Materializ ed View Selection and Maintenance Using
Multi-Quer y Optimization -

Hoshi Mistry* Prasan Roy?t
'IIT-Bombay ?Bell Labs

S. Sudarshant!
3Univ. of Massachusetts-Amherst

Krithi Ramamritham?-3

hoshimistry@vsnl.comprasan@research.bell-labs.cosudarsha,kritfi@cse.iitbernet.in

ABSTRACT

Materializedviews have beenfound to be very effective at
speedingipqueriesandareincreasinglyjbeingsupportedy
commercialdatabaseand datawarehousesystems. How-
ever, whereaghe amountof dataenteringa warehousend
thenumberof materializedviews arerapidly increasingthe
time window availablefor maintainingmaterializedsiewsis
shrinking. Thesetrendsnecessitatefficient techniquedor
the maintenancef materializedviews.

In this paper we shov how to find an efficient plan for
the maintenancef a setof materializedviews by exploit-
ing commonsubepressionshetweendifferentview main-
tenanceexpressions. In particular we shov how to effi-
ciently select(a) expressionsandindicesthat canbe effec-
tively sharedpy transientmaterialization (b) additionalex-
pressionandindicesfor permanentmaterialization and(c)
the bestmaintenanceplan — incrementalor recomputation
— for eachview. Thesethree decisionsare highly inter-
dependentandthe choice of one affectsthe choiceof the
others. We develop a framework that cleanlyintegratesthe
variouschoicesin a systematicand efficient manner Our
evaluationsshav thatmary-fold improvementn view main-
tenancetime can be achieved using our techniques. Our
algorithmscan also be usedto efficiently selectmaterial-
ized views to speedup workloadscontainingqueriesand
updates.

1. INTRODUCTION
Materializedviews have beenfoundto be very effective in
speedingup query, aswell as updateprocessingand are

*Work partly supportecby a Govt. of India, Departmenibof Sci-
enceandTechnologyGrant,andby anIBM University Partnership
ProgramGrant. Thework of PrasarRoy wassupportedy an|BM
Researchrellowship. Ramamrithanwasalsosupportedn partby
NSFgrantIRI-9619588.

tWork donewhile theauthorwasat IIT-Bombay

increasinglybeing supportedoy commercialdatabasesys-
tems. Materializedviews are especiallyattractve in data
warehousingervironmentsbecauseof the query intensive
natureof datawarehousesHowever, whena warehouses
updatedthe materializedviews mustalsobe updated.Typ-
ically, updatesare accumulatechnd then appliedto a data
warehouseWhile the needto provide up-to-dateresponses
to an increasingquery load is growing and the amountof
datathatgetsaddedo datawarehousebasbeenincreasing,
thetime window availablefor makingthe warehouseip-to-
datehasbeenshrinking. Thesetrendscall for efficienttech-
niguesfor maintainingthe materializedviews asandwhen
thewarehousés updated.

Theview maintenanc@roblemcanbe seenascomputing
the expressionscorrespondingo the “delta” of the views,
giventhe “delta’s of the baserelationsthat are usedto de-
fine theviews. It is not difficult to motivatethatqueryopti-
mizationtechniquesareimportantfor choosingan efficient
planfor maintaininga view, asshovnin [15]. For example,
considerthe materializedview V. = (A X B X C). We
assumeasin SQL, thatrelationsA, B andC aremultisets
(i.e., relationswith duplicates). Given that the multiset of
tuplesdy; is insertedinto C, the changeto the materialized
view V' consistsof a setof tuples(4 X B) X §/; to bein-
sertednto V. Thisexpressiorcanequialentlybecomputed
as(A X &%) X B andby (B X §f,) X A, oneof which may
be substantialljcheapeto compute.Further in somecases
the view may be bestmaintainedby recomputingit, rather
thanby finding the differentialsasabove.

Our work addressethe problemof optimizing the main-
tenanceof a setof materializedviews. If therearemultiple
materializedviews, asis common,significantopportunities
exist for sharingcomputationbetweenthe maintenancef
differentviews. Specifically commonsubepressionshe-
tweentheview maintenancexpressionganreducemainte-
nancecostsgreatly

Whetheror not therearemultiple materializedviews, sig-
nificant benefitscanbe hadin mary casesy materializing
extra views or indices,whosepresenceandecreasenain-
tenancecostssignificantly The choiceof whatto material-
ize permanenthdepend®n the choiceof view maintenance
plans,andvice versa.The choicesof thetwo musttherefore
becloselycoupledto getthe bestoverall maintenancelans.

initial set of materialized views

incremental refresh recomputation recomputation

BCDE

Z transiently materialized view

. permanently materialized view

Figure 1. Example view maintenanceplan. Merge re-
freshesa view givenits “delta”.

To motivatethe techniquesve propose considerthe fol-
lowing example.

ExAMPLE 1.1. Supposave havethreematerializediiews
ViI=(AXBNXC(C),V2=(CXDXE)andV3 = (B X
C X D X E), andrelationsA and E areupdateddueto in-
serts. If themaintenancelansof thethreeviewsarechosen
independentlythe bestview maintenancelan (incremental
or recomputation¥or eachwould be chosen,without ary
sharingof computation.

In contrastasanillustration of thekind of plansour op-
timization methodsare ableto generateFigure 1 shavs a
maintenancelanfor theviews thatexploits sharingof com-
putation. Here, (A X B X () is refreshedncrementally
while (C X D X E) and(B X C X D X E) arerecom-
puted. Two extraviews, (B X C) and(D X E) have been
chosento be materialized. Of these,(B X C) is materi-
alizedtransiently andis disposedassoonasthe views are
refreshedthis could happerbecauseherearealsoupdates
on B andC which male it expensve to maintain(B X C)
asa materializedview. Theresult(D X E) hasbeencho-
sento be materializedpermanently andis itself refreshed
incrementallygiven the updatesto the relation E. lIts full
resultis thenusedto recompute(C X D X E) aswell as
(BXCXDMNXE). O

Contrib utions. The contributions of this paperare asfol-
lows:

1. We showhowto exploit transientmaterializationof com-
mon subepressionsto reducethe cost of view mainte-
nanceplans.

Sharingof subepressionsoccurswhen multiple views
arebeingmaintainedsincerelatedviewsmaysharesube-
pressions,and as a result the maintenancesxpressions
mayalsobe sharedFurthermoresharingcanoccureven
within the planfor maintaininga singleview if the view
hascommonsubepressionsvithin itself. Thesharedex-
pressiongould include differential expressionsaswell
asfull expressionsvhich arebeingrecomputed.

Here, transientmaterializationmeansthat theseresults
arematerializedduringtheevaluationof themaintenance
plananddisposednits completion.

2. We showhowto efficiently chooseadditionalexpressions

for permanenmmaterializationto speedup maintenance
of thegivenviews.

Justasthe presencef views allows queriesto be eval-
uatedmoreefficiently, the maintenancef the givenper
manentlymaterializedviews canbe mademoreefficient
by the presenceof additionalpermanentlymaterialized
views[12, 11]. Thatis, givenasetof materializedviews
to be maintainedwe chooseadditionalviews to materi-
alizein orderto minimize the overall view maintenance
costs.

Theexpressionghoserfor permanentaterializatiormay
be usedin only oneview maintenancelan, or may be
sharedbetweendifferentviews maintenancelans. We
outline differencesetweenour work and prior work in
thisarea,n Section2.

