
 

 

Execution Strategies for SQL Subqueries 
Mostafa Elhemali, César A. Galindo-Legaria, Torsten Grabs, Milind M. Joshi 

Microsoft Corp., One Microsoft Way, Redmond, WA 98052 
{mostafae, cesarg, torsteng, milindj}@microsoft.com 

  
ABSTRACT 
Optimizing SQL subqueries has been an active area in database 
research and the database industry throughout the last decades. Pre-
vious work has already identified some approaches to efficiently 
execute relational subqueries. For satisfactory performance, proper 
choice of subquery execution strategies becomes even more essen-
tial today with the increase in decision support systems and auto-
matically generated SQL, e.g., with ad-hoc reporting tools. This 
goes hand in hand with increasing query complexity and growing 
data volumes – which all pose challenges for an industrial-strength 
query optimizer.  

This current paper explores the basic building blocks that Microsoft 
SQL Server utilizes to optimize and execute relational subqueries. 
We start with indispensable prerequisites such as detection and 
removal of correlations for subqueries. We identify a full spectrum 
of fundamental subquery execution strategies such as forward and 
reverse lookup as well as set-based approaches, explain the different 
execution strategies for subqueries implemented in SQL Server, and 
relate them to the current state of the art. To the best of our knowl-
edge, several strategies discussed in this paper have not been pub-
lished before.  

An experimental evaluation complements the paper. It quantifies the 
performance characteristics of the different approaches and shows 
that indeed alternative execution strategies are needed in different 
circumstances, which make a cost-based query optimizer indispen-
sable for adequate query performance.  

Categories and Subject Descriptors 
H.2.4 [Database Management Systems]: Subjects: Query process-
ing, Relational databases. Nouns: Microsoft SQL Server 

General Terms 
Algorithms, Performance. 

Keywords 
Relational database systems, Query optimization, Subqueries, Mi-
crosoft SQL Server. 

1. INTRODUCTION 
Subqueries are a powerful improvement of SQL which has been 
further extended to scalar subqueries by the SQL/92 standard [1]. 
Most of its value derives from the ability to use subqueries or-

thogonally in all SQL clauses SELECT, FROM, WHERE, and 
HAVING. This facilitates query formulation in important applica-
tion domains such as decision support, applications which automati-
cally generate SQL queries, and new query languages.  

1.1 Application Scenarios 
Decision Support. Decision support benchmarks such as TPC-H 
and TPC-DS make extensive use of subqueries: out of the 22 que-
ries in the TPC-H benchmark, 10 queries use subqueries. Subqueries 
occur in the WHERE clause for 9 of the TPC-H queries and one 
query uses subqueries in the HAVING clause. A common practice 
is to relate a nested subquery to the outer query such that the sub-
query only processes values relevant to the rows of the outer query. 
This introduces a so-called correlation between the outer query and 
the subquery. As we will discuss in more detail, correlations make it 
challenging to find well-performing execution plans for queries with 
subqueries. 

Automatically Generated Queries. Today, end users oftentimes 
use graphical interfaces to compose ad-hoc queries or to define 
reports against an underlying data store. The application behind the 
user interface then automatically generates SQL queries based on 
the interactive input provided by the end user. Microsoft SQL 
Server 2005 Reporting Services is an example of such an applica-
tion: customers can define a model on top of a data store and inte-
ractively query the data behind the model. These queries are com-
piled into SQL if the underlying data store is a relational database 
system. The nesting capabilities and the orthogonality of the SQL 
language simplify automatic SQL code generation. The implemen-
tation of SQL Server Reporting Services relies on these characteris-
tics of the SQL language and – depending on the user query against 
the model – introduces subqueries in the SELECT or the WHERE 
clause. 

“Nested loops” languages.  Unlike SQL, some query languages 
incorporate the notions of iteration and parameterization as a basic 
mechanism.  XQuery is an example [2]. With XQuery, queries are 
formulated using the clauses FOR, LET, WHERE and RETURN 
which yields so-called FLWR-expressions.  Nested FOR clauses are 
a common programming pattern, and they are used to iterate over 
XML elements at a given level in the document hierarchy and then 
descend deeper.  The concepts and techniques presented in this 
paper are applicable to those scenarios as well.  In fact, they are 
used in our implementation of XQuery. 

1.2 Subquery Processing Overview 
Our overall compilation logic, as it pertains to subquery processing, 
is shown in Figure 1. The framework shown separates distinct steps 
for the generation of efficient execution plans, and it aims to maxi-
mally leverage the various optimizations. 
A first step of SQL compilation is the subquery removal process, 
which is covered in detail in Section 3 of this paper.  The result is a 
relational expression that uses the Apply operator to abstract param-
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eterized execution.  A nested loop language is likely to be parseable 
directly into this algebraic form. 
The apply removal process is covered in Section 4 of this paper.  It 
eliminates the use of parameterization, which we identify with 
decorrelating.  The result is a relational expression that uses differ-
ent types of joins. 
The optimizer then explores the decorrelated relational expression 
and generates various alternatives with identical query semantics. 
We call this the logical level of query optimization. This step aims 
at producing enough interesting plan alternatives such that a good 
query plan is among them. The optimizer computes cost estimates 
for plans and picks the most cost-effective one. A sufficiently broad 
search space obviously is a prerequisite for good performance. 
Logical optimizations for subqueries are covered by Section 5 to 7 
where we discuss strategies for logical exploration of semijoin and 
antijoin, techniques to deal with subqueries in disjunctions, and 
some Group By scenarios.  
After exploration of the relational expression is complete, additional 
optimizations at the physical level help to further improve perform-
ance. These techniques such as batch sort or prefetch are discussed 
in Section 8.  

1.3  Subquery Execution Strategies  
The query optimizer explores different physical execution strategies 
for the various logical query plan alternatives. This step generates 
execution plan alternatives with different performance characteris-
tics. In the context of subquery optimization, the following execu-
tion strategies are possible: (1) navigational strategies, or (2) set-
oriented strategies. Navigational strategies rely on nested loop joins 
for implementation while two interesting classes of navigational 
strategies are conceivable, namely forward lookup and reverse 
lookup. Forward lookup starts processing the outer query and, as 
outer rows are being generated, invokes the subquery one outer row 
at a time. Reverse lookup in turn starts with the subquery and proc-
esses the outer query one subquery row at a time. Set-oriented proc-
essing finally requires that the query could be successfully decorre-
lated. If this is the case, set operations such as hash and merge join 
can implement the query. 

1.4 Challenges and Contributions 
Depending on the cardinalities of the outer query and the subquery 
as well as the physical design of the database, different subquery 
execution strategies may differ greatly in their performance charac-
teristics. This makes it a challenging topic for query optimization. 
This is reflected by the attention the area has received in previous 
work, e.g., [3, 4, 5, 6, 7, 8]. While [9] has specifically focused on 
optimization of subqueries with grouping at the logical level, this 
current paper takes a broader perspective on the problem. We do not 
limit the discussion to grouping, and we cover both the logical level 
and the physical level of plan generation. In particular, we investi-
gate subqueries introduced by existential or universal quantification. 
Throughout the paper, we discuss rewrite strategies for subqueries at 
the logical level and explain how this facilitates finding a good exe-
cution plan among navigational and set-oriented alternatives at the 
physical level. In Section 10, our experimental evaluation of differ-
ent subquery execution strategies with Microsoft SQL Server 2005 
investigates the different plan choices in quantitative terms. The 
experiments also assess the effectiveness of a cost-based optimiza-
tion approach in the presence of subqueries. 

