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ABSTRACT
We are witnessing an explosive increase in the complexity of
the information systems we rely upon. Autonomic systems
address this challenge by continuously configuring and tun-
ing themselves. Recently, a number of autonomic features
have been incorporated into commercial RDBMS; tools for
recommending database configurations (i.e., indexes, mate-
rialized views, partitions) for a given workload are promi-
nent examples of this promising trend.

In this paper, we introduce a flexible characterization of
the performance goals of configuration recommenders and
develop an experimental evaluation approach to benchmark
the effectiveness of these autonomic tools. We focus on ex-
ploratory queries and present extensive experimental results
using both real and synthetic data that demonstrate the va-
lidity of the approach introduced. Our results identify a
specific index configuration based on single-column indexes
as a very useful baseline for comparisons in the exploratory
setting. Furthermore, the experimental results demonstrate
the unfulfilled potential for achieving improvements of sev-
eral orders of magnitude.

1. INTRODUCTION
The area of autonomic computing has received consider-

able attention in the recent years, particularly in industry,
and aims at providing systems that can adjust themselves to
a changing environment. The vision of autonomic comput-
ing is to eliminate the need for human intervention in tuning
the systems, and is motivated by: (1) increasing system us-
ability (by allowing non-expert users to achieve acceptable
performance); (2) decreasing operational costs (by reducing
the demands on system administrators); (3) deploying sys-
tems in scenarios where human intervention is impossible
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or undesirable (e.g., in pervasive and embedded computing
environments).

Recently, a number of autonomic features have been in-
corporated into commercial RDBMSs as well. In particular,
tools that recommend indexes for a given workload (such
as [6, 14]) are crucial first steps toward autonomic data man-
agement. Agrawal et al. [2] discuss the recommendation of
materialized views as well as indexes, possibly defined over
the recommended views, given a query workload. Most of
the work on autonomic databases has centered around using
the DBMS’s own query optimizer for comparing hypothet-
ical scenarios [7]. The input to the process is typically a
query workload and a budget (often in the form of a bound
on the disk space that can be used for additional indexes).
Currently, most major DBMS vendors support tools that
behave in this way [1, 8, 10, 22, 25].

The potential performance impact of an effective index
configuration can dwarf any other system parameter that a
database administrator or an autonomic tool could possibly
tune. This observation is not new: two decades ago Boral
and DeWitt[3] concluded that parallelism is no substitute
for effective and efficient indexing. The experimental re-
sults in this paper demonstrate performance improvements
of several orders of magnitude due to indexing only. There-
fore, the practical value of configuration recommender tools
can be very significant.

In this paper, we introduce a flexible characterization of
the performance goals of configuration recommenders and
develop an experimental evaluation approach to benchmark
the effectiveness of these autonomic tools. The proposed
benchmark1 provides a valuable assessment of the capabili-
ties of the current crop of configuration recommenders. The
benchmark also provides a foundation to evaluate future au-
tonomic proposals. Finally, the experiments demonstrate
the need for additional research in the area: there is the
potential for achieving improvements of several orders of
magnitude compared to current tools.

1.1 Exploratory Queries on NREF
To motivate this work, we present a realistic scenario for

autonomic data management tools in the context of support-
ing exploratory queries on the Non-redundant REFerence
protein database (NREF, for short), published on the web
by the Protein Information Resource [23]. NREF provides
a comprehensive collection of protein sequence data from
several genome sequencing projects (PIR-PSD, SwissProt,

1Files available at http://www.cs.toronto.edu/˜consens/tab/.
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Figure 1: Query execution times on system A using
a configuration with primary keys only.

TrEMBL, RefSeq, GenPept, and PDB) and has identical
sequences from the same source organism reported as a sin-
gle NREF entry. The database is updated biweekly; release
1.34 contains 1,393,678 entries and its XML representation
has 17GB. Once the XML data is converted to “raw” rela-
tional format (i.e., CSV text files) it occupies 6.5GB.

The relational schema for the NREF database is shown
below (primary keys are underlined).