3. We showhowto determinghe optimalmaintenancelan
for eadh individual view, giventhe choice of resultsfor
transient/permanemhaterialization

Maintenancef amaterializeds/iew caneitherbedonein-
crementallyor by recomputationincrementaliew main-
tenanceanvolvescomputingthe differential (“delta’s) of
a materializedview, giventhe “delta’s of the baserela-
tionsthatareusedo definetheviews,andmemingit with
the old value of the view. However, incrementalview
maintenancenay not alwaysbe the bestway to maintain
a materializedview; whenthe deltasare large the view
may be bestmaintainedby recomputingit from the up-
datedbaserelations.

Our techniquegleterminethe maintenanceolicy, incre-
mentalor recomputationfor eachview in the given set
suchthatthe overall combinatiorhasthe minimumcost.

4. \\e showhowto male theabovethreechoicesin aninte-
gratedmannerto minimizethe overall cost.

We proposeframewnork thatcleanlyintegrateghechoice
of additionalviews to be transientlyor permanentlyma-
terialized,the choiceof whethereachof the givensetof
(userspecified)views mustbe maintainedncrementally
or by recomputationandthechoiceof view maintenance
plans.

5. We have implementedall our algorithms,and presenta
performancetudy usingqueriesrom the TPC-Dbench-
mark, shawving very significantbenefitsdueto our tech-
nigues.

Althoughthefocusof ourwork is to speedup view main-
tenance,and we assumean initial setof views have been
chosento be materializedour algorithmscanalsobe used
to chooseextra materializedviews to speedup a workload
containingqueriesandupdates.

Paper Organization. Relatedwork is outlinedin Section2.
Section3 givesan overview of the techniquegpresentedn
this paper Section4 describeur systemmodel,and how
thesearctspaceof themaintenancelansis setup. Sectiorb
shavs how to computethe optimal maintenanceostfor a
givensetof permanentlymaterializedviews, anda givenset

of views to be transientlymaterializedduring the mainte-
nance.Section6 describes heuristicthatuseshis costcal-
culationto determineghesetof viewsto betransientlyor per
manentlymaterializedsoasto minimize the overallmainte-
nancecost.Section7 outlinesresultsof aperformancetudy
andSection8 concludeghe paper

2. RELATED WORK

In thepastdecadetherehasbeenalargevolumeof research
on view maintenancetransientlymaterializedview selec-
tion (alsoknown as multi-query optimization)and also on
permanentlymaterializedview selection.This work is sum-
marizedbelov. However, eachof theseproblemshave been
addressethdependentlgincetheconcernsvereconsidered
to be orthogonal;no prior work, to the bestof our knowl-
edge,haslooked at addressingll of theseproblemsin an
integratedmanner

View Maintenance. Amongstthe earlywork on computing
the differentialresultsof operations/epressionsvasBlake-
ley etal. [2]. GuptaandMumick [7] provide a suney of
view maintenanceechniques.

Vista[15] describesiow to extendthe VVolcanoqueryopti-
mizer[5] to computethe bestmaintenancelan,but doesnot
considerthe materializationof expressionswhethertran-
sient or permanent. [10] and [15] proposeoptimizations
that exploit knowledgeof foreign key dependencieto de-
tect that certainjoin resultsinvolving differentialswill be
empty Suchoptimizationsareorthogonalandcomplemen-
tary to ourwork.

Transiently Materialized View Selection(Multi-Query
Optimization). Blakeley etal.[2] andRossetal. [11] noted
that the computationof the expressiondifferentialshasthe
potentialfor benefitingfrom multi-queryoptimization[14].
In the past,multi-queryoptimizationwasviewed astoo ex-
pensve for practicaluse.As aresult,[2] and[11] do notgo
beyondstatingthatmulti-queryoptimizationcouldbeuseful
for view maintenanceOurrecentwork in [13] provideseffi-
cientheuristicalgorithmsfor multi-queryoptimization,and
demonstrateshat multi-query optimizationis feasibleand
effective.

However, noneof the work on multi-query optimization
considersupdatesor view maintenancewhich is the focus
of this paper Usingthesetechniquesaively on differential
maintenancexpressionsvould be very expensve, sincein-
crementalmaintenancexpressionscanbe very large. We
utilize the optimizationsproposedby [13], but significant
extensionsarerequiredto to take updatecostsinto account,
andto efficiently optimizeview maintenancexpressions.

Permanently Materialized View Selection.Therehasbeen
muchwork on selectionof views to be materialized. One
notableearly work in this areawas by Roussopolou$12].

Rosset al. [11] consideredhe selectionof extra materi-
alizedviews to optimize maintenancef othermaterialized
views/assertiongndmentionsomeheuristics.Theproblem
of materializedview selectionfor datacubeshasseenrmuch
work, suchas[9], who proposea greedyheuristicfor the
problem. Gupta[8] extendssomeof theseideasto a wider

classof queries. Agrawal etal. [1] presenheuristicsor ma-
terializedview selection.

The major differencesbetweenour work and the above
work on materializedview selectioncanbe summarizedas
follows:

1. Earlierwork in this areahasnot addressedptimization
of view maintenanc@lansin the presencef othermate-
rializedviews. Earlierwork simply assumeshatthe cost
of view maintenancéor agivensetof materializedsiews
canbecomputedwithout providing ary details.

2. Earlierwork doesnot considerhow to exploit common
subpressiondy temporarilymaterializingghembecause
of theirfocuson permaneninaterializationIn particular
commonsube&pressionsnvolving differential relations
cannotbe permanentlymaterialized.

3. Earlierwork doesnot cover efficient techniquedor the
implementatiorof materializedsiew selectioralgorithms,
andtheir integrationinto state-of-the-artjuery optimiz-
ers. Shaving how to do theabove is amongsburimpor-
tantcontributions.

3. OVERVIEW OF OUR APPROACH

We extend the Volcano query optimization framework [5]
to generateoptimal maintenanceplans. This involvesthe
following subproblems:

1. Settingup the Seach Spaceof MaintenancePlans

We extendthe QueryDAG representationf [5] and[13],

which representgust the spaceof recomputatiorplans,
to include the spaceof incrementalplansaswell. This

new extensionusespropagation-basedlifferential gen-
eration, which propagateghe effect of one deltarela-
tion at atime in a predefinedorder Our approachhas
a lower spacecostof optimizationascomparedo using
incrementaliew maintenancexpressionsandis easier
to implement.

Propagation-basetifferentialgeneratioris explainedin
Section4.1, andthe extendedQuery DAG generationis
explainedin Sectiord.2.

2. Choosinghe Policy for Maintenanceand Computingthe
Costof Maintenance

We shov how to computethe minimum overall mainte-

nancecostof the given setof permanentlymaterialized
views, given a fixed setof additionalviews to be tran-

siently materialized. In additionto computingthe cost,

the proposedtechniquegenerateshe bestconsolidated
maintenancelan for the given setof permanentlyma-

terializedviews. The maintenancelan chosenfor each
materializedview canbe incrementalor recomputation,
basedn costs.

Maintenanceostcomputatioris explainedin Sectionb.

3. Transient/RrmanentMaterializedView Selection
Finally, we addresghe problemof determiningthe re-
spectve setsof transientand permanentlymaterialized
views thatminimizetheoverall cost. Ourtechniqueuses,

asa subroutine the previously mentionedtechniquefor

computingthe bestmaintenanceolicy given fixed sets
of permanenthandtemporarilymaterializedviews. The
costsof materializatiorof transientlymaterializedviews

and maintenancef permanentlymaterializedviews are
takeninto accounty this step.

