standard assumption in the database query optimization
literature is that it suffices to optimize for the “typical”
case that is, the case in which various parameters (e.g.,
the amount of available memory, the selectivities of predi-
cates, etc.) take on their “typical” values. It was claimed in
[CHS99] that we could do better by choosing plans based on
their expected cost. Here we investigate this issue more thor-
oughly. We show that in many circumstances of interest, a
“typical” value of the parameter often does give acceptable
answers, provided that it is chosen carefully and we are inter-
ested only in minimizing expected running time. However,
by minimizing the expected running time, we are effectively
assuming that if plan p; runs three times as long as plan pa,
then p; is exactly three times as bad as p2. An assumption
like this is not always appropriate. We show that focusing
on least expected cost can lead to significant improvement
for a number of cost functions of interest.

1. INTRODUCTION

Database queries are typically specified declaratively, so it
is up to the DBMS to choose a good plan to carry out the
query [SAC*79]. Given a query, a cost-based optimizer has
to pick a plan of least cost. To do this, the optimizer has to
estimate the cost of a plan. One problem is that the cost of
a plan depends on various parameters (e.g., the amount of
available memory, the selectivities of predicates, the sizes of

*Work supported in part by NSF under grants grants IRI-
96-25901 and IIS-0090145, and by the DoD Multidisci-
plinary University Research Initiative (MURI) program ad-
ministered by the ONR under Grant N00014-01-1-0795.

TWork supported in part by DARPA under contract F30602-
99-2-0528, the Cornell Information Assurance Institute, an
IBM Faculty Development Award, and by gifts from Mi-
crosoft and Intel.

the tables, etc.), some of whose value the optimizer might
not (or cannot) know at query optimization time. Tradi-
tionally, an optimizer assumes (at optimization time) that
the parameters will take on certain specific values (at run
time), and then computes an optimal plan based on the as-
sumption that the parameters actually take on these values.
How these values are chosen varies from implementation to
implementation. In [CHS99], this approach was called least
specific cost (LSC) optimization. Of course, if the perfor-
mance of the plan chosen can vary significantly, depending
on the parameter values, then the plan chosen by an LSC
optimizer might be far from optimal.

We may be able to do better if we have a probability dis-
tribution on the possible parameter values (which is often
a quite reasonable assumption in practice). In this case,
one obvious choice of specific value for an LSC optimizer to
take is the expected value of the parameter (or perhaps the
modal value that is, the one that occurs most frequently).
However, if the goal is to find a plan of least expected run-
ning time, then choosing this specific value is not necessarily
the right thing to do. In general, the best plan under the
assumption that the parameter takes on its expected value
is not necessarily a plan with least expected running time,
as the following example shows.

ExXAMPLE 1.1. Suppose that we have two plans, p; and
p2, such that if there are at least 1000 pages of memory
available, p1 takes 280 seconds to run, and p> takes 300 sec-
onds to run, and if the amount of memory is between 633
pages and 1000 pages, p1 takes 560 seconds to run and ps
(still) takes 300 seconds to run. Suppose that, by obser-
vation, the probability of having 2000 pages is 0.8 and the
probability of having 700 pages is 0.2. The expected value
of the amount of memory available is 1740 pages. If the
optimizer assumes that there are 1740 pages of memory, it
will choose p1. However, the expected running time of p; is
0.8(280) + 0.2(560) = 336, while the expected running time
of p2 is 300.

In light of such examples, least expected cost (LEC) opti-
mization—where plans are chosen based on their expected
cost instead of their cost at a specific parameter setting

was advocated in [CHS99]. The advantage of LEC opti-

mization is that the plan it picks has the least expected
cost among the plans under consideration. So if the query
is compiled once and executed many times (as is often the
case), then the average running time of the query is likely
to be the least among all the candidates considered. Tech-
niques for obtaining LEC plans, given a probability distri-
bution over the parameters, were also presented in [CHS99];
these all extend existing optimizers in simple ways and in-
cur relatively little overhead in optimization time. (And,
of course, since LEC plans are just ordinary plans as op-
posed to plans that require run-time decision-making—there
is no run-time overhead.) If the probability distribution over
the parameters is given by histograms, the actual overhead
depends on the number of buckets used in the histograms;
LSC optimization is essentially LEC optimization with one
bucket.

In this paper we investigate the relationship between LEC
optimization and LSC optimization more thoroughly, both
empirically and analytically. Our contributions are as fol-
lows:

1. One surprise that we encountered is that LSC opti-
mization can produce LEC plans (at least in princi-
ple) in a wide variety of situations. This prompted us
to characterize when LSC optimization can yield LEC
plans.

2. We exhibit, both through experiments and analytical
results, scenarios in which the above conditions hold.
This is of special interest for practitioners, since it
shows that, in many cases, current LSC optimizers can
produce LEC plans with minimal modification. We
stress that current optimizers do not typically produce
LEC plans under these conditions.

3. The scenarios above all depend on the cost being linear
in terms of running time (which is a standard assump-
tion in the literature). We argue that this is not always
appropriate through motivating examples, and we in-
vestigate some consequences of having non-linear cost
functions.

The rest of this paper is organized as follows. In Section 2.1
we report the results of experiments showing that LSC op-
timization can produce LEC plans in centralized databases.
In Section 2.2, we show that this continues to be true even
in a distributed setting in which the transmission time can
be modeled probabilistically. Then in Section 2.3 we char-
acterize when it is feasible to produce LEC plans using LSC
optimizers. The results in Section 2 depend critically on the
assumption that the cost is just running time. In Section 3,
we show that full LEC optimization is in general necessary
if the cost function is not linear in the running time. We
then discuss, in Section 4, some challenges that arise when
the cost function is not linear in the running time. Finally,
in Section 5 we offer some concluding remarks and possible
future directions.