2. ALGEBRAIC REPRESENTATION  
OF SUBQUERIES 
In this section we describe the algebraic representation of SQL sub-
queries.  Having an algebraic representation is beneficial because it 
abstracts the semantics of operations, making them independent of 
query language, data structures or specific execution strategies.  It 
also allows algebraic analysis and reasoning, including capturing 
reordering properties in the form of algebraic identities.  Finally, it 
fits well into algebraic query processors like that of SQL Server. 

2.1 Terminology 
The basics of our algebraic model were discussed in [9].  Here, we 
briefly review this formulation and go over a number of optimiza-
tions and issues not covered in our earlier work. Since we deal with 
SQL, all operators in this paper are bag-oriented and we assume no 
automatic removal of duplicates.  In particular, the union operator 
for most of the remainder of the paper is UNION ALL and we repre-
sent it using UA. Distinct union in turn is denoted as U. Besides 
union, we rely on the standard relational operators for grouping, 
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selection (filter) and projection: GA,FR stands for a GROUP BY over 
relation R with a list A of grouping columns and a set F of aggregate 
functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
umns.Our algebraic formulation of subqueries is based on the gen-
eral idea of a parameterized relational expression (PRE) and the 
Apply operator, as described in [9].  A PRE is simply a relational 
expression that has free variables or parameters, so it yields a rela-
tional result when values for those parameters are provided.  It is 
effectively a function.  The Apply operator repeatedly invokes a 
PRE with a series of parameters values and collects the results of 
these multiple invocations.  Formally, 

R ApplyJN E(r) = UAr ∈ R ({r} JN E(r)). 

Note that Apply does not take two relational inputs, but only one 
relational input R that provides the set of parameter values, on 
which PRE E(r) is applied.  Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above.  It 
supports the common join types such as inner, outer, and semijoins 
which we briefly review here: 

An inner join (R JNp S) is defined as the subset of the Cartesian 
product of R and S where all tuples that do not satisfy the predicate 
p are filtered out. 

A left outer join (R LOJp S) includes the result of an inner join be-
tween R and S with join condition p, plus all the unmatched tuples 
of R extended with NULL values for columns of S. A right outer 
join on the other hand contains the unmatched tuples of S along with 
the result of the inner join.  

A semijoin (R SJp S) is defined as all the tuples of R that match at 
least one tuple of S on the predicate p, while an antijoin (R ASJp S) 
is defined as the tuples of R that match no tuples of S on the predi-
cate p. Naturally, (R SJp S) UA (R ASJp S) = R.  

For example, an Apply operator can use antijoin logic if it wants to 
preserve row r when the result of E(r) is empty.   

The Apply operator maps well to the nested loops execution strategy 
with correlated parameters, but we treat it here as a logical operators 
with the semantic definition described above. 

We illustrate the use of Apply with a simple SQL subquery example.  
Say you want to list all your ORDERS, and include the CUS-
TOMER name.  It is convenient to have a function that takes a cus-
tomer key and returns the name of the CUSTOMER.  Such function 
can be written as follows 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY), 

where the free variable O_CUSTKEY is the argument of the func-
tion – there is no explicit syntax to bind free variables in SQL, so 
binding variables in subqueries is done simply by name.  Free vari-
ables will be shown in bold throughout the paper.  We can use this 
“name extraction function” to report all ORDERS with the name of 
the CUSTOMER as follows 

SELECT *, (SELECT C_NAME  
FROM CUSTOMER  

WHERE C_CUSTKEY = O_CUSTKEY) 
FROM ORDERS 

An additional issue to note here is that we are crossing a bridge 
between relational expressions and scalar domains.  The subquery is 
a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause.  The rules to bridge this 
relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
value is NULL. 

• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
value is undefined and a run-time error is raised. 

For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 

ORDERS ApplyOJ (π [C_NAME] σ [C_CUSTKEY = 
O_CUSTKEY] CUSTOMER) 

Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
WHERE L_SHIPDATE < O_ORDERDATE). 

• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>.  The 
result is again of type Boolean, but unlike existential subque-
ries, quantified comparisons can return TRUE, FALSE or 
UNKNOWN (when null values are involved in the compari-
son).  For example: 

 
L_SHIPDATE > ANY( 
SELECT O_ORDERDATE 
FROM ORDERS 
WHERE L_ORDERKEY = O_ORDERKEY). 
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• IN / NOT IN.  This is a shorthand for quantified comparison.  
<expr> IN <subq> is equivalent to <expr> =ANY <subq>.  
<expr> NOT IN <subq> is equivalent to <expr> <>ALL 
<subq>. 

• Scalar-valued.  These return non-Boolean scalar values.  For 
example: 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY). 

In addition to its internal use in query processing, the Apply operator 
is also available in the surface syntax of SQL Server.  The common 
usage scenario is the invocation of parameterized table-valued func-
tions, which are a particular case of PREs.  For example, suppose 
you have a table-valued function that takes a string and chops it up 
into words, outputting one row per word.  You can use the following 
to invoke this function on the values of column COL from MY-
TABLE: 

SELECT * 
FROM MYTABLE  
OUTER APPLY CHOP_WORDS(MYTABLE.COL) 

Each row of MYTABLE will be repeated as many times as rows 
returned by the function – but if the function result is empty then the 
row is still preserved, due to the use of OUTER. 
Some implementations of SQL incorporated the ability to pass pa-
rameters across the “comma operator” of the FROM clause.  We 
adopted explicit syntax for parameter passing for conceptual clarity, 
and also because “comma” doesn’t lend itself to clarifying what to 
do when the PRE returns an empty set, i.e. preserve or reject the row 
from the left relational input. 

3. SUBQUERY REMOVAL 
A straightforward implementation of subqueries requires tuple-at-a-
time processing in a very specific order – evaluate the PRE for each 
row that requires evaluation of the scalar expression.  It also intro-
duces mutual recursion between the scalar and relational execution 
sub-systems.  Conceptually, relational execution needs to make calls 
to some scalar evaluation sub-system for predicates and other scalar 
computations (there are multiple ways to implement scalar evalua-
tion, as they could be compiled in-place instead of having an actual 
separate component).  If scalar expressions contain subqueries, then 
the scalar subsystem needs to bind the free variables and make a 
recursive call back to relational execution.  Subquery removal is 
about eliminating this mutual recursion between the scalar and rela-
tional execution sub-components.   
The general subquery removal algorithm takes three arguments: a 
relational operator, a relational expressions and a scalar expression 
with subqueries; and it returns new expressions to compute the re-
sult without the need of subqueries.  For example, say you have a 
selection of the form σ[p]R, and predicate p has subqueries.  We 
invoke SQREM(σ,p,R) to get (p’, R’), p’ does not use subqueries 
and σ[p]R = σ[p’]R’. 
Algorithm SQREM is implemented through a simple tree traversal 
of scalar expression p, which moves all the subquery computation 
from p over to relational expression R.  For each subquery PRE(r) 
found in p, we add a computation Apply PRE(r) on R and replace 
the subquery in p by a scalar computation.  A more detailed exam-
ple is found in [9]. 
For a correct and efficient translation, there are a number of special 
cases to incorporate in the basic algorithm outlined above.  They are 
listed next. 