Protein(nref id, p name, last updated, sequence, length)
Source(nref id, p id, taxon id, accession, p name, source)
Taxonomy(nref id, taxon id, lineage, species name,

common name)
Organism(nref id, ordinal, taxon id, name)
Neighboring seq(nref id 1, ordinal, nref id 2, taxon id 2,

length 2, score, overlap length, start 1, start 2,
end 1, end 2)

Identical seq(nref id 1, ordinal, nref id 2, taxon id)

The Protein relation (1.1 million rows) contains a unique
identifier for each of the amino acid sequences in the database.
The Source relation (3 million rows) contains the name of
the database (e.g., SwissProt) where a given sequence is re-
ported, and the corresponding access key for the protein
on that database. All known taxonomic information about
a given amino acid sequence is stored in the Taxonomy
and Organism relations (15.1 and 1.2 million rows, respec-
tively). Finally, the Neighboring seq relation (78.7 million
rows) associates pairs of closely related sequences within the
same organism, while the Identical seq relation (0.5 mil-
lion rows) contains pairs of identical sequences that occur
in different organisms. Neighbor NREF sequences are iden-
tified based on scores obtained by performing all-against-all
FASTA searches.

Consider now that the biologist in our scenario is inter-
ested in executing hundreds of exploratory queries such as
the one below:

Example 1. This SQL query finds the number of protein
sequences (nref ids) for each taxon associated with a virus
that infects apes, and has been recently linked with cancer in
humans (see http://www.cancer.gov/newscenter/sv40).

SELECT t.lineage, count(distinct t2.nref id)
FROM source s, taxonomy t, taxonomy t2
WHERE t.nref id = s.nref id
AND t.lineage = t2.lineage
AND s.p name = ’Simian Virus 40’

GROUP BY t.lineage

Figure 2: Query execution times on system A using
a recommended configuration.

Further assume that, during her exploration of NREF, the
biologist has to execute 100 queries sampled from a much
larger family of relevant queries, which we will call NREF2J
in the sequel. Each of those queries executes in a certain
amount of time. We visualize the response times experienced
by the biologist while using a given configuration of NREF
on a given DBMS by plotting the histogram of the query
execution times.

For instance, Figure 1 shows the response times of the 100
queries executed on a commercial RDBMS (which we call
System A). The RDBMS has a configuration of the NREF
database where the only indexes present are those automat-
ically created for the primary keys of each relation. Note
that we define the bins using a logarithmic scale, resulting
in execution times that are three orders of magnitude slower
on the right of the graph than those on the left. Also, we
report all “timeout” queries on a single bin (labeled t out in
the figure) using a reasonable timeout limit of 30 minutes
for each individual query.

Contrast the histogram in Figure 1 with the one in Fig-
ure 2 showing response times observed on System A using a
different configuration with several additional recommended
indexes. Not only there is a significantly smaller number of
timeout queries in the recommended configuration, but also
the proportion of queries that complete in about 5 minutes
is much larger.

The lines superimposed in both of the preceding figures
are the cumulative frequencies of the query response times.
Throughout this paper we argue that these curves provide
a concise and valuable way of comparing the behavior of
a workload on different configurations of the same system.
For instance, we read in Figure 2 that 55% of the queries
in the workload execute in less than 100 seconds on the
recommended configuration. A similar reading in Figure 1
shows that only 20% finish in 100 seconds or less in the
original configuration.

The bend on the cumulative frequency curve provides vi-
sual contrast between a satisfied (bend towards the top left
corner) versus a frustrated (bend towards the bottom right
corner) biologist-turned-database-user.

1.2 Our Contributions.
The literature on configuration recommenders provides

very limited experimental evaluation of the quality of the rec-
ommendations produced by the tools. A few results are re-
ported that characterize how efficiently these tools arrive at
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some recommendation, such as results showing how quickly
they can produce a heuristic solution to the combinatorial
problem of index selection. However, to the best of our
knowledge, there has been no evaluation of the effectiveness
of configuration recommenders.

In this paper, we describe an approach to evaluate the
quality of the configurations suggested by configuration rec-
ommenders. We focus on the two aspects of the system
configuration that can have the biggest impact: indexes and
(possibly indexed) materialized views. We present exten-
sive experimental results characterizing the effectiveness of
commercial RDBMS configuration recommenders when pre-
sented with a workload consisting of exploratory queries.
Our contributions are as follows:

• We provide a novel framework for assessing the effec-
tiveness of configuration recommenders. In particular,
our framework supports describing very large work-
loads and also provides a flexible characterization of
performance goals using cumulative frequency curves.