We proposea greedyheuristicthat iteratively picks up
views in orderof benefit— wherebenefitis definedasthe
decreasén the overall materializatiorcostif this view is
transientlyor permanentlymaterializedn additionto the
views alreadychosen. Then, dependingupon whether
transientor permanenimaterializationof the view pro-
ducegthegreateibenefit,theview is cateyorizedassuch.

Thegreedyheuristicis presentedn Section6.1,andsev-
eral optimizationsof this heuristicthat resultin an effi-
cientimplementatioraredescribedn Section6.2.

4. SETTING UPTHE MAINTEN ANCE PLAN

SPACE
In this section,we describehow the searchspaceof mainte-
nanceplansis setup. As mentionecdearlier our approacho
incrementamaintenances basednthecompacipropagation-
basedifferentialgeneratiortechnique.This is describedn
Section4.1. The QueryDAG representationjsedto repre-
sentthe searchspacecompactlyis describedn Section4.2.

In this paperwe assumehatwe aregivenaninitial setof
permanentlymaterializedviews. We may add more views
to this set. We do not considerspacdimitations on storing
materializedviews in the main partof the paperbut address
thisissuein Section6.3.

We assumehat the updateg(inserts/deletesto relations
areloggedin correspondingleltarelations which aremade
availableto the view refreshmechanismfor eachrelation
R, therearetwo relations&jg anddy denoting respectiely,
the (multiset of) tuplesinsertedinto and deletedfrom the
relation R. The maintenancexpressionsn our examples
assumehatthe old valueof therelationis available,but we
can use maintenancexpressionsasedon the new values
of the relationsin casethe updateshave alreadybeenper
formedonthebaserelations.

We assumehat the given setof materializedviews is re-
freshedattimeschoserby userswhich aretypically atreg-
ularintervals. For optimizationpurposeswe needestimates
of the sizesof thesedeltarelations. In productionernviron-
ments theratesof changesreusuallystableacrosgefresh
periods,andtheseratescan be usedto make decisionson
whatrelationsto materializepermanently We will assume
thatthe averageinsertanddeletesizesfor eachrelationare
provided as percentage®f the full relationsize. The in-
sertanddeletepercentagesanbe differentfor differentre-
lations. Otherstatistics suchasnumberof new distinctval-
uesfor attributes(in eachrefreshinterval), if available,can
alsobeusedto improve the costestimate®f the optimizer

4.1 Propagation-Basediffer ential Generation

for Incremental View Maintenance
We generatehedifferentialof anexpressiorby propagating
differentialsof the baserelationsup the expressiorntreg one
relation at a time, and only one updatetype (insertionsor
deletions)at atime. The differentialpropagatiortechnique
we useis basedn thetechniquesisedin [12] and[11].

Thedifferentialof anodein thetreeis computedisingthe
differential(andif necessantheold value)of its inputs.We
startattheleavesof thetree(thebaserelations) andproceed
upwards,computingthedifferentialexpressiongorrespond-
ing to eachnode.

For instancethe differentialof ajoin E; X E,, givenin-
sertsonrelationR, is computediusingthedifferentialsof E;
andE» andtheold full resultsof E; andE». Thedifferential
resultis emptyif R is usedn neitherE; nor E,. If Risused
onlyin Ey, thedifferentialis givenby (65, X E»); symmet-
rically if R is usedonly in E,, the differentialis given by
(E1 M dg,). If Risusedin both,thedifferentialconsistof
(0p, X E2)U (Ey X ég,) U (0p, XoR,).

The processof computingdifferentialsstartsat the bot-
tom, andproceedsipwards,sowhenwe computethediffer-
entialto E; X Es, thedifferentialsof the inputshave been
computedalready The full resultsare computedwhenre-
quired,if they arenot availablealready(materializedviews
andbaserelationsareavailablealready).

Extendingthe above techniqueto operationsother than
join is straightforvard, using standardechniquedor com-
puting the differentialsof operationssuchasthosein [2];
seg[7] for asurwey of view maintenancéechniques.

Our searchspaceincludesdifferentialsof all plansequiv-
alentto E; X FE,. In the caseof joins, in particular the
searctspacewill includeplanswhereeveryintermediatae-
sult includesthe differentialof R. To illustrate this point,
considertheview (A X B X C). If wewishto computethe
differentialof theview whentuplesareinsertednto A, then
the plans(B X (6§ X C©)) and (6} X (B X C)) would
both be amongthe plansconsideredandthe cheapesplan
is selected Similarly, if we wishto computethe differential
of the view whentuplesareinsertedinto B, thenthe plans
(A M (64 X C)) and (5% M (A X C)) would be amongst
the alternatves. Using the differentialsof a single expres-
sion, suchas(A X (B X C)) or (B X (A X ()), is not
preferabldor propagatingll the baserelationdifferentials.

Our optimizer’s searchspaceincludesall of the alterna-
tivesfor computingthe differentialsto (A X B X C), in-
cluding the above two, andthe cheapesbneis chosenfor
propagatinghedifferentialof eachbaserelation.

Propagatinglifferentialsof only onetype(insertsor deletes)
to onerelationat a time, simplifies choosingof a separate
planfor eachdifferentialpropagation.lt is straightforvard
to extendthetechniquego permitpropagatiorof insertsand
deletego a singlerelationtogetherto reducethe numberof
differentexpressiongomputed.

We assumeéhatthe updatego the baserelationsareprop-

agatedonerelationat atime. After eachoneis propagated,
thebaserelationis itself updatedandthecomputedifferen-
tials areappliedto all incrementallymaintainednaterialized
views! We leave unspecifiedhe orderin whichthebasere-
lations are considered. The order is not expectedto have
a significanteffect when the deltasof all the relationsare
smallpercentagesf therelationsizes:therelationstatistics
thendo not changegreatlydueto the updatesandthusthe
costsof the plansshouldnotbeaffectedgreatlyby theordet
For large deltas,our experimentalresultsshowv that recom-
putationof the view is generallypreferableto incremental
maintenancesothe orderof incrementapropagatioris not
relevant.

An alternatve approachfor computingdifferentialsis to
generatethe entire differential expression,and optimize it
(seege.q.[6]). However, theresultaniexpressiorcanbevery
large— exponentialin the sizeof the view expression.Opti-
mizing suchlarge expressionsanbe quite expensve, since
gueryoptimizationis exponentialin the size of the expres-
sion. Moreover, creatingdifferentialexpressionss difficult
with morecomplex expressionsontainingoperationsother
thanjoin (see,e.g.[6]). In contrastthe processof propa-
gatingdifferentialscanbe expressedgurelyin termsof how
to computethe differentialsfor individual operationsgiven
the differentialof their inputs. As aresultit is alsoeasyto
extendthetechniqueo new operations.

4.2 The Query DAG Representation

In this section,we briefly describethe representatiomised
in our algorithmto representhe spaceof recomputatiorand
incrementamaintenancglansfor the givensetof views.

A Query DAG is a directedacgyclic graphwhosenodes
canbedividedinto equivalencenodesandopemtion nodes
theequivalencenodeshave only operatiomodesaschildren
and operationnodeshave only equivalencenodesas chil-
dren.We first explain how the spaceof recomputatiorplans
is representedsa Query DAG. This is followed by a de-
scriptionof how this QueryDAG is refinedto representlif-
ferentialplansaswell.