3.1 Mapping multi-row relational  
results to a single scalar value  
This issue was brought up already in the example query in Section 
2.  For a scalar-valued subquery E(r), the subquery is computed in 
general as 

R ApplyOJ max1row(E(r)). 

max1row is a special relational operator whose output is the same as 
its input, but it raises a run-time exception if its input has more than 
one row.  Through static analysis, it is sometimes possible to deter-
mine at compile time that E(r) will return at most one row, regard-
less of the parameter value and database content – no max1row 
operator is required then.  This is a common case in actual applica-
tions. 

3.2 Filtering through existential test 
If an existential test on E(r) is used in the context of directly filter-
ing rows, then we incorporate the filtering operation with the 
evaluation of the subquery.  The computation of EXISTS and NOT 
EXISTS subqueries is done as follows: 

R ApplySJ E(r) 

R ApplyASJ E(r) 

In terms of the general rewrite procedure described above, the sub-
query occurrence in the original scalar expression S is replaced by 
the constant TRUE and the result simplified to obtain S’.  This is the 
path followed when existential subqueries are ANDed together with 
other conditions in the SQL WHERE clause. 
Existential subqueries are also used in a context that does not di-
rectly filter rows.  In general, they need to be treated like scalar-
valued subqueries, as described in the next scenario. 

3.3 Conditional scalar execution 
SQL provides a construct for conditional evaluation of scalar ex-
pressions, and subqueries can be used there as well.  Implementing 
this semantics properly require the incorporation of probe and pass-
through functionality in the Apply operator.  Suppose your expres-
sion is of the form 

CASE WHEN EXISTS(E1(r))  
THEN E2(r) ELSE 0 END. 

Note that the EXISTS subquery here is not used to directly filter 
rows, but to determine the result of a scalar expression.  The sub-
queries will be computed by the following expression: 
(R Apply[semijoin, probe as b] E1(r)) Apply[outerjoin, pass-through 

b=1] max1row(E2(r)). 
Apply with probe preserves the rows from R and adds a new column 
b, which is 1 whenever E1(r) is non-empty.  Apply with pass-
through has a guard predicate and only executes its subquery if the 
guard is TRUE.  This implements the required conditional evalua-
tion. 
Assuming the result of the scalar-valued subquery E2(r) is left in 
column e2, the original scalar expression is replaced to be: 
 CASE WHEN p = 1 THEN e2 ELSE 0 END. 

3.4 Disjunctions of subqueries 
When subqueries are used in disjunctions, it is not possible to filter 
directly as we did in Sec. 3.2 with Apply-semijoin or Apply-antijoin.  
Apply with probe can be used to collect the subquery results and 
evaluate the entire disjunction afterwards, and pass-through can be 
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used to implement OR-shortcircuiting.  But then it is difficult to 
convert Apply into join, which, as we shall see later, is a major tool 
for efficient execution. 
Our mapping of subqueries in disjunctions is based on unions.  Sup-
pose you have a scalar filter condition of the form p(r) OR EX-
ISTS(E1(r)) OR EXISTS(E2(r)), where p(r) is a scalar predicate over 
r without subqueries.  We map to a filtering relational expression of 
the form: 

R ApplySJ ((σp(r) CT(1) UA E1(r) UA E2(r)) 

The scalar predicate p is evaluated on top of the constant table 
CT(1) (which returns one row and no columns).  A row from R is 
output when any of the relational expressions underneath the Un-
ionAll returns a non-empty result. 

3.5 Dealing with quantified comparisons 
Semantics.  We deal with quantified comparisons by mapping them 
to existential subqueries, which we have already discussed.  But we 
need to be particularly careful with universal quantification, whose 
semantics in the presence of NULL values is illustrated through an 
example.  Say you have a predicate p of the form 5 NOT IN S, 
which is equivalent to <>ALL.  The result of this predicate is as 
follows, for various cases of set S: 

1. If S = {} then p is TRUE. 
2. If S = {1} then p is TRUE. 
3. If S = {5} then p is FALSE. 
4. If S = {NULL, 5} then p is FALSE. 
5. If S = {NULL, 1} then p is UNKNOWN. 

Also, NULL NOT IN S is UNKNOWN for any S <> {}.  Case 5 is 
particularly counter-intuitive (for database implementers as well as 
users), but it results from the rules of three-valued logic in SQL: 
value <cmp> NULL is UNKNOWN; UNKNOWN AND TRUE is 
UNKNOWN. 
This quantified comparison can return values TRUE, FALSE and 
UNKNOWN, and we want to transform it into an existential test, 
which only returns values TRUE and FALSE.  How can we do this 
mapping? 

Utilization context.  We should note that FALSE and UNKNOWN 
are undistinguishable for the purpose of selecting rows – i.e. if we 
filter rows on predicate p, then we discard any rows for which p is 
either FALSE or UNKNOWN.  FALSE and UNKNOWN are also 
undistinguishable in the predicate of conditional CASE WHEN 
expressions. 
Also, suppose you have a Boolean expression P(X1, X2, …) = Y, 
using only logical connectives AND and OR.  The impact of chang-
ing the value of any Xi from UNKNOWN to FALSE, is either Y 
remains unchanged, or else Y changes from UNKNOWN to 
FALSE. 
From the above, it is valid to change the result of quantified com-
parisons from three-valued to two-valued, for Boolean expressions 
used to filter rows or in CASE WHEN. 
The mapping.  To compute universal quantification we use anti-
join, which evaluates a NOT EXISTS predicate.  We map through 
the conventional equation: 

(FOR ALL s ∈ S: p) = (NOT EXISTS s ∈ S: NOT p) 

However, this equation holds only in two-valued logic, not in the 
three-valued logic of SQL (the basic reason is that NOT UN-
KNOWN is UNKNOWN).  So, we complete the mapping in two 
steps: (1) change the universal quantification σ expression so it does 
not involve UNKNOWN values; (2) negate the predicate. 
A universal quantification predicate of the form p = A <cmp> B can 
return UNKNOWN when either A or B are NULL.  So we replace it 
by a two-value predicate p’ = A <cmp> B AND A IS NOT NULL 
AND B IS NOT NULL.  Predicate p’ returns TRUE whenever p 
returns TRUE, and p’ returns FALSE whenever p returns either 
FALSE or UNKNOWN.  As argued earlier, this mapping preserves 
correctness under filtering and CASE WHEN contexts. 
We then negate p’ to create the NOT EXISTS predicate, to obtain: 

A <cmp’> B OR A IS NULL OR B IS NULL, 
where <cmp’> is the comparison opposite <cmp>.  Of course, if A 
or B are not nullable, the expression can be simplified at compila-
tion time. 

Example.  Suppose you start out with a subquery of the form A 
NOT IN S.  This is first mapped to universal quantification A 
<>ALL S.  Then it gets mapped to a NOT EXISTS subquery of the 
form 

NOT EXISTS(σ[A = s OR A IS NULL OR s IS NULL] S). 
This will then get mapped to an antijoin with a predicate that has 
disjuctions.  This is a common form in antijoin predicates, and its 
efficient execution is considered in section 6.2. 
An alternative to the above is to introduce a new, special aggregate 
that has a Boolean input and it computes universal quantification 
with three-valued logic.  This provides a faithful implementation of 
quantified comparisons in SQL (and a requirement if three-valued 
Boolean results are allowed as parameters to opaque functions).  But 
this aggregate approach limits the set of execution strategies.  Map-
ping to existential tests allows efficient use of index lookups and 
navigational plans. 