• We present extensive experimental results on state-
of-the-art commercial RDBMS configuration recom-
menders and show that there is substantial room for
improvement.

• We identify a configuration that covers all single col-
umn indexes as a very useful baseline for comparing
against recommendations. In fact, the consistently
good performance of the single column configuration
suggests a practical improvement for RDBMS config-
uration recommenders: avoid missing the potential
gains brought by single column indexes.

The use of cumulative frequency curves to describe the re-
sponse time behavior of database systems is common among
practitioners and in the experimental systems literature. We
do not claim originality in the measure itself; on the con-
trary, we endorse it because of its widespread acceptance.
However, we are not aware of the use of cumulative fre-
quency curves either as a goal for a recommender or as a
measure of its effectiveness, despite the natural applicability
of the concept. In fact, existing recommenders use a single
numeric measure to describe workload behavior (something
that we consider insufficiently rich to capture enough rele-
vant aspects of the workload behavior).

The single column indexing approach that we discuss here
can be viewed as an extreme case of schema design by verti-
cal partitioning. We note that there has been work on auto-
nomic schema design tools that use vertical partitioning [16],
but without considering the recommendation of indexes.

The outline of the paper is as follows. We introduce a
framework for evaluating autonomic indexing tools in Sec-
tion 2, followed by a description of the challenges and the
approach we choose in designing a benchmark in Section 3.
We present our initial experimental results in Section 4, fol-
lowed by a more detailed analysis of the recommenders per-
formance in Section 5. Finally, we conclude in Section 6.

2. EVALUATION FRAMEWORK
In this section we describe the framework used to evaluate

the performance of a configuration recommender. We start
by describing the task that a recommender performs as well
as the factors in the RDBMS environment that affect the

recommendations. We then present some basic definitions
and notation for characterizing costs and performance goals.

2.1 The Recommendation Task
In broad terms, the basic task of a configuration recom-

mender is to select a new configuration for the RDBMS sys-
tem that improves the performance that the system exhibits
when executing a workload. Alternatively, the recommender
can be given a performance target and it should find a con-
figuration where the target is reached. The selected recom-
mendation can be applied by the recommender itself, or the
user may be given the option to accept or reject the rec-
ommended change in configuration. To produce a recom-
mendation, the recommender has to: (1) assess the cost of
executing a workload in a given configuration; (2) assess the
cost of changing the system configuration; (3) search among
possible system configurations to find a better performing
configuration, given some constraints (such as a budget for
changing configurations).

The most relevant aspect of the system configuration for
an index recommender is, not surprisingly, the set of indexes
available. However, a number of additional aspects can be
considered part of the configurations being recommended
such as data placement or the selection of materialized views
[2, 24]).

There needs to be some definition of the performance goal
that a recommender is trying to reach or improve upon. This
goal can be a simple number (the execution time of a work-
load) or a more comprehensive (perhaps multidimensional)
measure of overall system performance. The workload can
also be defined in a variety of ways. The recommender may
assume a known workload: the queries (and updates) to-
gether with their frequencies are given in advance. There
may be a component in charge of automatically providing
such a workload to the recommender based on observing
the RDBMS operation [4]. Alternatively, there may be a
describable set of potential queries that are candidates for
workloads.

The RDBMS environment that influences the recommender
task includes the instance of the data (or a summary descrip-
tion of the database instance, such as selected statistics), the
parameters selected for the RDBMS engine as well as the
engine itself (the supported query plans and the operators
implemented), and all aspects of the physical data storage
(including not just indexes, but also the layout of the data
in the storage medium, replicas, materialized views, and so
on).

2.2 Costs and Performance Goals
Let us denote by Ci the configuration (i.e., set of indexes,

materialized views, etc.) of a system in state i. There is
a set of possible configurations Cj1 , Cj2 , . . . , Cjn that the
recommender can possibly select for the next system state
j, and one actual selected recommendation Cj = Cjm for
some m.

Consider qk ∈ F , where F is the family of queries (or up-
dates) that the system may execute. We denote by A(qk, Ci)
the actual cost (a measure) of the system executing query
qk in configuration Ci. Similarly E(qk, Ci) denotes the es-
timated cost of executing query qk in configuration Ci. Fi-
nally, AT (Ci, Cj) is the cost of changing the system from
configuration Ci to configuration Cj , while ET (Ci, Cj) is
the corresponding estimated transition cost from configura-
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Figure 3: Behavior of system A on NREF2J.

tion Ci to Cj .
A workload is defined as a subset W ⊆ F of the potential

family of queries that the system may execute. Alterna-
tively, it can also be defined as a bag, in which case the
repetitions can model queries with a higher frequency or
weight.