2. LECTHROUGH LSC

We originally planned to construct an LEC prototype to
benchmark the performance of LEC optimization using the
TPC-H database on a commercial DBMS. One of the things

we did was to fine-tune the cost formula we found in text-
books. (It is well known that textbook formulas do not
accurately describe the cost of joins; see [GBC98, LG98].)
As we started doing these experiments, however, we ran into
some findings that altered the course of our research.

2.1 TheExperiments

We ran all our experiments on a machine equipped with
two Pentium Pro processors running at 200MHz, 128MB
of RAM, Windows NT 4.0 SP5 1381, and an 8.9GB SCSI
hard disk. The page size of the DBMS was set to 8KB
and we could set the available buffer memory from 4MB
to 127MB. (Due to overhead of the operating system, we
varied the buffer pool size only from 4MB to 80MB. The
DBMS sometimes refuses to run certain memory-intensive
operators if the size of the buffer pool is below 5MB.) The
DBMS allows users to force a given plan to be used by giving
“hints” to the optimizer. The database we used was the
TPC-H database with the scale factor set to one. (We refer
the reader to [TPPC99] for the details of TPC-H.)

2.1.1 Amount of Available Memory

Since the amount of available memory is difficult to predict
[G. Lohman, private communication, 1998], the discussion
in [CHS99] focused on this parameter. When we ran the
experiments to fine-tune the cost formulas we have for join
methods, we discovered that there is often a dominant plan;
that is, sort-merge (or indexed nested-loop) is always better,
even though both indexed nested-loop and sort-merge ex-
hibit discontinuous behavior, as one would expect, when the
amount of memory becomes low (see Figure 1). Of course,
we also have cases in which no join method dominates an-
other; that is, the curves cross (see Figure 2).

Clearly there is no need for LEC optimization when there is
a dominant plan. Using any value of the parameter in LSC
optimization will give the optimal plan. How much LEC
optimization helps when there is a crossover depends on the
probability distribution of memory sizes. For example, con-
sider TPC-H Query 12, whose running time for different
values of memory is shown in Figure 2.! Note that sort-
merge does better than indexed nested-loop in all memory
settings except at 5SMB (the DBMS refuses to execute either
join method below 5MB). So if there is significant probabil-
ity that the amount of memory available is low (in this case,
around 5MB), then LEC optimization will help.

In our experiments, the crossovers for memory typically hap-
pen at the low end of the scale. This suggests that, if the
parameter of interest is memory, as long as the probability
of a memory shortage is low enough for this possibility to be
safely ignored, then there will typically be a dominant plan.
(This comes out in all our other experiments, not just the
experiments shown in Figures 1 and 2.) Thus, in this case,
LSC optimization suffices.

One might wonder if this phenomenon is just an artifact of
the experimental setup we used. This is not so. The text-
book cost formula for indexed nested-loop is essentially the

! Actually, this is the running time for a slight modification
of Query 12; we added “and o-totalprice < 15000” to the
predicate, since sort-merge dominates indexed nested-loop
for the original query.

700

" indexed ne;ted—loop A

\ sort-merge ——x——
600 \
o
B 400 -
2 an
E A
SBIN
£ |
é 200 — NS S
Kot e X T B ity SUTES SR B R m
100
0

0 10 20 30 40 50 60 70 80
memory (MBs)

1600

"indexed nes[ed‘—loop A
1400 ,‘ sort-merge --—--x---

1200

1000

800 17

600

running time (seconds)

200 [b
200 [t

0 10 20 30 40 50 60 70 80
memory (MBs)

Figure 1: Running time for ORDERS < LINEITEM

number of pages of the outer relation plus the number of
tuples in the outer relation that satisfies the selection pred-
icate, since for each of these tuples we will need to read a
page from the inner relation [UlI89]. (The textbook formula
does not give the running time, but instead a quantity that is
supposed to be directly proportional to running time.) This
quantity is clearly independent of memory. The rationale is
that if we are using indexed nested-loop, we assume that the
index fits in memory, so that we have to read only a page for
each tuple of the outer relation (that satisfies the selection
predicates). Once the amount of memory becomes so low
that the index no longer fits in memory, the running time
will clearly change. Figures 1 and 2 show that this is essen-
tially the case. The textbook formula for sort-merge involves
logarithms of the amount of memory, so they are not con-
stant with respect to memory (unlike indexed nested-loop).
However, the bases of these logarithms are the number of
pages available, so if we have a large amount of memory, the
formula is essentially constant for a large range of memory
values. The bottom line is that, according to textbook for-
mulas, there typically is a dominant plan when the amount
of memory available is sufficiently large.