4. REMOVING APPLY 
In the previous section we outline subquery removal, i.e. eliminating 
the use of relational expressions in scalar expressions.  The result is, 
in general, a relational expression with Apply operators and param-
eterized expressions (PREs).  In many cases, it is possible to do 
further transformations and eliminate the use of Apply and parame-
terization.  This is commonly known as a decorrelated form of the 
query and it enables the use of a choice of join algorithms.  It was 
the main intuition behind efficient subquery processing in the first 
papers on the subject, e.g., [3]. 
We don’t view the decorrelated form of subqueries as a preferable 
execution strategy, but rather as a useful normal form.  Different 
surface formulations can end up in the same normal form, including 
queries originally written with or without subqueries.  Starting from 
this normal form, cost-based optimization will consider multiple 
execution strategies, including different evaluation orders and (re-
)introduction of Apply. 

4.1 Categories for Apply Removal 
Apply (without pass-through, which implement conditional execu-
tion and is foreign to relational algebra) does not add expressive 
power to the five basic relational operators (select, project, cross 
product, union, difference) [9, 13].  However, it does add concise-
ness.  Removing Apply from some relational expression E may yield 
an expression E’ that is exponentially larger than E.  This is an im-
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portant distinction for the three subquery removal categories pre-
sented in [9].  We briefly review those categories here and add a 
fourth: 

1. Apply removal that preserves the size of the expression.  
For example, the Apply expression from the example query in 
Section 2 can be rewritten as: 
ORDERS ApplyOJ (σ[C_CUSTKEY = O_CUSTKEY] CUS-
TOMER) = ORDERS OJ [C_CUSTKEY = O_CUSTKEY] 
CUSTOMER 

2. Apply removal that duplicates subexpressions.  The size of 
an expression can be increased exponentially as a result of Ap-
ply removal, in particular when dealing with parameterized un-
ion and difference. For example, the following expression can 
result from the use of subqueries in disjunctions, and its decor-
related form duplicates R: 

R ApplyJN (σR.a = S.a S) UA σR.b = T.b T) 

= R JNR.a = S.a S UA R JN R.b = T.b T 

One could also write the above as a join with a complex OR 
condition, on top of a union of S and T with a column that tags 
the source of each union output row, thus preserving the size of 
the original expression.  However, we find little use in such 
representation from a query processing perspective. 
Note that if the same free variable, say R.a, were used in both 
branches of the union, then the predicate can be factored out to 
remove Apply without duplication.  SQL Server identifies and 
handles this case as category 1.  In general, pulling up predi-
cates with free variables is part of the normalization process 
that removes Apply for expressions in category 1.  

3. Apply removal unfeasible due to special scalar-relational 
bridge semantics.  There are two cases here: (1) checking for 
max1row for scalar-valued subqueries and (2) conditional 
evaluation using pass-through predicates for CASE WHEN 
expressions.  SQL Server does not remove Apply for these 
cases. 

4. Opaque functions.  This category was not called out in [9], 
but it is a distinct case.  Apply is not removed when dealing 
with opaque functions like our earlier example of table-valued 
function CHOP_WORDS: 
MYTABLE Apply CHOP_WORDS(MYTABLE.COL) 

Table-valued functions written in languages such as C++ are 
always opaque.  For functions defined through the SQL lan-
guage, we also support inlininig, in which case the function 
definition simply gets expanded, as a view with parameters.  
This brings back the expression to one of the three earlier cate-
gories. 

4.2 Tradeoffs and Query Processing Strategy 
All the categories outlined above are found in practice, and their 
effective processing requires slightly different approaches.  To de-
scribe the differences, we need to take into account the processing 
flow of the optimizer in SQL Server: 

• The compiler front-end parses the query text and resolves sym-
bolic references.  It produces a tree representation of the state-
ment based on logical data operators. 

• This operator tree is simplified and normalized, including con-
tradiction detection and removal of redundant operations.  The 
output is a simplified logical operator tree representing the 
query. 

• The simplified operator tree goes into cost-based optimization, 
where an execution plan is selected based on available access 
paths, data volume and distribution. 

Query simplification / normalization is done using the same infra-
structure of tree transformations, so it is possible to utilize a particu-
lar tree transformation either as simplification or as a cost-based 
alternative. 
For expressions that fall in categories 3 and 4 above, Apply cannot 
be removed.  There is basically a single physical execution strategy 
for the logical Apply operator: Use nested loops joins to repeatedly 
execute the parameterized expression, in a straightforward imple-
mentation of the Apply definition.  SQL Server considers a number 
of optimizations on these parameterized nested loops, which are 
discussed later in this paper. 
For expressions that fall in category 1, the query is normalized to 
the decorrelated form, which is fed to the cost-based optimization.  
This process considers a number of logical execution orders and 
implementation algorithms off of this decorrelated form.  Going 
through a normal form provides syntax independence to our optimi-
zation process.  There are many cases of subqueries that can also be 
written naturally without those in SQL, and the query optimizer has 
the same behavior for both forms.  For example, it is easy to see that 
our example query in Section 2 could have been written using outer-
join directly – both the subquery or the outerjoin formulation will 
map to the same normal form. 
Particular optimizations for these decorrelated forms are covered 
later in this paper, but it is worth pointing out here that one of the 
alternatives considered during cost-based optimization is the intro-
duction (or re-introduction) of Apply, to target navigation strategies 
that are very efficient in some cases. 
For expressions that fall in category 2, we have a tradeoff to make: 
Remove Apply but duplicate sub-expressions (as in category 1), or 
else keep the original (as in category 3).  We do not normalize to the 
decorrelated form in this case for two reasons: (1) The explosion on 
the size of the expression; (2) the added complication faced when 
re-introducing Apply in cost-based optimization, which now requires 
common subexpression detection to eliminate the redundancy intro-
duced. 
We are still interested in resolving this tradeoff effectively in a cost-
based way, because there are instances where the decorrelated form 
can perform much more efficiently, even with the duplicate subex-
pression.  For this reason, we consider Apply removal for this cate-
gory of queries during cost-based optimization, for a number of 
important special cases.  Further details of this are covered later in 
this paper. 

5. OPTIMIZING SUBQUERIES USING 
MAGIC SETS 
In this section we briefly review the “complex query decorrelation” 
approach presented in [8], and reformulate it using our framework, 
to the best of our understanding. 