Given a workload W, we can measure the actual per-
formance of the system on a configuration Ci by a single
quantity A(W, Ci) =

P
qk∈W A(qk, Ci) (total cost). Simi-

larly, the estimated performance is defined as E(W, Ci) =P
qk∈W E(qk, Ci) (total estimated cost).

Finally, we denote by CFCj the cumulative (relative) fre-
quency of the elapsed times A(qk, Cj) for qk ∈ W on config-
uration Cj , defined as:

CFCj (x) = count({qk : A(qk, Cj) < x})/size(W)

Figures 1 and 2 show the cumulative frequency of the
elapsed times of a 100-query workload for two database con-
figurations, as discussed in Section 1.1. Contrasting cumu-
lative frequencies of elapsed times on a given workload is an
informative approach to compare different configurations;
for instance, Figure 3 compares three configurations, called
P, 1C and R (which will be explained later) on system A.
The cumulative frequency polygons convey that configura-
tion 1C is superior to both R and P. In particular, the dotted
lines in the figure show that 41% of the queries in the work-
load executed on configuration 1C complete in less than 31.6
seconds (the value 101.5 in the x axis), instead of 27% on
the R configuration and only 7% on the P configuration.

While the use of cumulative frequency polygons has limi-
tations2 they have advantages over histograms (requires no
binning and quantiles can be read directly) and they are
widely employed in decision making requiring comparing
distributions (our use corresponds to deciding first order
stochastic dominance).

A Model for Configuration Recommenders. We can de-
scribe the behavior of the configuration recommenders incor-
porated in commercial RDBMS [8, 22] using the framework
discussed above. The RDBMS configuration recommender
takes as input a given workload W, including the relative fre-

2Humans are poor at judging the distance between curves,
our visual processing assesses the closest differences between
curves rather than the correct vertical distances [9].

quencies of the queries in the workload. The recommender’s
goal is to select a configuration Cj that improves the total
estimated cost of queries E(W, Cj), where the total cost may
use different weights for the queries in the workload. This
optimization goal is subject to an estimated storage budget
(hence ET (Ci, Cj) uses storage as the measure). The con-
figuration recommender uses the RDBMS optimizer’s esti-
mation capabilities to asses E(W, Cj). The optimizer has to
hypothesize statistics for Cj from the statistics in the cur-
rent configuration Ci. Since there is a combinatorial space
of possible index configurations, the RDBMS configuration
recommender relies on a heuristic search to compute esti-
mates for a subset of the configurations.

Performance Goals. A performance goal for the configura-
tion recommender can be stated as a simple target measure
for the sum of the individual query execution measures over
the queries in the workload. More specifically, if the mea-
sure is elapsed time, then we would have total elapsed time
of executing the workload as the performance goal (for ex-
ample, complete the workload in less than two hours). Finer-
grained goals than total execution cost are usually more in-
formative: “naive folks will use the average response time;
more sophisticated specifiers will opt for the 90th or 95th
percentile” [20].

A performance goal can also be stated as an improvement
ratio IR = A(W, Ci)/A(W, Cj) where Ci, Cj are the ex-
isting and selected configurations, respectively. Continuing
with the elapsed time example, a goal could be to obtain a
10 times improvement (by decreasing elapsed times in the
recommended configuration by an order of magnitude).

We note that performance goals can be a more elaborate
than a single quantity. In fact, a performance goal can be
viewed as a quality of service requirement that specifies min-
imum levels of performance that must be met by the system.
Again, making use of elapsed time as an example measure,
consider the performance goal below.

Example 2. A performance goal for the execution of a
set of queries can be to expect 10% of the queries to complete
in less than 10 seconds, 50% to complete in less than one
minute, and 90% to complete before a 30 minute timeout.
This goal can be described by a step function:

G(x) = 0, x < 10

G(x) = 0.1, 10 ≤ x < 60

G(x) = 0.5, 60 ≤ x < 1800

G(x) = 0.90, x ≥ 1800

where seconds are used as units and we use values in the
(0, 1) interval instead of percentages.

