
Improving Cache Performance

Namrata Jain (06329014)
under Guidance of

Prof. S. Sudarshan

Kanwal Rekhi Institute of Technology and Science
IIT, Bombay

Namrata Jain Improving Cache Performance

Outline

1 Improving Cache Performance
Improving Instruction Cache Performance [2]
Improving Data Cache Performance [1]

Namrata Jain Improving Cache Performance

Motivation

Growing need for efficient cache memory utilization in
Modern Database System

Significant amount of execution time is spent on second
level (L2) data cache misses and first level (L1) instruction
cache misses

Little research has been done to improve instruction cache
performance

Namrata Jain Improving Cache Performance

Outline

1 Improving Cache Performance
Improving Instruction Cache Performance [2]
Improving Data Cache Performance [1]

Namrata Jain Improving Cache Performance

A typical scenario

In demand-driven query execution engine (open-next-close
iterator interface), child operator returns control to its
parent operator immediately after generating one tuple

So, operator execution sequence is like ‘PCPCPCPCPCP..’

Instruction cache thrashing occur when combined size of
the two operators exceeds the size of the smallest, fastest
cache unit

Namrata Jain Improving Cache Performance

Solution: Buffering

Add a special “buffer” operator in certain places between a
parent operator and a child operator.

Each buffer operator stores a large array of pointers to
intermediate tuples, generated by the child operator

Now operator execution sequence becomes
‘PCCCCCPPPPPCCCCCPPPPP...’
Advantages :

reduce the number of instruction cache misses by up to 80
percent .
less overhead
increases temporal and spatial instruction locality below the
buffer operator.
decreases the number of branch mispredictions.

Namrata Jain Improving Cache Performance

Buffer Operator

Figure: Buffer Operator

Namrata Jain Improving Cache Performance

Buffer Operator Example

Figure: Query

Namrata Jain Improving Cache Performance

Buffer Operator Example

Figure: Query Execution Plan

Namrata Jain Improving Cache Performance

Buffer Operator

Figure: Pseudocode for Buffer Operator

Namrata Jain Improving Cache Performance

When and Where to buffer ?

Depends on interaction between consecutive operators

No need to buffer blocking operators like hash-table
building and sorting
Execution group

Candidate units of buffering
Larger execution group means less buffering
How to choose execution groups?

Cardinality
Operators with small cardinality estimates are unlikely to
benefit from buffering.
How to determine cardinality threshold ?

Namrata Jain Improving Cache Performance

Selecting Execution groups

The instruction footprint of each execution group combined
with the footprint of a new buffer operator should be less
than the L1 instruction cache size.

How to estimate the footprint size ?

Namrata Jain Improving Cache Performance

How to estimate the footprint size ?

1 The naive way could be to use static call graphs. The
instruction footprint of a module is the sum of sizes of all
the functions that are called within the module.

It gives an overestimate of the size.
2 The ideal footprint estimate can only be measured by

actually running the query. But it would be too expensive.
In postgres, it was observed that execution paths are
usually data independent.
Study the dynamic call graphs for different modules, by
running a small query set that covers all kinds of operators.
While combining footprints of instruction, count common
functions only once.

Namrata Jain Improving Cache Performance

How to determine cardinality threshold ?

Using a calibration experiment
Running a single query with and without buffering at various
cardinalities.
Cardinality at which buffered plan begins to beat unbuffered
plan would be the cardinality threshold.

Namrata Jain Improving Cache Performance

Plan Refinement Algorithm

1: Input : Query plan tree
2: Output : Enhanced plan tree with buffer operator added.
3: Assumptions : All operators are non blocking with output

cardinality exceeding the calibration threshold.
// Perform a bottom up pass

4: for each leaf operator do
5: Add an execution group including the leaf operator
6: end for
7: while Not Root do
8: Enlarge each execution group by including parent operators or

merging adjacent execution groups.
9: if Footprint(Execution Group) > L1 instruction cache then

10: Finish current execution group.
11: Label parent operator as a new execution group.
12: end if
13: end while
14: for each execution group do
15: Add a buffer operator above it.
16: end for

Namrata Jain Improving Cache Performance

Validating Buffer Strategies

The combined footprint is slightly less than the size of the L1
instruction cache.

Namrata Jain Improving Cache Performance

Validating Buffer Strategies

The combined footprint is more than the size of the L1
instruction cache.

Namrata Jain Improving Cache Performance

Cardinality Effects

Figure: Cardinality Effects

The benefits of buffering become more obvious as the
predicate become less selective. (Cardinality threshold = 600)

Namrata Jain Improving Cache Performance

Buffer Size

Figure: Varied Buffer Sizes

Namrata Jain Improving Cache Performance

Buffer Size

The instruction cache miss penalty drops as the buffer size
increases.
Buffer operators incur more L2 data cache misses with large
buffer sizes.

Namrata Jain Improving Cache Performance

Conclusion

To reduce instruction cache thrashing, buffering of
intermediate results is done

Buffering exploits instruction cache spatial and temporal
locality

Buffer operators are especially useful for complex queries,
that have large instruction footprints and large output
cardinality.