5.1 The magic set technique 
Magic set optimization in [8] starts out with a presentation of sub-
queries as functions, as we do in this paper with the Apply operator.  
A key observation is that a function can be represented extension-
ally as a table, for a finite set of argument values.  This extensional 
representation has additional columns that hold the argument values 
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for which the function has been pre-computed.  Function application 
then turns into join: 

R Apply E(r) = R JNR.r=R’.r’ DS, 

assuming that DS stores the result of E(r) for all values of r from R.  
The table DS is called the “decoupled query.”  To obtain DS, you 
need to compute the function for enough parameter values: 

DS = R’ Apply E(r’), 

where R’ is called the “magic set,” and it consists of (a superset of) 
the set of parameter values to be used from R.  A possible choice is 
R’ =distinct[R.r] R.  Of course, the two equations can be put to-
gether and there is no need to explicitly store the value of DS.  The 
result can be seen as a generalization of the semijoin reduction strat-
egy used in distributed systems. 
The intent of [8] is that DS has a decorrelated form, which when 
plugged above yields a fully decorrelated expression.  However, this 
does not really address decorrelation, in the sense we use in this 
paper.  Removing Apply in the original expression is the same alge-
braic problem as removing it in the computation of DS. 

5.2 Magic on join / group by scenarios 
In addition to the general definition of magic set reduction, [8] also 
shows a specific strategy that can be very efficient to deal with some 
Join and GroupBy queries.  It transforms expression A below to an 
expression M with magic-set reduction: 

 A: R JNp(r,s) and p(r,x) Gs,x=agg S 

 M: R JNr = r’ and p(r,x) (Gs,x=agg R’ JNp(r’,s) S) 

with R’ being the distinct values of R used in the join with S.  There 
are at least two other possible expressions to execute A [9]: Call B 
the result of moving up the GroupBy operation above the Join; call 
C the segmented execution over R, which is possible when R and S 
are common subexpressions.  Magic set strategy M can be much 
better than the other alternatives when all the following conditions 
hold (which is not a very common scenario, in practice): 

• Many of the values in R.r do not appear in S.s.  Otherwise, A is 
probably quite effective, as it is not computing unnecessary 
groups. 

• R.r is a low selectivity column (i.e. there are relatively few 
distinct values of r in R) and also S.s is a low selectivity col-
umn. Otherwise, B is probably quite effective, since the early 
join will filter out any unnecessary rows and no extra work is 
created for the final aggregation. 

• R and S are not common subexpressions. Otherwise, strategy 
C requires a single pass and can be very efficient. 

From the point of view of our framework, the magic set strategy is 
an alternative for queries with Join and GroupBy, and it needs to be 
considered in a cost-based way along with other choices. 
As with Apply removal over parameterized unions, magic set reduc-
tion requires the duplication of subexpressions, which introduces 
additional complications during optimization. 

6. OPTIMIZING SEMIJOIN  
AND ANTIJOIN 
The process of removing correlation generates trees which contain 
semijoins, antijoins and outer joins. Optimization of semijoins, anti-
joins and outer joins is therefore an important part of handling 

subqueries. The paper [11] discusses outer join optimization in de-
tail. In this section we will concentrate on semijoins and antijoins. 
Note that SQL does not expose semijoins and antijoins as language 
constructs. Therefore for SQL, subquery removal is the only way 
these operators make an appearance in the query tree. 

6.1 Reordering semijoins and antijoins 
From the reordering perspective, semijoins and antijoin are very 
similar to filters. They can be pushed or pulled through an operator 
whenever a filter can be pushed or pulled. E.g. a filter can be pushed 
through a GroupBy operator whenever the predicate does not use 
the results of the aggregate expressions. Similarly a semijoin or an 
antijoin can be pushed through a GroupBy as long as the join predi-
cate does not use the results of the aggregate expression. i.e. 

(GA,FR) SJp(A,S) S = GA,F (R SJp(A, S) S) 

(GA,FR) ASJp(A, S) S = GA,F (R ASJp(A, S) S) 

Reordering semijoins and antijoins as though they were filters is a 
powerful tool but it still keeps the tables in relation S together as a 
block. If we want to reorder individual tables of S, we have to be 
careful about the number of duplicate rows in the result and the 
columns that are visible. An identity which gives us a simple and 
general solution for this problem is: 

R SJp(R,S) S = Gkey(R),Any(R) (R Joinp(R, S) S) 

This transformation converts a semijoin into a join. Reordering of 
tables around a join is a well understood problem.  
Here is an example that illustrates the benefits of this ability to 
freely reorder tables. Consider the query that tries to find the num-
ber of orders placed on the New Year’s Day in 1995 for which at 
least one of the suppliers is in the same country as the customer and 
the item was shipped within seven days of the order. The SQL for 
this query looks something like this: 
SELECT COUNT(*) 
FROM ORDERS 
WHERE O_ORDERDATE = '1995-01-01' 
 AND EXISTS(SELECT *  
 FROM CUSTOMER, SUPPLIER, LINEITEM 
 WHERE  
  L_ORDERKEY = O_ORDERKEY  
  AND S_SUPPKEY = L_SUPPKEY  
  AND C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY 
AND L_SHIPDATE BETWEEN '1995-01-01' 
AND dateadd(dd, 7, '1995-01-01') 

The EXISTS clause of the subquery is transformed into a semijoin. 
The transformed query looks like: 
ORDERS SJ (CUSTOMER JN  SUPPLIER JN  LINEITEM) 

The inner side of the semijoin contains an inner join of three tables. 
These three tables cannot be reordered freely with the ORDERS 
table as otherwise the count(*) may see incorrect number of rows. 
We are therefore forced to do one of the following. Either join the 
CUSTOMER, SUPPLIER and LINEITEM table before we join the 
result with ORDERS (if we choose to do the semijoin as a hash or 
merge join) or join the three tables for every row of ORDERS that 
qualifies the date predicate (if we choose to do the semijoin as a 
nested loop or an index lookup join). Both these alternatives are 
quite slow. Since the predicates on both ORDERS and LINEITEMS 
are quite selective, it is better to join the two tables first and then 
join the small result with the remaining tables. This is exactly what 
converting a semijoin to a join lets us do. 
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This ability to freely reorder tables may tempt us to convert all 
semijoins to inner joins as a normalization step. The problem is that 
it creates a GroupBy(distinct) operator for every semijoin that is 
converted. We need to find an optimal place for these GroupBys in 
the final plan. GroupBy placement is not an easy task and can in-
crease compilation time dramatically. Therefore converting semi-
joins to inner joins as a normalization step may not be a good idea 
and it is preferable to do this on a case-by-case basis. 

The tables from the two sides of an antijoin cannot be mixed this 
way since there is no simple identity to convert them to inner joins. 
Converting antijoins to inner joins requires introduction of a sub-
traction since inner joins don’t allow us to do universal quantifica-
tion. Evaluation of subtraction requires an antijoin on keys taking us 
back to where we started. Therefore the tables used on the inner side 
of an antijoin are forever separated from the rest of the query and 
can only be reordered amongst themselves. 

6.2 Evaluating semijoins and antijoins  
efficiently 
Semijoins and antijoins can be evaluated using all the standard join 
implementations viz. nested loop join, hash join, merge join and 
index lookup join. Nothing special is required when evaluating a 
semijoin using any of these join algorithms. Evaluating antijoins as 
a hash join requires some special considerations. For the antijoin (R 
ASJp S), if the relation R is used to build the hash table, we have to 
mark and rescan the hash table to decide which rows to output [14]. 
Implementing the antijoin (R ASJp S) as nested loop join requires 
that the relation R be on the outer side. 

Evaluating the semijoin (R SJp S) or the antijoin (R ASJp S) by using 
the relation R as the source of the lookup in an index-lookup join is 
also easy. We take a row of relation R and look it up in the index on 
the relation S. For a semijoin, we output the row if the index lookup 
yields a matching row. For an antijoin, we output the row if the 
index lookup fails to find a match. 