212 Sdectivity

Another parameter we investigated is selectivity. Unlike
memory, the running time is not a step function, and it in-
creases as selectivity increases (whereas the running time de-
creases as memory increases). While it is often the case that
an optimizer might not know the selectivity of a particular
predicate due to a lack of statistics on the tables, this prob-
lem can be alleviated by keeping more detailed statistics or
by other techniques that compensate for the lack of statistics
by learning selectivities (e.g., see [CN00, SLMKO1]). There
is another source of uncertainty that cannot be dealt with
by keeping statistics on the database itself or by learning the
selectivities of predicates. Often an optimizer is faced with
a problem of optimizing a query template; that is, a query
with (user) input variables, such as embedded SQL con-
taining host language variables, or stored procedures that
accept inputs. In this case, the optimizer does not know the
value of the input parameters and must choose a plan in the
absence of that information. The problem is that the selec-
tivities of predicates in the query now depend on the input

Figure 2: Running time for TPC-H Query 12

values, and this uncertainty cannot be alleviated by keeping
detailed statistics about the database itself. However, if we
have distributions on the input values (either collected by
the DBMS or furnished by the users), then we can perform
LEC optimization.2

As an example of a query template, consider Query 5 from
the TPC-H benchmark (reproduced in Figure 3). The query
contains two parameters: [REGION] and [DATE]. Since
the attribute values in TPC-H are uniformly distributed,
the selectivity of [REGION] and [DATE] is essentially inde-
pendent of the parameter values. This is hardly surprising,
since TPC-H is designed to evaluate traditional optimizers,
which use LSC optimization. However, it is known that, in
practice, attribute values are not uniformly distributed. As
the following example shows, this can cause problems for
LSC optimizers.

EXAMPLE 2.1. Suppose that we have a database popu-
lated as follows:

e 20% of the orders have o_orderdate between 1992-01-01
and 1996-12-31,

o 80% of the orders have o_orderdate between 1997-01-01
and 1998-12-31, and

e within each of the above groups the distribution on
o_orderdate is uniform.

Suppose that the input distribution on [DATE] is
Pr([DATE] = y-01-01) = 0.2

for y € {1993, 1994, 1995, 1996, 1997}. If the optimizer
uses the expected value of the input, it will take 1995-01-01

2There are other ways of dealing with this problem; for
example, [INSS92] proposes an approach called parametric
query optimization. In that approach, an LSC plan is pro-
duced for each parameter value. The problem is that the
plan size grows, in the worst case, with the number of possi-
ble parameter values. Another problem with that approach
is that the optimizer must output plans for many parameter
values that are extremely unlikely to arise in practice.

select

n_name,

sum (l_extendedprice x (1 — l_discount)) as revenue
from

customer, orders, lineitem, supplier, nation, region
where

c_custkey = o_custkey

and l_orderkey = o_orderkey

and l_suppkey = s_suppkey

and c_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r-name = [REGION]

and o_orderdate >= [DATE]

and o_orderdate < [DATE] + interval 1 year
group by

n_name
order by

revenue desc;

Figure 3: TPC-H Query 5

as the representative. This translates to having selectivity
0.04, since the interval is one year and 4% of the orders
have o_orderdate in 1995. However, the expected selectivity
is actually 0.4(0.2) + 0.04(0.8) = 0.112. If we apply LSC
optimization under the assumption that the selectivity is
0.04, we are unlikely to get an optimal plan. [l

As Example 2.1 shows, the selectivity that corresponds to
the expected value of the input need not be the expected
selectivity in general. (Indeed, sometimes it does not even
make sense to talk about the “expected value” of the in-
put, since the input might not be numeric, as in the case
of [REGION].) Why should we care about the expected
selectivity at all?

PROPOSITION 2.2. If the cost of a plan is linear in the
(intermediate) table sizes, then an LSC plan for the expected
selectivity is an LEC plan.

Proof: This is immediate from the observation that (a) the
result size is linear in the selectivity and (b) expectation
commutes with linear functions. i

How reasonable is it to assume that the cost is linear in the
input table sizes? If we have enough memory, the textbook
formulas say sort-merge is essentially linear in the input ta-
ble sizes. The textbook formula for indexed nested-loop is
also essentially linear in the size of the outer input table.
Since our focus is on selectivity in this subsection, we do
assume that we have plenty of memory. (For sort-merge,
“enough memory” essentially means the amount of memory
is more than the square root of the larger relation. So if
pages are 8KB, 80MB of memory will handle tables up to
about 8GB. For indexed nested-loop “enough memory” es-
sentially means that the index fits in memory.) In Figure 4
we show the running time of TPC-H Query 5 against selec-
tivity; note that the running time is in fact almost linear in
the input size. The x-axis shows the number of rows in the

700 ‘ __ |

running time ——
y = (40/3)x + 60 ————--
600

500 e
%
400 ’ M

300 e

running time (seconds)

200

100

0 5 10 15 20 25 30 35 40
input size (thousands of rows)

Figure 4: Running time for TPC-H Query 5

ORDERS table that got selected. So we can convert the x-
axis to selectivity if we divide by the number of rows in the
ORDERS table, namely 1,500,000. (Since TPC-H is uni-
formly populated, the different values of [DATE] will select
roughly the same number of rows, so we made the length of
the interval a variable and varied that instead. The num-
ber of rows selected is roughly directly proportional to the
length of the interval, because the TPC-H database is uni-
formly populated.)

We said that to use an LSC optimizer to get LEC plans
we need to convert the input distribution to a distribution
on selectivity. To do this, we need to evaluate the selec-
tivity of each input. This can be done offline for a stored
procedure. For example, the input distribution for Exam-
ple 2.1 is Pr([DATE] = y-01-01) = 0.2 for y € {1993,
1994, 1995, 1996, 1997}. The selectivity distribution is
Pr(c = 0.4) = 0.2 and Pr(oc = 0.04) = 0.8, where o de-
notes the selectivity. If the number of input values is large
and it is infeasible to convert the distribution of input values
to the distribution of selectivities in one fell swoop, then we
can do it incrementally. In fact, if the DBMS actually gets
the distribution on the input values by collecting statistics
on user inputs, as opposed to being given a distribution by
fiat, then the DBMS can do the conversion while collecting
the statistics. (The approach used in LEO [SLMKO01] could
easily be extended to gather the desired statistics.)