4.2.1 QueryDAG Repesentatiorfor Recomputation

Plans
An operatiomodein theQueryDAG correspondso analge-
braicoperationsuchasjoin (X), select(c), etc. It represents
the expressiondefinedby the operationandits inputs. An
equivalencenodein the Query DAG representshe equiva-
lenceclassof logical expressionghatgenerateghe samere-
sult set,eachexpressionbeingdefinedby a child operation
nodeof the equivalencenode andits inputs.

Figure 2 shavs a Query DAG for the view A X B X C.
Note that the DAG hasexactly one equivalencenode for
every subsebf {A, B, C}; the noderepresentsill ways of
computingthe joins of the relationsin that subset. Though
theQueryDAG in thisexamplerepresentsnly asingleview

1 The differentialsmustbe logically applied. The databasesystem
cangive sucha logical view, yet postponephysicallyapplyingthe
updates By postponingphysicalapplication,multiple updatesan
be gatherecandexecutedat once,reducingdisk accesgosts.

ABC . (root equivalence node)

Figure2: Query DAG for A X B X C. Commutativity not
shown; every join nodehasanotherjoin nodewith inputs
exchangedpelow the sameequivalencenode.

A X B X C, in general,asindicatedin Figurel, a Query
DAG canrepreseninultiple viewsin aconsolidatednanney
with commonsubepressiongsepresentednly once.Simple
subsumptiorderivations,wherebyaresultsuchaso 4«5 (E)

canbe computedrom aresulto 4<10(E), OF AGsum(c) (E)

canbegeneratedrom 4 5Gsum(c)(E), arealsointroduced
whencreatingthe consolidatedQueryDAG.

4.2.2 Incorporating IncrementaPlans

Considera databaseonsistingof n relations: Ry, ... , R,.

Then, for eachequivalencenodee in the Query DAG de-
scribedabove, we introducen additionalequivalencenodes
8L, ..., 82", whered?i—1 andé?é (fori = 1,...,n) corre-
spondto the differentialsof e with respectto 6} anddy,

respectrely. For example,the equivalencenodee : (R; X

R,) is refinedinto four additionalequivalencenodess; :

(0%, X Ry), 62 : (0, X Ryp), 63 : (Ry X §f) and
82 : (R1 M dg,).

We now describethe structureof 6%, k = 1..2n. For each
child operationnodeo of e, thereexists a child operation
nodeo® of §%, representinghe differentialof o with respect
to the correspondindbaserelation update. In the example
above, considerequivalencenodee having a child operation
nodeo which is a join operation;the childrenof o arethe
equivalentsnodesrepresenting?; andR,. Thenoded! has
asits child an operationnodeo! which is a join operation,
andthechildrenof o' aretheequivalencenodesfor 67, and
R». The othernodesdé* aresimilar in structure? As can
be seenfrom the above example,the childrenof of canbe
full resultsaswell asdifferentials.Therationaleof this con-
structionwasgivenin Sectiord.1. As alsomentionedn that
section theapproachs easilyextendedo otheroperations.

The equivalencenodee representshefull result;but this
resultvariesassuccessie differentialss}, . .. , 2™ aremer-
gedwith it. For costcomputatiorpurposesthesystenkeeps
an array L[0..2n] with e, where L[0] is the list of logical
properties(suchas schemaand estimatedstatistics)of the
old resultand L[], for i = 1..2n, is thelist of logical prop-
ertiesof theresultafterthe resulthasbeenmergedwith the

2The structureis a little more complicatedwhen a relation R is
usedin both childrenof a join node,requiringa union of several
join operations.The detailsare straightforvard andwe omit them
for simplicity.

differentialsgivenby !, ... , 4.
Space-Efficientimplementation. It mightseemthatby in-
cludingall the differentialexpressiongor eachequialence
node,we have increasedhe size of the Query DAG by a
factorof 2n. However, ourimplementationmeduceghe cost
by piggybackingthe differentialequivalenceand operation
nodeson the equivalenceand operationnodesin the origi-
nal QueryDAG. Theseémplementatiordetailsareexplained
next; however, for easeof explanation,in therestof the pa-
per, we stick to theabove logical description.

For spaceefficiency, the equivalencenodesfor eachdif-
ferential are not createdseparatelyin our implementation.
Instead,eachequivalencenodee storesan array D[1..2n],
where D[k] logically representshe differentialequivalence
noded*, andcontains:(a) logical propertiesof the differen-
tial results®, and(b) the bestplanfor computings®.

If e doesnotdependbnarelationR;, orif thereis nocor-
respondingupdate thenthe logical propertiesandbestplan
((a) and (b) above) for D[2i — 1] and D[2:] aresetasnull.
In addition,asin theoriginal representatiortheequivalence
nodee storeghebestplanfor (andcostof) recomputinghe
entireresultof thenodeafterall updatedrave beenmadeon
the baserelations.

Physical Properties. The Query DAG representatiortan
be extendedto incorporatephysicalproperties[5], suchas
sort order, that do not form part of the logical datamodel.
The extensionresultsin a Physical Query DAG, in which
anequialencenodein the QueryDagis refinedto multiple
physicalequivalencenodespneperrequiredphysicalprop-
erty. Our searchalgorithmshandlephysicalproperties put
to keepourdescriptiorsimple,we do notexplicitly consider
physicalpropertiesurther.

However, it is importantto notethat,assuggestedby [13],
we modelthe presenceof anindex on a resultasa physi-
cal propertyof the result. Our techniquegsherebyperform
index selectionasa specialcaseof physicalpropertyselec-
tion. In fact, significantperformancebenefitsare achieved
by selectingappropriatandicesfor permanentnaterializa-
tion, especiallywhenthenumberof inserts/deleteis a small
percentagef therelationsize.

5. MAINTEN ANCE COSTCOMPUTATION
In this sectionwe derive formulaefor thetotal maintenance
costfor a set M, of views materializedpermanentiyanda
set M, of views materializedtemporarily The optimizer
basicallytraverseghe QueryDAG structureapplyingthese
formulae,to find the overall cost.

Theset M, canhave views correspondingo entireresults
(e.g.A X B), aswell asviews correspondingo differentials
(e.g.61 X B). In contrastthe setM,, canonly have views
correspondindo entireresults;this is becausehe differen-
tials areonly usedduringview maintenance.

The computationcostof the equivalencenodee, denoted
c(e|Mp, My), is computedasfollows, whereC (e) is the set

of childrenoperatiomodesof e.

minoEC(e) C(O| Mp7 Mt)
i Cle) # ¢

0 ifC(e) = ¢ (i.e. eis arelation)

c(e] Mp, My) =

In termsof forming the executionplan, the above equation
representshe choiceof the operationnodewith the mini-
mum costin orderto computethe expressiorcorresponding
to theequivalencenodee.

The computationcost of an operationnode o, denoted
c(o|Mp, My), is:

c(o|Mp, M) = localc(o) + Z childe(e| My, M)

e€C(o)

wherelocalc(o) is the “local” computationcostof the op-
erationo, C(o) is the setof children equivalencenodesof
o, andchildc(e| My, M) is thecostof computingthe child
equivalencenodee, givenby:

reusec(e)

if e € ./\/lp U Mt
C(@lMp, Mt)

if e @ MpUM;

wherereusec(e) is the costof reusingthe resultof the ma-
terializedview e.

Duringtransienimaterializationtheview is computedand
materializedon the disk for the durationof the maintenance
processingThus,thecostof transientlymaterializingaview
e € M, denoteddy trmatc(e| M, My), is:

trmatc(e| Mp, M) = c(e|Mp, My) + matc(e)

wherematc(e), is the cost of materializingthe view (on
disk, assumingnaterializedviews do notfit in memory).