A performance goal such as G above can be viewed as
a constraint in the shape of the cumulative (relative) fre-
quency (CFCj ) of the elapsed times on configuration Cj . A
configuration Cj satisfies the performance goal if CFCj > G.
For instance, in Figure 3, configuration 1C satisfies the goal
G above, while the other two do not. Note that any mono-
tonic function G can be used as a performance goal in this
setting.

3. BENCHMARK DESIGN
We start this section by discussing the challenges of eval-

uating the performance of configuration recommenders, and
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describe how we address those challenges in the benchmarks
that we propose.

3.1 Design Criteria
Generic database benchmarks aim at providing an ob-

jective means of comparing competing systems executing
the same task [12]. Usually, they define a database and
a workload, a set of rules specifying the environment under
which all tests must be run (e.g., which kinds of indexes
are allowed), and rules for performing the measurements
and reporting the results. The results of the tests are typ-
ically summarized into single quantities such as the system
throughput or its price/performance ratio. The benchmark
is then run on several systems, and the results are com-
pared, determining the system with best performance or
cost/performance trade-off, etc.

One of the fundamental challenges in designing a database
benchmark that is accepted by the community is defining a
workload that is representative of specific scenarios in real
applications. Another important goal in benchmark de-
sign is to succeed in evaluating the specific aspects of the
database system that are of interest in (relative) isolation.
Later in the paper we spend considerable attention design-
ing workloads. We are also careful to isolate the configu-
ration recommenders behavior by reducing the number of
factors that have an effect on the experimental evaluation
and also by further limiting ourselves to just two aspects of
the system configuration: indexes and (potentially indexed)
materialized views.

The goal of our work is not to compare configuration rec-
ommenders across competing database systems. Instead, we
focus on comparing the quality of the recommendations pro-
duced by one or more configuration recommenders running
on the same database system. System configurations and
the results achieved by a recommender suggesting one con-
figuration over another are inherently system-specific. This
makes a recommendation not directly comparable to another
recommendation in a different system. The valid question
of comparing a database system equipped with a configura-
tion recommender to a competing database system should
be addressed separately (and it is not an objective of this
work).

We focus now on criteria tailored to a benchmark for con-
figuration recommenders. There are a number of challenges
in designing experiments that can adequately evaluate the
performance of these recommenders. First, we have to select
a suitable database and define an initial configuration (or,
more generally, a method for generating such instances).

Second, we need to provide a number of sufficiently large
and varied workloads W1, . . . ,Wk that are representative
of an application domain. Both the heterogeneity of the
queries in the workload and the number of different queries
included has an impact on the level of difficulty of the rec-
ommender task. It is not unusual for large database systems
to routinely deal with workloads of thousands or even tens
of thousands of different queries. As we will present later on,
workloads with one hundred queries are challenging enough
for the current state of the art.

Third, we must define the input parameters for obtain-
ing the recommended configurations Cj1 , Cj2 , . . . , Cjk (such
as the resources available). Finally, we must provide a way
of evaluating the quality of the recommendations. In this
work, we propose comparing the cumulative frequency of

the elapsed times for each workload evaluated in the recom-
mended configuration against the elapsed times on one or
more reference configurations Ch1 , Ch2 , . . . , Chl .

One of the few recommender evaluations in the litera-
ture is described by Valentin et. al [22]. The database and
initial configuration are those defined in the TPC-D bench-
mark; the 17 queries in the benchmark are used as the single
workload W, and an expert-tuned configuration Ch is used
as reference configuration. The results presented in that
work show that the recommender suggested a configuration
Cj that performed as well as Ch in 14 out of the 17 queries.
This is a very encouraging result: the comparison configu-
ration used is expected to perform extremely well and hence
matching its performance is quite an accomplishment. How-
ever, the level of difficulty of the task is limited by the small
number of queries in the workload.

3.2 Our Approach
We address the criteria described above as follows. First,

we use both real and synthetic databases, which are ade-
quately scaled to the computing resources available in the
desktop computing environment we utilize. The initial con-
figurations are instances in which all primary key and for-
eign key constraints in the relational schema are defined, and
where only primary key indexes are created; we refer to such
initial configurations as P configurations. Second, we define
the workloads as query families, which are sets of queries
that contain a large number of structurally related yet suit-
ably diverse queries. While we focus on retrieval queries
and do not consider updates in our workloads, we present
experimental results quantifying the effect of inserts on the
recommended and the reference configurations. Third, the
only restriction we impose on the recommended configura-
tions is that they do not use more space for indexes than the
reference configurations. Finally, we identify a single refer-
ence configuration that has a single column index for each
possible (indexable) column in the schema (and we refer to
it as 1C, for 1-column index).