2.2 Distributed Databases

As we saw in the previous section, careful selection of param-
eter values enables LSC optimization to produce LEC plans
when we have uncertainty about selectivity. In this sec-
tion, we show that the same thing happens when we have
uncertainty about communication cost in a distributed or
federated database.

A relatively recent trend has been a focus on distributed
databases or federated databases, such as Garlic HKWY97,
ROHY99]. In these databases, the tables are stored on (geo-
graphically) separate sites, connected by LANs or WANS,
so one issue that comes up when executing queries is where
operations get performed and which tables and intermedi-
ate results are shipped across the network. Even if we are

ultimately interested only in the running time of a query,
part of the running time is the time it takes to transmit
tables, which depends on the characteristics of the network.
For “local area clusters” or “server farms” there is a gener-
ally accepted model.® Let ¢ denote latency (essentially, this
counts the time to set up the connections, which is roughly
the time to transmit an empty packet), let s denote the size
of the table, and let b denote the available bandwidth. Then
the transmission time is

T, s,b)=L4+s/b (2.1)

[K. Birman and R. van Renesse, private communication,
2001].

The transmission time is certainly not linear in b, since b
occurs in the denominator; so, in general

E(1'(¢,s,b)) # T(E(),E(s), E(b)).

Unlike selectivity, we can no longer take the expected values
of these parameters if we want LEC plans. However, it turns
out that by choosing the appropriate parameters, we can
still use LSC optimization to produce LEC plans, as the
following proposition shows.

ProPOSITION 2.3. E(1'(4,s,b)) = E(¢) + E(s)E(1/b).

Once again, the moral of the story is that, if we choose
the right parameters (in this case s, ¢, and 1/b—mnote that
E(1/b) # 1/E(b) in general, so we cannot use b) and the
right specific values, we can use LSC optimization to pro-
duce LEC plans.

2.3 Summary: When Can L SC Optimization
Produce LEC Plans?

The examples in this section have shown that it is often
possible to produce LEC plans using LSC optimization. It
is natural to wonder when LSC optimization can be used to
produce an LEC plan.

Clearly a necessary condition is that there exists a parameter
setting whose LSC plan is an LEC plan: if such a setting
does not exist, then we cannot possibly produce an LEC
plan by using LSC optimization. In theory, this is also a
sufficient condition. In practice, however, it is not enough
that there exists some parameter setting: we must be able
to find one efficiently, say in linear time. Some conditions
that allow us to find such a parameter value in linear time
are the following:

C1: If there is a dominant plan (e.g., see Section 2.1.1),
then any value will do.

C2: If the cost of a plan is essentially linear in the pa-
rameter(s) of interest (e.g., see Section 2.1.2), then we
can use the expected value of the parameter(s), since
expectation is a linear operator.

3For the general case, such as the Internet, there is no prob-
ability distribution that describes the transmission time [K.
Birman and R. van Renesse, private communication, 2001],
so we focus on the cases when the uncertainty can be repre-
sented by a probability distribution.

C3: If the cost of a plan is a (sum of) product(s) of inde-
pendent parameters (e.g., see Section 2.2), then we can
use the expected value again, since the expected value
of the product is the product of the expected values
for independent parameters.

Sometimes parameters that do not fit the above criteria can
be transformed so that they do (see Section 2.2).

Note that while it is possible to produce LEC plans using
LSC optimization in the cases above, existing optimizers (in-
cluding the DBMS we used in the experiments) do not take
advantage of C2 and C3, since they do not use the expected
value of the appropriate parameters. Thus, existing LSC
optimizers are in general not producing LEC plans. These
results show that, in many cases, with relatively little over-
head, they could.

We stress that these observations do not say that any LSC
plan is as good as an LEC plan in the above situations: non-
LEC LSC plans will not do as well as an LEC plan in the
long run, by the Law of Large Numbers. Rather, we are
saying that in the situations above it is (relatively) easy to
obtain LEC plans via a traditional optimizer.

So far each scenario we covered satisfies one of the conditions
above. In the following sections, we investigate scenarios
in which LSC optimization, no matter how cleverly done,
cannot produce an LEC plan.

3. MORE GENERAL COST FUNCTIONS

An implicit assumption in [CHS99] and so far in this paper
is that “cost” is essentially “running time”. While this as-
sumption certainly seems reasonable and requires little mo-
tivation, is it always appropriate? If “cost” means “money”
and we are paying a fixed amount per time unit, then “run-
ning time” and “cost” are essentially interchangeable. By
minimizing expected running time, we are in fact minimiz-
ing expected cost. However, this is not always true, as the
following examples show. In these examples, given a plan
p, let r(p) be the random variable describing the running
time of p (r(p) is a random variable since it is a function
from parameters such as the amount of memory available or
the selectivity to the actual running time). We also assume
some distribution Pr on these underlying parameters. Thus,
we can talk about Pr(r(p) = 1 minute) the probability of
the set of underlying parameters for which the running time
of p is 1 minute.

ExXAMPLE 3.1. Consider an investor who needs the re-
sults of a query to decide whether to sell a certain stock
within 10 minutes. After that, he stands to lose millions of
dollars (either by not selling a stock that is going down or
by selling a stock that is going up). In this case, the user
does not care if a plan runs for 10 seconds or 9 minutes—
either will meet the deadline. The user also does not care
if a plan runs for 11 minutes or an hour—either will miss
the deadline. Now suppose that the optimizer has to choose
between plan p; and plan ps for the query. Suppose further
that

e Pr(r(p1) = 9 minutes) =1,

e Pr(r(pz2) = 10 seconds) = .5, and
e Pr(r(p2) = 11 minutes) = .5.