Further for agivene € M,, the costof recomputingthe
resultfrom the baserelationsis c(e| M, M;); andthe cost
of computinghedifferentiald®, k = 1..2n,isc(6¥| M, M;).
Let mergec(d*) denotethe cost of memging the differen-
tial correspondingdo 6% with the view afterthe differentials
correspondingo 6}, ... ,6¥~! have alreadybeenmermged.
Then, the costof incrementallymaintaininge, denotedby
imntc(e|Mp, My), is:

imntc(e|lMp, M) =
o (5[My, My) + mergec(sE))

On the otherhand,maintenancdy recomputatiorinvolves
computingthe view and materializingit, replacingthe old
valueof theview. Therecomputatioomaintenanceost,de-
notedby rmntc(e| My, M), is:

rmntc(e|Mp, My) = c(e|Mp, My) + matc(e)

wherematc(e), asbefore,is the costof materializingthe
view. Noticethatrmntc(e| M,, M,) above is the sameas
trmatc(e| Mp, My), the costof transientlymaterializinge
derived earlier As such,we do not considermaterializing
a view permanentlyand maintainingusing recomputation,
unlessit wasalreadyspecifiedaspermanentlymaterialized.

childc(e| Mp, My) =

For, if recomputationis the cheapestvay of maintaininga
view, we may aswell materializeit transiently: keepingit

permanentlywould not helpthe next roundof view mainte-
nance. Thus, the costof maintainingthe permanentlyma-
terializedview e € M,, denotedoy mnitc(e| My, My), is

asfollows, where M is the setof views given as already
materializedn the system.

min(imnte(e| Mp, My),
rmntc(e| My, My))
ifee M
imntc(e|Mp, M)
ifee M, —M
For e € M, thechoicecorrespondso selectingthe refresh

mode— incrementalrefreshor recomputation- depending
onwhichereris cheaper

Thus, the total costincurredin maintainingthe material-
izedviewsin M, giventhattheviewsin M, aretransiently
materializeddenotedtotalc(M,,, My), is:

totale(Mp, M) = 3 e pq, mnte(e[Mp, My)+
Y eemm, trmatc(e| My, My)

mntc(e|Mp, M) =

Giventheset M of views alreadymaterializedn thesys-
tem,we needto determinethesetM, (2 M) of viewsto be
permanentlymaterialized,as well asthe setof views M,
to be transiently materialized,such that totalc(M,, M)
is minimized. In the next section,we proposea heuristic
greedyalgorithmto determineM,, andM;.

As mentioneckearlier the optimizerperformsa depth-first
traversalof the QueryDAG structure applyingtheseformu-
lae at eachnodeto find the overall cost.

6. TRANSIENT/PERMANENT MATERIAL-

IZED VIEW SELECTION
We now describehow to integratethe choiceof extra mate-
rialized views with the choiceof bestplansfor view main-
tenance. In Section6.1, we presentthe basicalgorithm
for selectingthe two setsof views for transientand perma-
nentmaterializationrespectiely, followed by a discussion
of someoptimizationsandextensiondn Section6.2.

6.1 The BasicGreedyAlgorithm

Givena setof resultsM,, and M, alreadychoserto bere-
spectvely permanentlyand transientlymaterialized,and a
equivalencenodez, thebenefitof additionallymaterializing
z, bene fit(x|Mp, M,), is definedas:

bene fit(x| Mp, My) =
totale(Mp, My) — min(totalc(Mp, U {2}, My),
totalc(Mp, My U {z}))
if z isafull result
totalc(My, My) — totale(Mp, My U {x})
if z is adifferential

Usingtheexpressiorfor totalc(M,, M;) derivedin thepre-
vious section,alongwith the obsenationsthat (a) if z is a
full result,thenfor all e € M,,, mntc(e|Mp, M U {z}) =
mntc(e| M, U {z}, M;), andalsothat(b) for all e € My,

Procedure GREEDY

Input: M, the set of equivalence nodes
for the initial materialized views

8, the set of candidate equivalence nodes
for materialization

My, the set of equivalence nodes

to be materialized permanently

M, the set of equivalence nodes

to be materialized transiently

Output:

Begin
Mp=M; My =¢
while (S # ¢)
L1: Pickthe node z € S
with the highest bene fit(z|Mp, My)
if (benefit(z|Mp, M) < 0)
break; /* No further benefits, stop */
if (z is a full result and
mntc(z|Mp, My) < trmate(z|Mp, My))
Mp =My U {z}
else My = M U {w}
S=8—-{z}
return (Mp, My)
End

Figure 3: The GreedyAlgorithm for SelectingViewsfor
Transient/Permanent Materialization

trmatc(e|Mp, My U {x}) = trmatc(e|Mp U {2}, My),
theabove canbe simplifiedto:

benefit(z|Mp, My) =
gain (x| Mp, My) — inv(x|Mp, My)

wheregain(z|M,, M;), thegaindueto additionallymate-
rializing z, is givenby:

gain(z|Mp, My) =
ZeeMP (mntce(e|lMp, My) — mnte(e| My, M U {z}))
+ 2 e, (trmatc(el My, My)—

trmatc(e|Mp, M U {z}))

andinv(z|M,p, M,), theinvestmenin additionallymateri-
alizing z, is givenby:

min(mntc(z| My, My),
trmatc(z| Mp, My))
if z isafull result
trmatc(z|Mp, M)
if z is adifferential

inv(@| My, My) =

Figure 3 outlinesa greedyalgorithmthatiteratively picks
nodesto be materialized.The proceduretakesasinput the
setS of candidategequivalencenodes,andtheir differen-
tials) for materializationand returnsthe setsM,, and M
of equivalencenodesto be materializedpermanentlyand
transiently respectiely. M, is initialized to M, the setof
equivalencenodesfor the initial materializedviews, while
M; is initialized asempty At eachiteration, the equiva-
lencenodez € S with the maximumbenefitis selectedor
materializationlIf z is afull result,thenit is addedto either
M,, or M; basedon whethermaintainingit or transiently
materializingit is cheaper;if z is a differential, thenit is
addedo M, sinceit cannotbe permanentlymaterialized.

Naively, the candidatesetS canbe the setof all equiva-

lencenodesin the QueryDAG (full resultsaswell asdiffer-
entials). In Section6.2, we considerapproacheso reduce
the candidateset.

6.2 Optimizations

Threeimportantoptimizationsto the greedyalgorithm for
multi-query optimizationare presentedn [13]. We extend
theseto handledifferentialsasfollows.

1. Thereare mary calls to benefit (andtherebyto mntc
and trmatc) at line L1 of Figure 3, with differentpa-
rameters.A simpleoptionis to processachcall to the
above independenbf othercalls. However, obsere that
M,, and M, changeminimally in successie calls —
successie calls take parameter®f the form M, U {z}
or M; U {z}, whereonly z varies. Thatis, if onecall
considersnaterializinga setof theform M, U {z; } (or
M U{z;1}), thenext call would considemmaterializinga
differentsetof theform M, U {z,} (or M,U{z2}). The
bestplans computedearlier doesnot changefor nodes
thatarenot ancestor®f eitherz; or z2. It makessense
for acall to leveragethe work doneby a previouscall by
recomputingbestplansonly for ancestor®ef z; andz,.

The incrementakostupdatealgorithmpresentedn [13]
maintainsthe stateof the Query DAG (which includes
previously computedestplansfor theequivalencenodes)
acros<alls,andmayevenavoid visiting mary of thean-
cestorsof z; andzy. We modify the incrementalcost
updatealgorithmto handledifferentialsasfollows.