Doing index lookups from the relation S into the relation R requires 
a lot more care. Suppose we want to find out the number of urgent 
orders that had at least one item that was shipped on January 1, 1995 
but was committed for December 31, 1994.  The query would look 
like:  

Example 6.1: 
SELECT COUNT(*)  
FROM ORDERS 
WHERE O_ORDERPRIORITY = '1-URGENT'  
AND EXISTS (SELECT * 
 FROM LINEITEM  
 WHERE L_SHIPDATE = '1995-01-01' 
  AND L_COMMITDATE = '1994-12-31' 
  AND L_ORDERKEY = O_ORDERKEY 
 ) 

The query does a semijoin between urgent ORDERS and LINEI-
TEMs shipped on a specific date and committed for a specific date 
(ORDERS SJ LINEITEM). Since the predicate on LINEITEM is a 
lot more selective than the predicate on ORDERS and can be solved 
with an index, a natural strategy would be to use an index seek to 
get the qualifying LINEITEMs and then look them up in the OR-
DERS table using the index on O_ORDERKEY. This of course 
does not work for semijoins. There are multiple LINEITEMs per 
ORDER. Therefore if two items in an ORDER shipped on the New 
Year’s Day in 1995 but were committed for the New Year’s Eve, 

that ORDER will get looked up twice, giving us an incorrect count 
of orders. 
The identity to convert semijoins to joins described in the previous 
section comes to our rescue. For an inner join it is legal to do look-
ups in any direction. This is the second benefit of converting semi-
joins to inner joins. It gives us the freedom to choose either table as 
a lookup table. If the predicate on ORDERS is more selective and 
easily solvable we can first find the ORDERS and then look up 
matching LINEITEMs. If on the other hand if the predicate on 
LINEITEMs is more selective we can do a reverse lookup. 
As we discussed earlier, antijoins do not have a corresponding iden-
tity to convert them to joins and therefore do not yield to reverse 
lookups. Even worse, subquery removal sometimes generates anti-
joins that are hard to do even as regular lookups. The reason for this 
is NULL semantics in SQL. Consider the query that gets the count 
of all the LINEITEMS that were shipped on a day on which no 
order was placed. Assume we have a modified version of TPCH 
where the unshipped LINEITEMs are identified with L_SHIPDATE 
as NULL. 

SELECT COUNT(*) 
FROM LINEITEM 
WHERE L_SHIPDATE != ALL(SELECT O_ORDERDATE 
from ORDERS) 

As we saw in Section 2 this generates an antijoin with the predicate 
L_SHIPDATE = O_ORDERDATE OR L_SHIPDATE IS NULL. 
(We assume here that O_ORDERDATE cannot be NULL.) If we 
don’t include the L_SHIPDATE is NULL predicate, we will count 
unshipped orders. The reason is that the predicate (L_SHIPDATE = 
O_ORDERDATE) evaluates to unknown for every ORDER when 
L_SHIPDATE is NULL and an antijoin outputs a row if the predi-
cate does not evaluate to true for any of the rows of the inner rela-
tion. 
The set based join algorithms viz. hash and merge cannot be used 
for this query, since the predicate for the antijoin is (L_SHIPDATE 
= O_ORDERDATE OR L_SHIPDATE IS NULL). Hash or merge 
join require at least one conjunct that is a simple equality so that it 
has columns that can be used to hash or sort the relations. Since we 
are evaluating (LINEITEM ASJp ORDERS), ORDERS has to be the 
lookup table for the reasons mentioned earlier. But it is very hard to 
do lookups into ORDERS with the predicate (L_SHIPDATE = 
O_ORDERDATE OR L_SHIPDATE IS NULL). Therefore the 
only choice we are left with is nested loop join. A nested loop join is 
going to be excruciatingly slow given the size of LINEITEMS and 
ORDERS. The solution is to use the identity 

(R ASJ(p1 OR p2) S) = ((R ASJp1 S) ASJp2 S) 

This gives us one antijoin with the predicate L_SHIPDATE = 
O_ORDERDATE which can be implemented either as a set based 
join or as a lookup join and another antijoin with a predicate only on 
LINEITEMS which can be evaluated without looking at all rows of 
ORDERS. 

Quantified comparisons frequently contain inequalities of the form 
>ANY, <=ALL etc. Removing correlations for such queries gives 
us expressions of the form (R SJ(R.a .cmp. S.a) S) or (R ASJ(R.a .cmp. S.a) S). 
Consider the case when .cmp. is one of (<, >, <=, >=). A semijoin or 
an antijoin with such a predicate cannot use hash joins. It may be 
very expensive to implement it using a merge or an index-lookup 
join if the proper indices do not exist. We may therefore have to 
implement it as a nested loop join. An interesting strategy that can 
be used to improve performance in this case is to use a max or a min 
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aggregate on the relation S. e.g. (R SJ(R.a > S.a) S) can be transformed 
to (R SJ(R.a > x) (GΦ,x=min(S.a) S)). Here is the intuition behind this trans-
formation. (R SJ(R.a > S.a) S) outputs a row of R if there is at least one 
row of S for which R.a > S.a. But in that case it is enough to check 
if R.a > min(S.a). The min/max aggregate can be calculated once 
and saved so that the relation S does not have to be scanned multiple 
times. The same strategy works for antijoins.  

7. OPTIMIZING PARAMETERIZED  
UNIONS (SUBQUERY DISJUNCTIONS) 
In the previous section we discussed cases where the semijoin or 
antijoin predicate was a disjunction. A more complicated case is 
when the disjunctions of the original query are subqueries. 

Consider a query where we try to get a count of LINEITEMs which 
were either shipped after the commit date or were shipped more 
than 90 days after the order date.  

Example 7.1: 
SELECT COUNT(*) 
FROM LINEITEM  
WHERE L_SHIPDATE > L_COMMITDATE  
 OR EXISTS (SELECT *  

FROM ORDERS  
WHERE DATEADD(DD, 90, O_ORDERDATE) <  
L_SHIPDATE AND O_ORDERKEY = 
L_ORDERKEY) 

As we saw earlier, whenever we have subqueries in a disjunction, 
we end up with a tree of the form 

R ApplySJ (E1(r1) UA E2(r2)UA E3(r3) …) 

where ri are the correlated columns of R and Ei are the transformed 
subqueries. When we try to remove correlations from a tree of this 
form, we encounter two possibilities. 

7.1 Simple correlation 
The simple correlation case is when we can transform 

E1(r1) UA E2(r2)UA E3(r3) … → σp(r) (F1 UA F2UA F3…) 

where the expressions Fi are free of correlation from R. This is pos-
sible if and only if the following two conditions are met: (1) The 
correlated predicates in each branch are identical in form except for 
the columns of Ei that they use. (2) The columns of Ei that they use 
are such that the ones appearing in the same position in the corre-
lated predicates are mapped to the same resulting column by the 
union-all. If we manage to do this transformation our expression 
becomes  

R SJp(r) (F1 UA F2UA F3 …) 

and we have reduced our problem back to the optimization of semi-
joins.  