3.2.1 The Databases
Three databases are used in our experiments: the NREF

database discussed in Section 1.1, the TPC-H [21] database,
and also a skewed version of the TPC-H [5], generated with
a Zipfian factor of 1. The sizes of these databases in raw
format are 6.5GB for NREF, and 10GB for each TPC-H
database. While all the sizes are relatively modest they
cannot be dismissed as ridiculously small. Furthermore, the
raw data size is an order of magnitude larger than the main
memory of the computers utilized.

As mentioned above, the initial configurations are instances
in which all primary and foreign key constraints are defined.
For the NREF database, such constraints are as defined in
the schema in Section 1.1, while for the TPC-H databases
we follow the schemas specified in that benchmark [21].

3.2.2 The Query Families
Due to the exploratory nature of our motivating scenario,

we focus on queries that represent fragments of typical “ice-
berg” queries [11]; that is, queries that compute aggregate
functions over a set of attributes to find aggregate values
satisfying certain conditions, grouped in different ways.

We follow an approach similar to the one described in [18]
(used for generating part of the query workload in the TPC-
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DS benchmark [17]), in which query workloads are given as
large families of queries described by templates.

In each template, variables are used instead of relation
names, column names, and constants; the actual queries are
obtained by binding such variables to relations and columns
in the schema, as well as constants selected from the database.

The following criteria were used for designing the fam-
ilies we use in this work. First, the queries should have
a meaningful interpretation. This is achieved by grouping
columns in the schema by domains, and allowing joins on
attributes in the same domain only. For example, referring
to the NREF schema in Section 1.1, all attributes used for
the scientific or common names of proteins, species and or-
ganisms are in the same broad domain and could be joined
meaningfully. Second, the queries should be simple enough
for query optimizers to have a good chance of handling
them well. Thus, we use only simple select-project-join SQL
queries defining simple aggregate functions and with at most
one level of nesting, and defining only equality predicates.
Third, the queries should not require the materialization of
large intermediate results, as this could make irrelevant the
presence of indexes in the database. To achieve this, we use
additional selective predicates for each query. Fourth, the
queries in the family should cover a reasonable spectrum of
query execution times, from fast (e.g., sub-second response)
to slow (e.g., a timeout after a reasonable long execution
time). Finally, and perhaps most importantly, the queries
should be amenable to improvement by the addition of both
simple and complex indexes, defined either over base tables
or materialized views. We achieve this goal in our work by
defining join predicates only on indexable columns, as well
as “wide” group by clauses in our queries.

Next, we give a brief description of each of the query fam-
ilies used in our experiments, followed by its SQL template
and an explanation of how we obtain the constants used
for generating the actual queries. Although we have exper-
imented with several other families with a wide range of
characteristics, the results presented for two families on the
NREF database and three families on two different TPC-H
database provide a useful assessment of the performance of
current recommenders.

Family NREF3J. The first family, on the NREF database,
is a generalization of the self-join pattern in the query de-
scribed in Example 1. We pick a table R, and a column c1

to define a self-join on R; then pick a another table S, and
column c2 (in the same domain as c1) and join R.c2 with
S.c3. Next, we choose up to three other columns ci1 , . . . , ci3

in R and define a group by that includes c1 as well. Finally,
we add a selection condition of the form S.c4 = k, where k
is a constant selected as follows. For each column in each
table, we pick three values k1, k2 and k3 that can be used
as the constant k such that k1 has the highest selectivity
for the column and the frequencies of k2 and k3 are one and
two orders of magnitude (resp.) greater than the frequency
of k1. This is a template for the family:

SELECT r1.ci1,...,r1.ci3,r1.c1,COUNT(DISTINCT r2.c2)
FROM R r1, R r2, S s
WHERE r1.c1 = r2.c1