It is easy to see that pa has lower expected running time.
However, p2 also misses the deadline 50% of the time; the
user would surely prefer p1 over p2 while, unfortunately, an
optimizer that minimizes expected running time would just
as surely pick p2 over pi. In this case, clearly, minimizing
the expected running time is not the right thing to do. il

EXAMPLE 3.2. Suppose an optimizer has to choose be-
tween plan p; and plan ps2 for some query. Suppose further
that

e Pr(r(p:1) = .5 minutes) = .9,

(
e Pr(r(p;) = 10 minutes) = .1,
e Pr(r(p2) = 2 minutes) = .9, and
(

e Pr(r(p2) = 3 minutes) = .1.

It is easy to check that the expected running time of p;
is 1.45 minutes, which is less than the expected running
time of p2 (2.1 minutes). Thus, an optimizer that minimizes
expected running time will pick p1. But is this necessarily
the “right” choice? A user could get upset if a query that
usually takes 30 seconds were to suddenly take 10 minutes.
So while there is no deadline to meet in this case, it is not
so clear that minimizing expected running time is the right
thing to do. i

The LEC approach deals naturally with situations where our
goal is not necessarily to minimize running time. All that
is required is that the user specify a function characterizing
the “cost” of each possible running time. For example, in
Example 3.1, we can take the “cost” of getting an answer in
less than 10 minutes to be 1, and the “cost” of getting it in
more than 10 minutes to be 1,000,000. Once we have a cost
function, we simply choose the plan of least expected cost.
Of course, there is no reason to assume that the cost of a
plan depends only on running time. For example, it may
matter whether the plan is blocking or produces results at
a constant rate. Sometimes the order of the results may
matter for display purposes. All of these factors can be
taken into account in the cost function. As long as the plan
induces a probability on each of the relevant events and a
cost for each of them (e.g., a probability of blocking and
a cost for blocking), we can still sensibly define the notion
of the expected cost of a plan (and therefore perform LEC
optimization).

Formally, we assume that there is a plan-cost function that
takes as input a plan p and returns a random variable c(p),
the cost of plan p as a function of the parameter settings.
Up to now, we have assumed that ¢(p) = r(p), but now we
want to allow more general cost functions. We write E(c(p))
to denote the expected value of ¢(p) (with respect to some
underlying distribution Pr on the parameter space, which
will be clear from context). That is,

E(c(p)) € Y c(p)(s) Pr(s), (3.2)

seS

where S is the parameter space. (Note that the cost func-
tions in [CHS99] are not plan-cost functions: they map plans
and parameter values to costs instead of plans to random
variables; our approach here is a generalization of the one
in [CHS99].)

One obvious way to get a plan-cost function is to define a
time-cost function, that is, a function that characterize the
cost of running for ¢ time units.

ExAMPLE 3.3. Consider Example 3.1. As we said above,
one time-cost function that captures the cost of time to the
investor is

£ — 1 if t <10 and
c®=9 100 ift>10.

Given a time-cost function ¢, we can define a plan-cost func-
tion ¢ by taking c(p)(s) = c(r(p)(s)).

With such a plan-cost function, it is easy to check that
E(c(p)) =, c(t) Pr(r(p) = t). Thus, in this case,

E(c(p1)) =1 < 0.5(10°) 4+ 0.5 = E(c(p2)).

So if the optimizer minimized expected cost instead of ex-
pected running time, it would pick p1 instead of p2. il

Of course, once the cost function is no longer linear in run-
ning time, the expected cost of a plan is not the cost of the
expected running time of the plan, so we can no longer use
LSC in general.

The real question is often “Where are the costs coming
from?” In a situation like Example 3.1, they clearly need
to be obtained somehow from the user. This is a nontrivial
problem. In a case such as Example 3.1, it may be quite
possible for the user to provide a cost function. Moreover,
in this case, even a qualitative description of the cost func-
tion may be enough to provide useful guidance in choosing a
plan (and, in particular, to steer the system away from the
obvious plan which just minimizes expected running time).
However, in Example 3.2, it is not immediately clear how to
choose a plan-cost function that captures users’ annoyance
regarding variation in running time. We could, of course,
just take the plan cost to be the variance. Then the plan of
least cost would certainly be the one of minimum variance.
However, in that case, one “optimal” plan would be to just
slow down the computation to that of the worst case.* While
this will minimize variance, it will probably not make users
that happy. While not perfect, one way of capturing both
preferences of the users (i.e., minimizing running time and
minimizing variance) is to use a plan-cost function based on
a time-cost function that is exponential in the running time.
In Example 3.2, this will have the intended effect. To see
this, let ¢(x) = 2% and ¢ be based on c¢. Then

E(c(p1)) 0.9(2°%) +0.1(2'9)
0.9(2%) +0.1(2%)
E(c(p2)),

4While we may not always know the worst case, as long as
there is some upper bound on running time, we can use that.

v

so the optimizer would pick ps instead of p; if it minimized
expected cost. (Alternatively, we could just have the plan-
cost function take the variance of r(p) into account; we con-
sider this approach in Section 4.2.)