(a) If thefull resultof anodeis materializedye update
notonly the costof computingthefull resultof each
ancestonode,but alsothe costsfor the 2n differen-
tials of eachancestonodesincethe full resultmay
be usedin ary of the 2n differentials. Propagation
up from anancestomodecanbe stoppedf thereis
no changen costto computingthefull resultor arny
of thedifferentials.

(b) If the differentialof a nodewith respecto a given
updateis materializedwe updateonly the differen-
tials of its ancestorsvith respecto the sameupdate.
Propagatiorcan stop on ancestorsvhosedifferen-
tials with respecto the givenupdatedo not change
in cost.

2. With thegreedyalgorithmaspresentedbove,in eachit-
erationthe benefitof every candidatenodethatis notyet
materializedis recomputedsinceit may have changed.
The monotonicityoptimizationis basedon the assump-
tion that the benefitof a nodecannotincreaseas other
nodesare chosento be materialized- while this is not
alwaystrue, it is oftentruein practice. The monotonic-
ity optimizationmakesthe abore assumptionand does
not recomputethe benefitof a nodez if the new benefit
of somenodey is higherthanthe previously computed
benefitof x. It is clearly preferableto materializey at
this stage ratherthanz — assumingnonotonicityholds,
thebenefitof z could nothave increasedinceit waslast
computedandit cannotbe the nodewith highestbenefit

now, hencets benefitneednotberecomputeahow. Thus,
recomputationsf benefitaregreatlyreduced.

3. It is wastefulto transientlymaterializenodesunlessthey
areusedmultiple timesduringtherefresh.An algorithm
for computingsharabilityof nodesis proposedn [13],
which detectsequivalencenodesthat can potentially be
usedmultiple timesin a single plan. We considerdif-
ferential resultsfor transientmaterializationonly if the
correspondindull resultis detectedo besharable.

The sharabilityoptimizationcannotbe appliedto full re-
sultsin ourcontext, sinceafull resultmaybeworth mate-
rializing permanenthevenif it is usedin only onequery
Thusall full resultsarecandidatesor optimization.

Dueto lack of spacewe omit detailsof all the above opti-
mizations.

We tried out an optimizationwhereall differentialsof an
expressiorareconsidere@sa singleunit of materialization.
Thatis, the greedyalgorithmeitherchoosesll differentials
for materialization(basedon the benefitof materializingall
of them), or none. (As a post-pasof greedy ary materi-
alizedresultthatis not usedis discarded.) One benefitof
theoptimizationis thatthe numberof candidategonsidered
by the greedyalgorithmdecreasedeadingto a reductionin
optimizationtime. Although the optimizationcould possi-
bly resultin somavhatworseplans,theremayalsobecases
whereit maygive abetterplan. This canoccur, for example,
whenthebestplanwith nodifferentialsmaterializedusese-
computationandmaterializingary onedifferentialwill not
changethe bestplan (andthushave no benefit),but materi-
alizing all differentialsat oncemay changethe bestplanto
incrementatomputatiorandthushave a positive benefit.

6.3 Extensions

Thealgorithmsoutlinedabove canbe extendedto dealwith
limited spacefor storingmaterializedresultsby modifying
the greedyalgorithmto prioritize resultsin order of bene-
fit per unit space(computedby dividing the benefitby the
sizeof theresult). If the spaceavailablefor permanenand
transientmaterializedresultsare separatewe can modify
the algorithmto continueconsideringesultsfor permanent
(resp.transient)materializationevenafterthe spaceof tran-
sient(resp.permanentjnaterializations exhausted.

7. PERFORMANCE STUDY

We implementedhealgorithmsdescribedearlierfor finding
optimal plansfor view maintenance As mentionedearlier,
theimplementatiorperformsindex selectionalongwith se-
lection of resultsto materialize. The implementationwas
performedon top of anexisting queryoptimizer

7.1 PerformanceModel

We useda benchmarkconsistingof views representinghe
resultsof queriesbasednthe TPC-Dschemaln particular
we separatelyonsideredhefollowing two workloads:

e Setof Views Workload. A setof 10 views, 5 with ag-
gregatesand5 without, on a total of 8 distinctrelations.
Thereis someamountof overlapacrossheseviews, but

mostof the views have selectionghatare not presenin
otherviews, limiting theamountof overlap.

e SingleViews Workload. The sameviews as above, but
eachoptimizedandexecutedseparatelyandwe shav the
sumof theview maintenancéimes. Sincetheviews are
optimized separatelysharingbetweenviews cannotbe
exploited.

The purposeof choosinga simpleworkloadin additionto
the complex workloadis to shav thatour methodsarevery
effective notonly for big setsof overlappingcomplex views,
where one might argue that simple multi-query optimiza-
tion may be aseffective, but alsofor singletonviews with-
out commonsubepressionswherea techniquebasedex-
clusively on multi-queryoptimizationwould be useless.

The performancemeasurds estimatednaintenanceost
The cost model usedtakes into accountnumberof seeks,
amountof dataread,amountof datawritten, andCPUtime
for in-memaoryprocessing. Our costmodelis fairly sophis-
ticatedand,asreportedn ourearlierwork [13], we have ver-
ified its accurag by comparingits estimateswith numbers
obtainedby running querieson commercialdatabasesys-
tems.We found closeagreemenfwithin around10 percent)
on mostquerieswhich indicatesthat the numbersobtained
in our performancestudyarefairly accurate.

We provide performancenumbersfor different percent-
agesof updatego the databaseelations;we assumehatall
relationsare updatedby the samepercentageln our nota-
tion, a 10%updateto arelationconsistf insertingl0%as
mary tuplesarecurrentlyin therelation.

We assumea TPC-D databaset scalefactorof 0.1, that
is therelationsoccupy atotal of 100MB. Thebuffer sizeis
setat 8000blocks, eachof size4KB, for atotal of 32 MB,
althoughwe also ran sometestsat a much smaller buffer
sizeof 1000blocks. However, the numbersarenot greatly
affectedby the buffer size,andin fact smallerbuffer sizes
can be expectedto benefitmore from sharingof common
subepressionsThetestswererunonanUltrasparclO, with
256 MB of memory

7.2 PerformanceResults
Thepurposeof theexperimentgeportedn this sectionis to:

1. Verify the efficacy of transientand permanenmaterial-
ization of additionalviews (Section7.2.1),

2. Verify the efficacy of adaptve determinationof main-
tenancepolicy for eachpermanentlymaterializedview
(Section7.2.2),and

3. Establishthatour methodsareindeedpracticalby shaw-
ing that the overheadsof our optimization-basedech-
niguesare reasonableand that our methodsscalewith
respecto increasinghumberof views (Section7.2.3).

7.2.1 Effectof Transientand PermanentMaterializa-
tion
We executedthefollowing variationsof our algorithm:

o No Materialization.Neithertransieninor permanenma-
terializationof additionalviews is allowed. Thatis, only

the givensetof initial views is permanentlymaterialized
andmaintainedwithoutarny sharing.This correspond$o
the currentstateof theart.

¢ Only Transient. Transientmaterializationis allowed, but
permanentmaterializationof additional views is disal-
lowed. This correspondso usingmulti-queryoptimiza-
tion in view maintenance.