AND r1.c2 = s.c3

AND s.c4 = k
GROUP BY r1.ci1,...,r1.ci3,r1.c1

Family NREF2J. Queries in the second NREF family count
co-occurrences of values (from the same domain) in differ-
ent tables. We pick tables R, S and a column from each
table (c1 and c2) such that these columns are in the same
domain; we then count the number of co-occurrences of val-
ues by joining R.c1 and S.c2. Next, we pick up to three
other columns ci1 , . . . , ci3 in R to define a group by clause.
Finally, we further restrict the values of both R.c1 and S.c2

to be relatively infrequent (i.e., occur less than 4 times) in
order to limit the size of the intermediate join R �� S. The
template for this family is as follows:

SELECT r.ci1,...,r.ci3,r.c1, COUNT(*)
FROM R r, S s
WHERE r.c1 = s.c2

AND r.c1 in
(SELECT c1 FROM R GROUP BY c1
HAVING COUNT(*) < 4)

AND s.c2 in
(SELECT c2 FROM S GROUP BY c2

HAVING COUNT(*) < 4)
GROUP BY r.ci1,...,r.ci3,r.c1

Family SkTH3J. Queries in this family define three-way
joins on the skewed TPC-H database (using a Zipfian factor
of 1). Each query is obtained as follows. We pick tables R,
S and T ; define a join R �� S via primary key and foreign
key correspondences; define a join S �� T via a pair of non-
key columns S.c1, T.c2 from the same domain; and define a
selection condition θ(S.c3) on a column c3 of S to limit the
number of tuples in R �� S.

In this family, θ(S.c3) is one of S.c = p or S.c IN (SELECT

c FROM S GROUP BY c HAVING COUNT(*)=p), and the param-
eter p is used to control the sizes of the intermediate result
R �� S. Three θ(S.c3) are used for each assignment of R, S
and T , each defining a constant for the variable p. The crite-
ria for selecting these three constants are that the resulting
query is not empty and that the sizes of the intermediate
result R �� S are in different orders of magnitude. That is,
if k1, k2 and k3 are the sizes of R �� S for each of the con-
stants chosen, we have that k2 and k3 are one and two orders
of magnitude (resp.) greater than k1. Finally, each query
returns a COUNT(*) where the group is defined by choosing
up to 4 columns from relation T .

This is a template for the family:

SELECT t.ci1,...,t.ci4,COUNT(*)
FROM R r, S s, T t
WHERE r.cp1 = s.cf1 AND . . . AND r.cpj = s.cfj

AND s.c1 = t.c2

AND θ(s.c3)
GROUP BY t.ci1,...,t.ci4

Family SkTH3Js. This family, also defined for the TPC-H
database generated with skewed data, is a simpler version
of family SkTH3J in which R,S and T are always one of
Lineitem, Orders and Partsupp. An additional simplifica-
tion is that all the θ(s.c) constraints are of the form S.c = p,
where the constants are chosen as before.

Family UnTH3J. The last family uses the standard version
of a TPC-H database (where all values are sampled with
uniform distributions) and its queries are the same as those
in the family SkTH3J above (except that different selection
constants are used).
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3.2.3 Reference and Recommended Configurations
We conclude the description of the benchmarks with a

discussion of the relevant parameters used for obtaining the
reference and the recommended configurations from the var-
ious systems. As mentioned earlier, the P configuration we
use as initial configuration contains only those indexes auto-
matically created for the primary keys of each table. The 1C
reference configuration is created by adding to P all possi-
ble single column indexes (i.e., one index for each indexable
column in the schema).

We obtain one recommended configuration for each query
family in the benchmark. We direct the systems to collect
statistics before obtaining the recommendations and before
running the queries. All the recommended configurations
are obtained using the P configuration as the starting point,
the difference in size between 1C and P as the space budget,
and no limit on the time the recommender is allowed to run.

The decision to define the space budget as above is moti-
vated by the desire to make 1C as comparable as possible to
the recommended configuration (the space used by 1C is the
same space available for the recommendation). The space
usage of 1C would be considered a high budget in many ap-
plication scenarios and provides a generous amount of addi-
tional storage for the recommenders to work with. However,
in our results (see Table 1, described in the next section),
no recommended configuration in our experiments used as
much space as 1C. We also obtained recommendations with
an unlimited storage budget. The resulting unlimited space
recommendations increased storage usage (in all cases by
a reasonable amount) and did exhibit better performance
than the space constrained recommendations in some (but
not in all) cases.