4. LEAST EXPECTEDUSER COST QUERY
OPTIMIZATION

As we saw in the previous section, the plan-cost function
c(p)(s) = r(p)(s) does not always adequately capture the
preferences of the user. If the plan-cost function is linear
in running time (i.e., c(p)(s) = f(r(p)(s)) for some linear
function f), then a dynamic programming algorithm & la
System R [SACT79] (an SRA) would produce an LEC plan.
(Note that an SRA is any algorithm based on the one in
[SACT79]; the algorithm in [SACT79] is not the only SRA.
For a concrete example of an SRA, see Algorithm C of
[CHS99].) Such an algorithm does not, however, produce
LEC plans in general, as the following example shows.

EXAMPLE 4.1. Suppose that we adopt the plan-cost func-
tion from Example 3.3. Consider a two-stage join. Suppose
that we have two possible plans, p; and p2, for the first
stage, and one possible plan, ps, for the second stage. Sup-
pose further that

e Pr(r(p:1) = 1 minute) = 0.9,
e Pr(r(p:) = 11 minutes) = 0.1, and
e Pr(r(p2) =9 minutes) = 1.

Note that this translates to E(c(p1)) = 0.9(1)4-0.1(10%) and
E(c(p2)) = 1, so it seems like we should pick p2 at the first
stage.

Now suppose that Pr(r(ps) = 2 minutes) = 1. Then

e Pr(r(pi;p3) = 3 minutes) = 0.9,
e Pr(r(pi;ps) = 13 minutes) = 0.1, and
e Pr(r(p2;ps) = 11 minutes) = 1.

So E(c(p1;p3)) = 0.9(1)40.1(10°%) while E(c(p2; p3)) = 10°.
The upshot is that, although ps is the LEC plan at the first
stage, p1;ps is the global LEC plan. |

Thus, in general, a (naive) SRA will not produce LEC plans,
since keeping only a local LEC plan at each level might not
give a global LEC plan. One way around this problem is
to restrict our search space by using the “black box” ap-
proach of [CHS99]. The key idea there is to generate a
relatively small set of candidate plans, in the hope that this
set includes the optimal plan (or, at least, a plan close to
optimal). We then compute the expected cost of each of the
plans generated, and choose the best one. The approach to
generating candidate plans used in [CHS99] was to run a
standard LSC query optimizer as a black box, for a set of
possible values of the parameters of interest. (That is, for
each setting of the parameters, we compute the optimal LSC
plan for that setting.) This approach can clearly be applied

with more general cost functions as well. Another approach
is to understand when dynamic programming will produce
LEC plans. We consider this issue in the remainder of this
section.

41 When Doesan SRA Produce LEC Plans?

Let p be a left-deep plan that computes the join A1 > Az X}

- > An. (As is standard in the literature, we focus on
left-deep plans.) Let p.sp be the subplan of p that computes
Aip > --- 1 Ap_1, let p.ap be the method used to access
Ap, and let p.jm be the top-level join method of p (i.e., the
method used to join A; > --- > Ap—q with Ay). Note that

r(p) = r(p.sp) + r(p.ap) + r(p.jm).

A plan-cost function ¢ is additive iff for all p; and pa,

c(p1;p2) = c(p1) + c(p2),

where the addition on the right is pointwise addition.® Of
course, if we identify the cost with the running time, then
the plan-cost function is certainly additive. Let an SRA plan
be one picked by an SRA.

THEOREM 4.2. If ¢ is additive, then an SRA plan is an
LEC plan.

Proof: This is essentially Theorem 3.3 in [CHS99]. 1

The plan-cost function in Example 4.1 is not additive, which
is why an SRA does not produce LEC plans in general.
Since in [CHS99] the plan-cost function is r(p), the SRA
in [CHS99] produced LEC plans. Given that plan-cost func-
tion are not additive in general, there are two questions.

Q1: How non-optimal is an SRA plan?
Q2: How do we get LEC plans in general?

To answer the first question, let

def
Le(p1,p2) = c(pi;p2) — (c(p1) +c(p2)). (4.3)
Note that T'c(p1, p2), like c¢(p1) and c(p2), is a random vari-
able, whose value depends on the settings of the underlying
parameters. As the next theorem shows, we can bound the
non-optimality of an SRA plan by a bound on T'c(p1,p2).

THEOREM 4.3. Let J = l><1i-“:+12 T; be a join of k+ 2 tables.
Suppose that (. < E(Tc(p1,p2)) < ¢* for all p1 and p2 such
that p1 s a plan that computes the join of i tables in J and
p2 s a plan to access some remaining table T; and to join T}
with the result of p1. Let pq be the SRA plan (for some fized
SRA) for l><li“:+12 T and let pe be an LEC plan for quif Ts;
then E(c(pa)) — E(c(pe)) < 2k(C* — C.),

Now consider Q2. The key problem is that, in general,
we could have that E(c(pi;p)) < E(c(pz2;p)) even though
E(c(p1)) > E(c(p2)); this means that if we prune p; be-
cause E(c(p1)) > E(c(p2)), then we will not consider p1;p,

"That is, (c(p1) +c(p2))(s) = c(p1)(s) + c(p2)(s).

which is better than pa;p. The following proposition shows
that, if E(c(p1)) — E(c(p2)) is big enough, then the reversal
cannot, happen.