7.2 Complex correlation 
Given the severe restrictions on the predicates in the previous sec-
tion, such a transformation is possible only in very few cases. For 
example it does not work for our query because the correlated predi-
cate on one branch is L_SHIPDATE > L_COMMITDATE while 
that on the other branch is DATEADD(DD, 90, O_ORDERDATE) 
< L_SHIPDATE AND O_ORDERKEY = L_ORDERKEY. The 
two predicates are not even close in form to each other and the only 
way that they can be pulled above the union-all is by introducing 
new columns to distinguish the two branches. This method of intro-

ducing columns to remove correlation generates a complicated dis-
junction which can neither be used for set based implementations 
like hash and merge join, nor for index lookups. Therefore, we will 
not discuss it further in this paper. 
A more common case, like our example, is when we cannot pull the 
correlations above the union-all, but we can remove correlations for 
some (or maybe all) of the expressions R ApplySJ  Ei(ri). In that case 
we can use the distributivity of Apply over union-all to transform 

R ApplySJ (E1(r1) UA E2(r2)UA E3(r3) …) → 

 (R ApplySJ E1(r1)) U (R ApplySJ E2(r2))U (R ApplySJ E3(r3)) … 

and then remove correlations from individual expressions. Note that 
distributing an ApplySJ  requires that we change a union-all to a dis-
tinct-union to avoid the duplicates generated by the multiple occur-
rences of R. The advantage of this transformation is that for the sub-
expressions for which we can remove correlations, all the optimiza-
tion strategies in our repertoire, like set based implementation, re-
verse lookup etc. are available. The disadvantage of course is that 
the relation R gets duplicated many times and therefore has to be 
either evaluated multiple times or spooled. 
The paper [12] suggests an interesting way of avoiding the duplica-
tion of relation R by using a bypass operator. The query is converted 
into a DAG where the bypass operator dispatches the rows to the 
branches of the DAG and a union-all at the top combines them to-
gether again. The bypass operator is nice in its generality, but we 
think that there are two issues with it. The first issue relates to query 
execution engines that use the pull model i.e. each operator asks its 
child for a row (pulls a row) whenever it needs one. The union-all 
which combines the rows from the two streams that are created by 
the bypass operator cannot be implemented as a pull operator unless 
all but one of its streams is spooled away. Otherwise it has to be 
clairvoyant about which of its child will produce the next row. This 
means that in reality it has to spool data and cannot avoid duplica-
tion. The other issue is that the bypass operator makes reverse look-
ups impossible. It blocks the access to the original relation into 
which we can do reverse lookups. 
In case both strategies described in this section, that allow us to 
remove correlations from disjuncts, do not work, we can still do 
some minor optimization. The ApplySJ  operator can be implemented 
such that it stops reading its right child as soon as it gets a row back. 
This allows us to shortcut evaluation of unnecessary expressions. If 
we reorder the children of the union-all such that either cheaper sub-
expressions or the sub-expressions that are most likely to return 
rows are evaluated first, we can save the cost of evaluating the ex-
pensive sub-expressions in many cases. 

8. OPTIMIZING GENERAL APPLY  
As we discussed earlier there are cases where the correlation cannot 
be removed and the only option available is to execute the corre-
lated query as a nested loop join. Even after the correlation is re-
moved, the join predicate may be an inequality which prevents us 
from using the set based join algorithms like hash and merge. In 
addition, in some situations it’s more efficient to evaluate the query 
as a straightforward Apply than in a set-based fashion. In all these 
situations, we can still improve on a naïve nested loop implementa-
tion. In fact Microsoft SQL Server utilizes several mechanisms to 
optimize the IO and throughput of queries with nested loop joins. 
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8.1 Caching 
In many situations, we can efficiently avoid a lot of IO if we cache 
the results for the inner side of the nested loop operator. If the sub-
query contains no correlations, e.g. when the query processor suc-
cessfully decorrelates the subquery, then a simple caching mecha-
nism is appropriate and will be chosen if the subquery is complex 
enough, and the result set small enough, that is worth caching. This 
caching mechanism is applicable and utilized in a wide variety of 
plans beyond nested loop joins and will not be discussed here. 
If there are correlations, the query processor might also cache the 
results in a temporary index that is keyed on the correlated columns 
(aka “memoize” the results as described in [16], [17]). The query 
processor in this case takes into consideration the cost of seeking 
into this temporary index for each outer reference, as well as the 
cost of building the index itself. As hinted at in [14], these are com-
plex decisions and need to be decided on a case-by-case basis, but 
this complexity is overcome by the cost-based approach of the Mi-
crosoft SQL Server query optimizer. 

8.2 Asynchronous IO (Prefetch) 
With modern server IO subsystem, there are often many more disk 
controllers than CPU’s available for query processing. Utilizing 
these disk controllers efficiently results in big gains in query proc-
essing throughput and response time. In order to achieve that, many 
database products (including Microsoft SQL Server) issue asyn-
chronous IO operations while keeping the processing thread busy 
processing other rows. 
When implementing an Apply operator, Microsoft SQL Server 
utilizes this in the following way: whenever a row is obtained from 
the outer input to the Apply, this is used to issue a prefetch request 
for the required pages of the corresponding underlying table in the 
subquery so that the row is already in-memory by the time the sub-
query is ready to process it. Consider the following example:  

Example 8.1: 
SELECT S_ACCTBAL, S_NAME, P_PARTKEY, P_MFGR, 
S_ADDRESS, S_PHONE, S_COMMENT 
FROM PART, SUPPLIER, PARTSUPP 
WHERE P_PARTKEY = PS_PARTKEY  

AND S_SUPPKEY = PS_SUPPKEY  
AND P_SIZE = 1  
AND P_TYPE LIKE '%TIN'  
AND PS_SUPPLYCOST = (  
SELECT MIN(PS_SUPPLYCOST)  

 FROM PARTSUPP, SUPPLIER 
 WHERE P_PARTKEY = PS_PARTKEY  

AND S_SUPPKEY = PS_SUPPKEY) 
 
This is a simplified version of Query 2 of TPC-H, which is just 
asking for the suppliers who can supply tin parts of a specific size at 
the lowest cost. In this case, because of the restrictive filter on the 
PART table, Microsoft SQL Server estimates that it is best to 
calculate the minimum supply cost for each qualifying part, then use 
the part key to seek into the index for the PARTSUPP and filter the 
qualifying rows on the cost. In other words, let 

R = GP_PARTKEY;m=min(PS_SUPPLYCOST) (PART JN SUPPLIER JN 
PARTSUPP) 

SQL Server evaluates: 
R ApplyJN (σ[R.m = PS_SUPPLYCOST] 
(SeekR.P_PARTKEY=PS_PARTKEY PARTSUPP)) 

(The plan for evaluating R is not relevant to this discussion). 

To improve the efficiency of this query, the query processor uses IO 
prefetching as follows: for each (P_PARTKEY, m) tuple obtained 
for R, an asynchronous prefetch request is issued for the PART-
SUPP table to fetch the suppliers for this part into memory immedi-
ately for use by the right subtree of the Apply when it is ready. So in 
a production server with 4 CPU’s and 8 disk controllers, this plan 
can easily utilize all these resources efficiently to process this query 
by keeping all the disk controllers fetching pages from the PART-
SUPP tables (assuming they are not cached before this query) while 
the CPU’s are processing the rest of the query tree. 