¢ Transientand Permanent.Both transientand permanent
materializatiorof additionalresultsis allowed. This cor
respondsgo thetechniquegproposedn this paper

In all the casesthe maintenanceolicy of eachof theviews
is decidedbasedn whetherrecomputatiorandincremental
computatioris cheapergiventheconstraintsn eachcaseas
above. All the numbersreportedincorporatethe optimiza-
tion of treatingall differentialsof an expressionasa single
unit of materialization;we considerthe effect of not using
the optimizationlater. Theresultsfor the singleview work-

load andthe setof views workloadarereportedn Figure4.

For the single-viev workload, transientmaterializations
not usefulif the view maintenancelan usedis recomputa-
tion, but whenincrementakomputationis used full results
canpotentially be sharedbetweendifferentialscorrespond-
ing to updatesof differentbaserelations.Indeed,we found
several suchinstancesat low updatepercentagesalthough
they did not have a largeimpacton the cost. At higherup-
datepercentagewe found fewer suchoccurrencesandus-
ing only transientmaterializationdid not offer muchbene-
fit. However, permanenmaterializationof intermediatere-
sultsreduceghe overall materializationcostby nearly50%
for smallerupdatepercentageéhe smallestupdatepercent-
agewe consideredvas1%). Theseresultsclearlyillustrate
the efficacy of the methodsproposedn this paperover and
above multi-queryoptimization.

The set of views workload has a significantamountof
overlapamongthe constituentviews. Thus,the reduction,
ashigh as50%, in the overall maintenanceostdueto only
transientmaterializationis asexpected. Permanenateri-
alization hasan even more significantimpactin this case,
andfurtherreducegheresultingin atotal reductionof up to
75%at 1% update.Thegainsdecreasevith updatepercent-
age,but remainsubstantial.

Recallfrom our discussiorin Section5 thatall additional
permanentlymaterializednodesare always maintainedin-
crementally since if recomputation-basethaintenanceof
theseviews is cheaperthanincrementaimaintenancethen
they would be chosenfor transientmaterializationinstead
of permaneninaterialization. Now, the costof incremen-
tal maintenancéncreaseaith the size of the updates;for
largerupdatesrecomputatiorof a permanentlymaterialized
view is a betteralternatve than incrementalmaintenance,
soasmallerfraction of views arepermanentlymaterialized.
Thesetwo factstogetheraccountfor the slightly decreas-
ing adwvantageof transientcum permanentmaterialization
overonly transientmaterializatiorasupdatepercentagem-
creaseasis clearfrom the corvergenceof the respectie
plotsin Figure4 for eitherworkload.

5000+

4000

30004

2000+

10004

0

Estimated Maintenance Cost (seconds), 10 views separately

T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Update Percentage

SingleViews

—e— no materialization
—a— only transient
—e— transient and permanen

5000+

4000

30004

st (seconds), 10 views together

Q

2000+

1000

0

Estimated Maintenance €

T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Update Percentage

Setof Views

Figure 4: Effect of Transient and Permanent Materialization

Comparingacrossthe two workloadsrevealsan interest-
ing result: the costof maintenancevithout selectingaddi-
tional materializedview is lessfor the setof views thanfor
the single view workload, even thoughthey have the same
setof queries.Thereasoris thatin the caseof setof views,
the maintenanceof a view can exploit the presenceof ex-
isting materializedviews, evenwithout selectingadditional
materializedviews. Our optimizerindeedtakes suchplans
into consideratioreven whenit doesnot selectadditional
materializedviews.

We alsoexecutedestsonavariantof ouralgorithm,which
we call no differential, wherematerializationof differential
resultsis turnedoff. Full resultsarestill permittedto bema-
terialized,andmaybemaintaineceitherincrementallyor by
recomputation.For the singleview benchmarkthereis no
sharingof differentialresults sotherewasnodifference For
the setof views benchmarkye foundthatthereweresignif-
icantbenefitsat low updatepercentageévhereincremental
computationis morelikely to be used). For instanceat 1%
updatesthe costwentup to 460 secondgrom 370seconds,
or roughly 25%, whenmaterializationof differentialresults
wasturnedoff. Evenat8% updatestherewasanincreaseof
about15%, but by 13% the differencebecamesmall, since
recomputations usedmoreoften. (We omittedthe plotsfor
the “no differential” casefrom our graphsto avoid clutter,)
Theseresultsclearly indicatethe importanceof materializ-
ing andsharingbothdifferentialandfull results.

We also testedthe effect of treatingthe differentialsof
anexpressiorasseparatainits of materializationnsteadof
consideringhemasasingleunit. We foundthatthisroughly
doubledthe time taken for greedyoptimization,acrossthe
whole rangeof updatepercentageyet yet madeno signifi-
cantdifferenceto theplansgeneratedThustheoptimization
of consideringall differentialsasa singleunit hasa signifi-
cantbenefit,atno cost,on all the exampleswe considered.

To summarizethis section,to the bestof our knowledge
oursis the first study that demonstrategjuantitatively the
benefitsof materializingextra views (transientlyor perma-
nently) to speedup view maintenancén a generalsetting.
Earlierwork on selectionof materializedviews, asfaraswe
areaware,hasnot presentedny performanceesultsexcept
in thelimited context of datacubesor starschema$4].

7.2.2 Effectof AdaptiveMaintenancdolicy Selection
In the currentdatabasesystemsthe userneedsto specify
the maintenancepolicy (incrementalor recomputation¥or

amaterializedview duringits definition[3]. In this section,
we shaw thatana priori fixedspecificatiorasabore maynot

betheagoodidea,andmalke a casefor adaptvely choosing
themaintenanceolicy for aview in anadaptve manner

We exploredthefollowing variantsof our algorithm:

e ForcedIncremental All the permanentnaterializedvie-
ws, includingtheviewsgiveninitially aswell astheviews
pickedadditionallyby greedyareforcedto bemaintained
incrementally

¢ ForcedRecomputationlncrementaimaintenances dis-
allowedandall thepermaneninaterializedsiews arefor-
cedto berecomputed.

¢ Adaptive Themaintenanceolicy, incrementabr recom-
putation,for eachpermanentlymaterializedview is cho-
senbasedon the goal of minimizing the overall mainte-
nancecost; one or the other may be chosenfor a given
view atdifferentupdatepercentagesrlhis correspondso
thetechniquegproposedn the paper

In all the casesadditionaltransientand materializedviews
werechosenby executinggreedyasdescribeckarlierin the
paper Theresultsof executingthe above variantson eachof
ourworkloadsareplottedin Figure5.

The graphsshow that incrementalmaintenancenay be
much more expensve than recomputation;the incremen-
tal maintenanceostincreasesharplyfor mediumto large

10000+

8000+

6000

4000

20004

0

Estimated Maintenance Cost (seconds), 10 views separately

T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Update Percentage

SingleViews

—e— forced incremental
—a— forced recomputation
—e— adaptive

10000+

8000

6000~

4000

2000

0

Estimated Maintenance Cost (seconds), 10 views together

T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Update Percentage

Setof Views

Figure5: Effect of Adaptive Maintenance Policy Selection

updatepercentages- by even around100% for very high
updatepercentages.In both the workloads, the adaptve
techniqueperformsbetterthanboth forcedincrementabnd
forcedrecomputationthis extraimprovementpy upto 30%
for the single-viev workload and 20% for the setof views
workload,is dueto its ability to adaptiely chooséncremen-
tal maintenancer recomputatioron a perview basisfor the
initial aswell asadditionallymaterializedviews. However,
the differencebetweenadaptve and forced recomputation
for eitherworkloaddecreaseslightly with increasingipdate
percentageThisis becauséor largeupdatepercentagesn-
crementalmaintenances expensve, andhenceevery view
is recomputed.