PROPOSITION 4.4. Let J = <"1 Ty be a join of k + 1

tables. Suppose that (« < E(Tc(p1,p2)) < ¢ for all p1 and
pa2 such that p1 is a plan that computes the join of i tables in
J and p2 is a plan to access some remaining table T; and to
join T; with the result of p1. Suppose that Pt and pb are two
plans that compute the join of the same (k4 1) —i tables in
J, where 0 <i < k—1 (so Pt and pb are plans for a stage
k—1i join for the same set of tables). Then pt cannot be part
of an LEC plan if E(c(p})) — B(e(pb)) > i(C* — C.)-

Proposition 4.4 suggests a way to modify an SRA to get
global LEC plans. Suppose that the set of tables in the
join is S = {TI1,...,Tn}. For each U C S, let cy be the
expected cost of the LEC plans for U. For each U, keep
all plans p such that E(c(p)) — cv < (|S] — |[U(C* — ¢x)-
An easy induction shows that in fact we do have that for
each set U, the set of plans that we keep for U includes an
LEC plan. The following example shows how the modified
algorithm works for a two-stage join.

EXAMPLE 4.5. Suppose that
c(t):{t if t < 10 and

t+10 if ¢ > 10.
Let ¢ be the plan-cost function based on c. It is easy to check
that —10 < T'e(p1,p2) < 10 for all p1 and p2. Consider a
two-stage join. Suppose that we have three possible plans,
p1, p2, and p3 for the first stage and

r(p1) = 5 minutes) = 1.0,

Pr(

Pr(r(p2) = 2 minutes) = 0.5,
e Pr(r(pz) = 11 minutes) = 0.5,

Pr(

Pr(

r(ps) = 1 minutes) = 0.1, and

r(ps) = 20 minutes) = 0.9.

Then we have

e E(c(p1)) = (54 0)(1.0) = 5,
e E(c(p2)) = (2 +0)(0.5) + (11 4 10)(0.5) = 11.5, and
e E(c(ps)) = (14 0)(0.1) + (20 + 10)(0.9) = 27.1.

Thus, p; is the LEC plan at stage 1 and that
E(c(ps)) — E(c(p1)) = 22.1 > 20,

so we may drop ps.

Suppose that there is only one plan p at stage 2 and
Pr(r(p) = 6 minutes) = 1.
Then

e Pr(r(pi;p) = 11 minutes) = 1.0,

r(p2;p) = 8 minutes) = 0.5,

(
r(p2; p) = 17 minutes) = 0.5,
r(ps; p) = 7 minutes) = 0.1, and
(

Pr(
Pr(
e Pr(
Pr(r(ps; p) = 26 minutes) = 0.9.

So we have that

e E(c(p1;p)) = (11 + 10)(1.0) = 21,
o E(c(p2;p)) = (84 0)(0.5) + (17 + 10)(0.5) = 17.5, and
e E(c(ps;p)) = (7+0)(0.1) + (26 + 10)(0.9) = 33.1.

Note that we indeed have E(c(p1;p)) < E(c(ps3;p)), so we
can indeed prune p3 (since this is a two-level join). However,
E(c(p2;p)) < E(c(p1;p)), so we cannot prune p2 and still
obtain a global LEC plan. i

We have seen how we can deal with non-additive plan-cost
functions in this section. However, depending on the sizes
of ¢* and (., we might have to keep a lot of plans for each
subset. If we have some information about a non-additive
c, can we do better? In the next section, we investigate the
case of a cost function of particular interest, variance.

4.2 Variance Minimization

As we have argued, users might prefer plans with more sta-
ble behavior, so users might prefer plans with low variance
(see Example 3.2). As we have seen, just taking the plan-
cost function to be the variance of the running time leads
to a preference ordering over plans that would almost cer-
tainly not satisfy most users. However, another approach to
dealing with variance might be to consider a plan-cost func-
tion ¢ that takes into account both the running time and
the variance, for example c(p) = ar(p) + BV (r(p)), where
V(z) denotes the variance of random variable x. The user
can then choose a and (8 to reflect her relative preference
for running time vs. variance. If this is in fact the user’s
plan-cost function, then there is still the problem of choos-
ing the LEC plan. In this section, we show how to exploit
the properties of variance to get approximations to the LEC
plan.

Recall that V(2) = E(2%) — E(x)%. Let the covariance of p
and p2 be denoted by A(p1,p2). Recall that

Alz,y) < E(zy) — E(2)E(y).

Two random variables x and y are

e uncorrelated iff A(xz,y) =0,
e positively correlated iff A(x,y) > 0, and
e negatively correlated iff A(x,y) < 0.

Note that V(z+y) = V(2)+ V(y)+2A(z,y), so V(z+y) =
V(z)+ V(y) for uncorrelated random variables x and y. Let
ef
ev(p) € V(r()

(which means that cv(p) is a constant function, indepen-
dent of the parameter setting). The random variables that

we encounter in doing query optimization (i.e., the running
times of subplans of a particular plan p) are typically non-
negatively correlated (i.e., A(z,y) > 0). For example, at
any particular stage, the size of the result and the running
time both depend on the input sizes, and the bigger the in-
put sizes, the longer the running time and the bigger the
result. A bigger result means longer running time for the
next stage, so the running time of the current stage and the
next stage are also (non-negatively) correlated. For the rest
of this section, we will assume that all random variables are
pairwise non-negatively correlated.

Recall that Theorem 4.3 gives a bound on how non-optimal
an SRA plan could be that depends on E(I'¢c(p1,p2)). As
the following theorem shows, we can give a tight bound for
cv that does not depend on Iy, .

THEOREM 4.6. If E(cv(p1)) < E(cv(pz)), then
E(cv (p1;p))
E(cv(p2;p)) ~
and the bound s tight.

Theorem 4.6 shows that an SRA is off by at most a factor
of two for two-stage joins. The next theorem shows that the
error grows only linearly with respect to the depth of the
join.