Namrata Jain Improving Cache Performance

Outline

1 Improving Cache Performance
Improving Instruction Cache Performance [2]
Improving Data Cache Performance [1]

Namrata Jain Improving Cache Performance

Reducing Data Cache Misses

Introducing new cache conscious index structure

Making B+-Trees cache conscious in main memory

Namrata Jain Improving Cache Performance

Comparison between B+-Tree and CSS Tree

Namrata Jain Improving Cache Performance

Comparison between B+-Tree and CSS Tree

Cache Sensitive Search (CSS) trees
Each node contains only keys and no pointers
Nodes are stored level by level from left to right
Arithmetic operations on offsets to find child nodes
Better Search Performance and Cache line utilization than
B+-Trees
Incremental updates difficult

B+-Trees
Each node has keys as well as pointers
Good incremental update performance
Search performance and Cache line utilization inferior as
compared to CSS trees

Pointer elimination is an important technique in
improving cache line utilization

Namrata Jain Improving Cache Performance

Cache Sensitive B+-Tree

Goal
Retain good cache behaviour of CSS-Trees while at the
same time being able to support incremental updates
This way it will be useful even for non-DSS workloads

Idea
Use Partial Pointer Elimination Technique
Have fewer pointers per node than a B+-Tree so more
space for keys
Use limited amount of arithmetic on offsets to compensate
for less number of pointers

Structure
Put all child nodes of a given node in a Node Group
Store nodes within a node group contiguously and use
offset arithmetic for access

Namrata Jain Improving Cache Performance

Example CSB+-Treeassociated space overhead.

2 3

25

30

5 7 12 13 16 19 20 22 24 25 27 30 31 33 36 39

3 13 19

22

33

7

Figure 2: A CSB+-Tree of Order 1

Namrata Jain Improving Cache Performance

B+-Tree Vs CSB+-Tree

Cache line size = Node size = 64 bytes

Key and child pointer each occupy 4 bytes

Keys per node for B+-Tree = 7

Keys per node for CSB+-Tree = 14

In CSB+-Tree, number of cache lines to be searched are
fewer

Namrata Jain Improving Cache Performance

Operations on CSB+-Tree

Bulkload
Allocate space for leaf entries
Calculate how many nodes are needed at higher level and
allocate them contiguously
Fill in the entries at higher level appropriately and set first
child pointers
Continue with the same process until only one node
remains i.e, root

Search
Similar to B+-Tree search algorithm
Locate rightmost key K in the node that is smaller than the
search key and add the offset of K to the first child pointer
to get the address of the child node

Namrata Jain Improving Cache Performance

Operations on CSB+-Tree ..contd.

Insertion - Pseudo-code
1: Locate the leaf entry by searching the key of new entry
2: if the leaf entry has enough space then
3: Insert the new key into the leaf node
4: else
5: if the parent node has enough space then
6: Create a new node group g

′

having one more node
than original node group g

7: Copy all the nodes from g to g
′

. Split node results in
two nodes in g

′

8: Update the first child pointer of parent and deallocate
old node group g

9: else
10: Create a new node group g

′

and evenly distribute
nodes between g and g

′

11: Transfer half keys of earlier parent p to a new node p
′

12: Set the first child pointer of p
′

to g
′

13: The process of recursive split will continue if parent’s
node group is full

14: end if Namrata Jain Improving Cache Performance

Insert example CSB+-Tree

Namrata Jain Improving Cache Performance

Insert example CSB+-Tree

Namrata Jain Improving Cache Performance

Operations on CSB+-Tree ..contd.

Deletion
Handled in a way similar to insertion
Lazy deletion - Locate the data entry, remove it but don’t
restructure the tree

Optimized Searching within a node
Binary Search over keys using conventional while loop
Uniform approach
Hardwiring all possible optimal search trees and use array
of function pointers to view

Namrata Jain Improving Cache Performance

Segmented CSB+-Tree

Problem: Increase in maximum size of the node group due
to increase in cache line size⇒ More copying of data in
case of split

Solution: Divide the child nodes into segments, store in
each node pointers to segments and only child nodes in
the same segment are stored contiguously

Namrata Jain Improving Cache Performance

Example SCSB+-Tree

Figure: SCSB+-Tree of order 2 with 2 segments

Namrata Jain Improving Cache Performance

Segmented CSB+-Tree

Two variants of CSB+-Tree:
Fixed Size Segments

Start by filling the nodes in the first segment till it is full
Then fill the nodes in second segment, this requires
copying nodes in this segment only

Varying Size Segments
For bulkload, distribute nodes evenly among the segments
On every new node insertion, create a new segment for the
segment to which the new node belongs
Touches only one segment in each insert as opposed to the
fixed size variant

Namrata Jain Improving Cache Performance

Full CSB+-Tree

Higher frequency of memory allocation and deallocation
calls in CSB+-Trees is a problem

Another approach is to pre-allocate memory for entire
node group
Space-time tradeoff:

Node split in Full CSB+-Tree is efficient than normal
CSB+-Tree
This efficiency comes at the expense of pre-allocated space

Namrata Jain Improving Cache Performance

Conclusion

Full CSB+-Trees are better than B+-Trees in all aspects
except for space

In limited space environment CSB+-Trees and Segmented
CSB+-Trees provide faster searches while still being able
to support incremental updates

Suitable for applications like Digital libraries, Online
shopping- Searching much more frequent than updates

Feature Comparison table:

B+ CSB+ SCSB+ Full CSB+

Search slower faster medium faster
Update faster slower medium faster
Space medium lower lower higher
Memory Mgmt. medium higher higher lower

Namrata Jain Improving Cache Performance

Bibliography I

Jun Rao and Kenneth A. Ross.
Making B+-trees cache conscious in main memory.
In SIGMOD Conference, pages 475–486, 2000.

Jingren Zhou and Kenneth A. Ross.
Buffering database operations for enhanced instruction
cache performance.
In SIGMOD Conference, pages 191–202, 2004.

Namrata Jain Improving Cache Performance

Thank You

Namrata Jain Improving Cache Performance

	Improving Cache Performance
	Improving Instruction Cache Performance Zhou:instCache
	Improving Data Cache Performance Rao:dataCache