8.3 Improving locality of reference  
(Batch Sort) 
Introducing a local (batch) sort operation for better performance is 
another mechanism to reduce the IO cost of query processing with 
nested iterations. With this technique, Microsoft SQL Server locally 
sorts portions of the outer input of Apply operators (where it feels 
this will be effective) in order to localize the references in the inner 
subtree. This technique has been shown by researches to give sig-
nificant performance gains for nested loop join performance [15], 
and indeed we have observed such performance gains when the 
query processor judiciously applies this technique to select queries – 
for example, this technique is not applied if the inner side is so small 
that it would fit in memory anyway so it’s not worth the effort of the 
extra sorts. 
Continuing the example above, the query processor would apply 
this technique to the Apply operator as follows: for each set of tu-
ples (P_PARTKEY, m) obtained from the outer subtree, the query 
processor sorts them in ascending order of P_PARTKEY before 
passing each row to the inner subtree (and before issuing the pre-
fetches). This has the advantageous effect that sets of rows within a 
page in the PARTSUPP B-tree are read together, reducing random 
IO and the total number of pages accessed. The size of each sorted 
batch is ramped up dynamically so the query processing starts with 
small batches that pipeline the first few rows quickly up the query 
plan, then the size of each batch gets bigger to better improve local-
ity of reference and sequential IO. 

9. SUMMARY OF STRATEGIES 
This paper has described a large number of strategies that are used 
in SQL Server to efficiently evaluate queries that contain subque-
ries. Here is a summary of these strategies along with the section 
number where they are described. In the next section we show ex-
perimental results for some of these techniques. 

Operator Strategies 
Semijoin Forward-lookup (Section 6.2) 

Reverse-lookup (Section 6.2) 
Set-based evaluation (Section 6.2) 
Conversion to inner join (Section 6.1) 
Use of max/min (Section 6.2) 

Antijoin Forward-lookup (Section 6.2) 
Set-based evaluation (Section 6.2) 
Split antijoin with disjunction (Section 6.2) 
Use of max/min (Section 6.2) 

Join with GroupBy See [9] 

Apply Subqueries in disjunctions. (Section 7) 
Caching the PRE (Section 8.1) 
Prefetching the PRE (Section 8.2) 
Sorting the outer relation (Section 8.3) 
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10. EXPERIMENTAL EVALUATION 
10.1 Experimental Setup 
The experiments were performed on a Dell 2950 Dual core 2.66 
MHz machine with 16 GB RAM running Microsoft Windows 2003 
X64 SP1. We used the TPC-H benchmark schema for our experi-
ments and populated the database with the TPC-H data at scale 30 
GB. We created indexes on the tables as required by the TPC-H 
benchmark specification and provided additional indexes to facili-
tate all navigational and set-oriented subquery execution strategies 
relevant to this paper. 

10.2 Execution strategies for semijoin 
To compare the different strategies for evaluating semijoins, we 
relied on variants of the query in Example 6.1. The variants modi-
fied the filter predicates in the query so that their selectivity on the 
ORDERS and the LINEITEM tables can yield up to 20 rows (high 
selectivity) or up to 2,000,000 rows (low selectivity). 
The different strategies compared were: forward lookup, reverse 
lookup and set-based join (viz. hash join). For each strategy, the 
response time was measured in milliseconds. Before running these 
queries we made sure that supporting indexes for all strategies were 
present. The above chart plots response times for the strategies and 
also indicates which strategy was automatically picked by the SQL 
Server query optimizer. 
As expected, lookup from the table with the highly selective predi-
cate into the other table yields the best performance, while set-based 
evaluation gives good performance when neither predicate is selec-
tive enough to do a small number of lookups.  

 
Note that the difference in performance between the best alternative 
and the second best strategy is dramatic: it is at least one order of 
magnitude for the selectivity combinations explored in the above 
figure.  
Another important observation is that no single execution strategy 
provides satisfactory performance across all selectivity combina-
tions. Cost-based optimization therefore is required to inspect selec-
tivity estimates and pick an appropriate strategy for subquery execu-
tion. As the results show, Microsoft SQL Server succeeds at this 
task as it consistently chooses the best performing strategy for the 
selectivity ranges investigated. 

10.3 Execution strategies for antijoin  
We conducted this series of experiments with variants of Example 
6.1. The variants again modified the filter predicates of the query so 
that their selectivity on the ORDERS table varies in from 10% of 
the rows to 100%. We compared query performance when the anti-

join was applied directly versus when the optimizer splits the anti-
join and does a set-based join (hash join). 

 
As the figure shows, splitting the antijoin in this case gives a per-
formance gain of an order of magnitude and scales much better 
compared to the straightforward evaluation. 

10.4 Strategies for subquery disjunctions 
We evaluated the performance of the variants of Example 7.1 when 
the optimizer transformed the disjunction as explained in Section 
7.2 compared with when this transformation was disabled. For this 
experiment we varied the percentage of qualifying rows from the 
LINEITEM table from 20% to 100%. 
We see that in this query splitting the disjuncts gave an 
improvement of more than an order of magnitude and better scaling 
performance than the straightforward implementation. 

 

10.5 Optimizations for general Apply  
To evaluate the effect of the two optimizations described for im-
proving the performance of Apply, we ran Example 8.1 using the 
reverse lookup strategy. Variants of the query modified the predi-
cate on the LINEITEM table to range from high to low selectivity. 
We compared the response time of straightforward Apply to Apply 
with Prefetch and Batch sort. 
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As the figure shows, these optimization techniques yield a signifi-
cant performance gain (about 88% reduction in response time). 

11. CONCLUSIONS 
Subqueries are a powerful addition to the SQL language. They fa-
cilitate query formulation in important application scenarios such as 
decision support or automatic query formulation by ad-hoc report-
ing tools. This paper has explained how Microsoft SQL Server 2005 
represents subqueries by introducing the Apply operator to its inter-
nal algebra. We have discussed how Apply is transformed into the 
common join operators such as inner join, outer join, semi-join or 
anti-join during query decorrelation. The main contribution of the 
paper is our detailed discussion of (1) how alternative query plans 
for subqueries are generated by equivalence rewrites at the logical 
query optimization level, (2) which different execution strategies 
they can be mapped to at the physical level, and (3) which further 
performance optimizations they lend themselves to. Our experimen-
tal evaluation shows that proper choice of execution strategy from 
forward or reverse lookup plans to set-oriented processing is essen-
tial for satisfactory performance. It turns out that no single strategy 
yields acceptable performance across important selectivity ranges. 
Therefore, all aforementioned execution strategies for subqueries 
need to be available to an industrial-strength query processor and 
cost-based optimization is crucial to pick the appropriate alternative.  
In the future, we expect to see even increasing interest into the topic 
of subquery execution as relational database vendors gain more 
experiences with "nested loop languages" for semi-structured data 
processing such as XQuery. Like Microsoft SQL Server, other ven-
dors have also chosen to map XQuery to an (extended) relational 
algebra inside the database engine. With XQuery's navigational 
programming paradigm and its existentially quantified semantics for 
filter predicates, subqueries are a frequent guest in the underlying 
relational query algebra. The techniques and strategies for subquery 
optimization and execution discussed in this paper will help data-
base vendors achieve competitive performance as their customers 

deploy their semi-structured offerings to more challenging applica-
tion scenarios. 
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