THEOREM 4.7. [f E(Cv(pid‘i)) S E(Cv(pz"gfji)) fOT‘ all

1<i<nandl1<j <2, then for all 1 < ki,... kn <2,
E(cv(p1ii i Pnjn)) <n.
E(ev(P1kr; 3 Prokn))

Essentially, Theorem 4.7 shows that an SRA plan is no more
than a factor n away from any plan, so in particular, an SRA
plan is no more than a factor n away from an LEC plan.

5. CONCLUSIONS

We have investigated the extent to which we can use specific
parameter settings (i.e., LSC optimization) to produce LEC
plans. Somewhat surprisingly, we found that in many cases
of interest, LSC optimization could produce LEC plans.
However, we must be careful to choose the parameters and
their settings appropriately. This may involve transforming
a distribution on (say) user input values, to a distribution on
selectivity, so that we can compute the expected selectivity
with respect to this distribution. Current implementations
of query optimizers do not seem to take advantage of proba-
bilistic information, even when it is readily available, so that
even in cases where there is a reasonable specific setting of
the parameters that can be used, this is not the setting that
is actually used in the computation. (For example, it seems
that for the DBMS we tested, the setting it uses is the first
one given.) In cases where one plan dominates all others no
matter what the parameter value (as is the case in some of
the examples in Section 2.1.1), then the specific value chosen
does not matter. Otherwise, of course, it could make a big
difference. We see one of the contributions of this paper as
clarifying exactly when we can use LSC optimization (and
what parameter setting to use in these cases).

On the other hand, particularly in the case where running
time is not the appropriate cost measure, LEC optimization
becomes particularly important. It can be used to capture
things like deadlines, a preference for minimizing variance,
and features unrelated to running time, like the issue of
whether or not there is blocking [HHW97]. However, con-
sidering more general cost functions opens up a host of new
issues. For one thing, it requires constructing an appropri-
ate cost function, either from information provided by users
(which may be difficult to get) or through an understanding
of the application domain. Secondly, it requires designing
algorithms that can take advantage of this information to
produce high-quality plans. We are currently investigating
both problems.

Acknowledgements

We would like to thank Ken Birman and Robbert van Re-
nesse for discussions regarding transmission time in net-
works.

6. REFERENCES

[CHS99] F. Chu, J. Y. Halpern, and P. Seshadri. Least
expected cost query optimization: an exercise
in utility. In Proceedings of the 18th ACM
Symposium on Principles of Database Systems,
pages 138-147, 1999.

[CNOO] S. Chaudhuri and V. R. Narasayya.
Automating statistics management for query
optimizers. In Proceedings of the 16th
International Conference on Data Engineering,

pages 339-348, 2000.

[GBCY98] G. Graefe, R. Bunker, and S. Cooper. Hash
joins and hash teams in Microsoft SQL Server.
In A. Gupta, O. Shmueli, and J. Widom,
editors, VLDB’98, Proceedings of 24th
International Conference on Very Large Data

Bases, pages 86—97, 1998.

[HHW97] J. M. Hellerstein, P. J. Haas, and H. Wang.
Online aggregation. In J. Peckham, editor,
SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of

Data, pages 171-182, 1997.

[HKWY97] L. M. Haas, D. Kossmann, E. L. Wimmers,
and J. Yang. Optimizing queries across diverse
data sources. In M. Jarke, M. J. Carey, K. R.
Dittrich, F. H. Lochovsky, P. Loucopoulos, and
M. A. Jeusfeld, editors, Proceedings of 23rd
International Conference on Very Large Data
Bases, pages 276-285, 1997.

[INSS92] Y. Ioannidis, R. Ng, K. Shim, and T. K. Sellis.
Parametric Query Optimization. In
Proceedings of the 18th International
Conference on Very Large Data Bases, pages

103-114, 1992.

P. Larson and G. Graefe. Memory
management during run generation in external
sorting. In L. M. Haas and A. Tiwary, editors,
SIGMOD 1998, Proceedings ACM SIGMOD

[LGYS]

[ROH99)]

[SACTT79]

[SLMKO1]

[TPPC99)]

[U1189]

International Conference on Management of
Data, pages 472-483, 1998.

M. T. Roth, F. Ozcan, and L. M. Haas. Cost
models do matter: Providing cost information
for diverse data sources in a federated system.
In M. P. Atkinson, M. E. Orlowska,

P. Valduriez, S. B. Zdonik, and M. L. Brodie,
editors, Proceedings of 25th International
Conference on Very Large Data Bases, pages
599 610, 1999.

P. G. Selinger, M. Astrahan, D. Chamberlin,
R. Lorie, and T. Price. Access Path Selection
in a Relational Database Management System.
In Proceedings of ACM SIGMOD 79
International Conference on Management of
Data, pages 23-34, 1979.

M. Stillger, G. M. Lohman, V. Markl, and

M. Kandil. LEO—DB2’s LEarning Optimizer.
In P. M. G. Apers, P. Atzeni, S. Ceri,

S. Paraboschi, K. Ramamohanarao, and R. T.
Snodgrass, editors, Proceedings of 27th
International Conference on Very Large Data
Bases, pages 19-28, 2001.

Transaction Processing Performance Council.
TPC Benchmark™ H (Decision Support)
Standard Specification Revision 1.2.1.
Transaction Processing Performance Council,
1999.

J. D. Ullman. Principles of Database and
Knowledge Base Systems, Volume II: The New
Technologies. Computer Science Press, 1989.