Theseobsenationsclearly shav that blindly favoring in-
crementamaintenanceverrecomputatiomaynotbeagood
idea(this conclusionis similarto thefindingsof Vista[15]);
and make a casefor adaptvely choosingthe maintenance
policy for eachview, asdoneby our algorithms.The ability
to mix differentmaintenanceoliciesfor differentsubparts
of the maintenancelan, evenfor a singleview, is novel to
our techniquesandnot supporteddy [15].

7.2.3 OverheadsindScalabilityAnalysis

To seehow well our algorithmsscaleup with increasing
numberof viewsandrelationswe usedcthefollowing bench-
mark. Thebenchmarkuses?2?2 relations,R; to Rss, with an
identical schema(P, SP, NU M) denotingpartid, subpart
id andnumber Over theserelations,we defineda setof 10
views V1 to Vio: theview V; wasa starqueryon four re-
lations Ry, Ra;, R2;+1 and Ro; 42, with R;.S P joinedwith
R;.P, Rai+1.P andRy;42.P. Wethengroupedheseviews
into 10 sets,wherethe k** setSV;, consistedf the k views
Vi,..., Vi, whichtogethemccesfk + 2 relations.For each
SV, we measureda) thememoryrequirement®f ouralgo-
rithm and(b) thetime takenby our algorithm,andreportthe
samein Figure6.

The figure shows that the memory consumptionof our

algorithmincreasesgpractically linearly with the numberof
views in the set. Thereasorfor this is thatthe memoryus-
ageis basicallyin maintainingthe QueryDAG, andfor our
view set,the increasan the size of the QueryDAG is con-
stantper additionalview addedto the DAG (with a fixed
numberof baserelations). The memoryrequirementor the
view setSVi, containinglOviewson atotal of 22 relations,
is only about3.2 MB.

Further additionof a new view from our view setto the
QueryDAG increaseshe breadthof the DAG, notits height
(we think this is the expectedcasein reality — mostviews
areexpectedto be of similar sizeandwith only partial mu-
tual overlap). Sincethe heightremainsconstantthe time
takenperincrementakostupdate(ref. Section6.2) remains
constant{13]. However, the numberof theseincremental
costupdategyrows quadraticallywith increasingnumberof
views. This accountdor the quadraticgrowth in the time
spentby our algorithmwith increasinghumberof views, as
shawvn in Figure6. However, despitethe quadraticgrowth,
thetime spenton the 22-relation10-view setSV;y wasless
than a couple of minutes. This is very reasonabldor an
algorithmthat needsto be executedonly occasionallyand
which providessavings of the orderof 100’s of minuteson
eachview refresh.For thesetof 10viewsin the setof views
benchmarkthe optimizationtime was around20 seconds
acrossthe rangeof updatepercentagesyhich is quite ac-
ceptable.

Thus, we concludethat the memoryrequirementf our
algorithmarereasonablandscalewell with increasingium-
ber of views. The time taken showns quadraticgrowth, but
this growth is slow enoughto make the algorithm practical
for reasonablyarge setsof views.

8. CONCLUSIONS AND FUTURE WORK

The problemof finding the bestway to maintaina givenset
of materializedviews is animportantpracticalproblem,es-
peciallyin datawarehouseanddatamarts,wherethemain-

Optimization Memory Requirement (MB)

0 T T T
0 2 4 6 8 10

Number of Views

—e— 4 relation star

100

80—

60—

40

Optimization Time (seconds)

20

0 T T T
0 2 4 6 8 10

Number of Views

Figure 6: Scalability analysison increasingnumber of views

tenancewindows are shrinking. We have presentedsolu-
tions that exploit commonality betweendifferent tasksin

view maintenancep minimizethecostof maintenanceOur
techniquediave beenimplementedn anexisting optimizer,

andwe have conducteda performancestudy of their bene-
fits. As shawvn by theresultsin Section7, ourtechniquesan
generatesignificantspeedupn view maintenanceost,and
theincreasan costof optimizationis acceptable.

Futurework includesimplementingthe extensionsstated
in Section6.3to handlelimited space. Anotherdirectionof
extensionwould be to selectmaterializedviews in orderto
speedup a workloadof queries. The greedyalgorithmcan
be modified for this task asfollows: candidatesvould be
final/intermediateesultsof queries,andbenefitsto queries
would be includedwhen computingbenefits. Longerterm
futurework wouldincludedealingwith large setsof queries
efficiently. We alsoplanto considerextensionsof our work
to adynamicqueryresultcachingervironment.

9. REFERENCES
[1] AGRAWAL, S., CHAUDHURI, S., AND NARASAY YA,
V. R. Automatedselectionof materializedviews and
indexesin SQL databasedn Intl. Conf Very Large
Databaseg2000),pp.496-505.

[2] BLAKELEY, J. A., LARSON, P.-A., AND TOMPA,
F. W. Efficiently updatingmaterializedviews. In ACM
SIGMODIntl. Conf on Managemeniof Data (1986).

[3] BoBrROWSKI, S. Usingmaterializedviews to speed
up queries Oracle Magazine(Sept.1999).

[4] CoLByY, L., COLE, R. L., HASLAM, E., JAZAYERI,
N., JOHNSON, G., MCKENNA, W. J.,
SCHUMACHER, L., AND WILHITE, D. Redbrick
Vista: Aggregatecomputatiorandmanagementn
Intl. Conf on Data Engineering(1998).

[5] GRAEFE, G., AND MCKENNA, W. J. TheVolcano
OptimizerGeneratorExtensibilityandEfficient
Searchin Intl. Conf on Data Engineering(1993).

[6] GRIFFIN, T., AND LIBKIN, L. Incremental
maintenancef views with duplicatesin ACM
SIGMODIntl. Conf on Managemeniof Data (1995).

[7] GuPTA, A., AND MUMICK, |. S. Maintenancef
materializedviews : Problemstechniquesand
applicationsIEEE Data EngineeringBulletin 18, 2
(Junel995).

[8] GupTA, H. Selectionof viewsto materializein adata
warehouseln Intl. Conf on DatabaseTheory(1997).

[9] HARINARAYAN, V., RAJARAMAN, A., AND
ULLMAN, J. Implementingdatacubesefficiently. In
ACM SIGMODIntl. Conf on Managemenif Data
(Montreal,Canada,Junel996).

[10] QuAss, D., GUPTA, A., MUMICK, |., AND WIDOM,
J. Making views self-maintainabléor data
warehousingln Intl. Conf on Parallel and
DistributedInformationSystem$1996).

[11] Ross, K., SRIVASTAVA, D., AND SUDARSHAN, S.
Materializedview maintenancendintegrity
constraintthecking:Tradingspaceor time.In ACM
SIGMODIntl. Conf on Managemeniof Data (1996).

[12] RoussopoLous, N. View indexing in relational
databasesACM Trans.on DatabaseSystemg, 2
(1982),258-290.

[13] Rov, P., SESHADRI, S., SUDARSHAN, S., AND
BHOBHE, S. Efficientandextensiblealgorithmsfor
multi-queryoptimization.In ACM SIGMODIntl.
Cont on Managemenif Data (2000).

[14] SELLIS, T. K. Multiple queryoptimization.ACM
Transaction®n DatabaseSystemd43, 1 (1988).

[15] VisTA, D. Integrationof incrementalview
maintenancénto queryoptimizers.n Intl. Conf on
ExtendingDatabaseTedhnolagy (EDBT) (1998).