We observe that the query families used in our tests re-
sulted in fairly complex recommendations, involving single
and multiple column indexes, as well as materialized views
over joins of base tables (Tables 2 and 3, described in the
next section).

4. EXPERIMENTAL RESULTS
In this section we describe the setup used for the experi-

ments and we present our results.

4.1 Experimental Setup
We used two commercial RDBMSs running on four Pen-

tium 4 desktop PCs ranging from a 2GHz machine with 752
MB of RAM running Windows 2000 Server; to a 2.6GHz
machine with 1GB of RAM running Windows XP.

Two sets of experiments were run. The first experiment
was run on the NREF benchmark and was aimed at under-
standing the behavior of the systems tested (which we call
Systems A and B for this experiment) on a realistic scenario,
using real data. The second experiment was run on both
TPC-H benchmarks and was aimed at verifying our obser-
vations on a standard benchmark database, and to observe
the impact of uniform versus skewed data on the behavior
of the index recommenders. We selected one of the two sys-
tems for the second experiment, which we will refer to as
System C.

The results we discuss next are based on actual execu-
tions of the query families in each benchmark. In all cases,
the queries are run sequentially, and the machine is fully
dedicated to running the experiments. For obvious practi-
cal reasons, a timeout limit of 30 minutes is set for running

Benchmark System Size (GB) Time (min)
A NREF P 13.5 322
A NREF2J R 18.0 335
A NREF 1C 35.7 1171

NREF B NREF P 11.1 2161
B NREF2J R 14.6 117
B NREF3J R 15.1 281
B NREF 1C 17.1 1795
C SkTH P 21.4 959
C SkTH3J R 22.7 153SkTH
C SkTH3Js R 21.8 576
C SkTH 1C 38.5 2860
C UnTH P 21.4 923

UnTH C UnTH3J R 23.2 901
C UnTH 1C 38.5 2197

Table 1: Sizes and build times of all configurations
used in the experiments.

each query; queries that do not finish in that amount of time
are reported as “timeout”. We perform two additional runs
on the queries that do not timeout on a first run, and report
the average time of the three measures (the small variances
observed do not justify removing outliers).

4.1.1 Query Workloads
The families presented in Section 3 contain large numbers

of queries. For instance, NREF2J has 110,970 queries while
NREF3J has 6,336 queries. We adopt a number of practical
restrictions to further reduce the space of possible queries
to consider. For instance, only subsets of each relational
schemas are used in the queries: all non-indexable columns
were ignored and we did not use more than 4 columns per
table. Another restriction was to consider fewer selection
criteria (thus, fewer queries) on the larger tables on each
database; similarly, we used fewer columns in group by clau-
ses on these tables. With all the additional restrictions, the
resulting sizes of families NREF2J and NREF3J are 485 and
373 queries, respectively.

Despite the reduction in size, running just both NREF
families on all configurations and systems remains a daunt-
ing task: a quick math shows it may require (485 + 373) ×
3 runs×7 configurations×30min = 9, 009 hours or 375 days
of machine use! The final reduction was motivated by the
desire to work with the same (round) number of queries for
all families: we sampled 100 queries from each family, in a
way that the distribution of elapsed times of the larger fam-
ily was preserved. While the query families for the TPC-H
based benchmarks are substantially smaller (as fewer mean-
ingful joins can be defined in that schema), we also work
with samples of 100 queries for those families.

4.1.2 Configurations Tested
As a naming convention, the system name is used as a

prefix for identifying configurations, and a “XXX R” suf-
fix, where XXX is the name of a query family, is used for
identifying the recommended configurations; for instance,
A NREF P refers to the P configuration on system A for
the NREF database, while B NREF2J R is the configura-
tion recommended by system B for query family NREF2J.
Table 1 shows the building times and storage required for
all configurations used in our tests, obtained as discussed in
Section 3.2.3.

We note that we were not able to obtain recommenda-
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A NREF2J R B NREF2J R B NREF3J RTable
1c 2c 3c 4c 1c 2c 3c 4c 1c 2c 3c 4c

Identical seq 1 2 1 1 6
Neighboring seq 3 1 1 1 1
Organism 5
Protein 1 1 1 1
Source 1 1 1 1 1
Taxonomy 2 1 1 1 1 1

Totals 6 3 0 1 6 2 1 1 3 14 1 1

Table 2: Number of 1,2,3, and 4-column indexes in each recommended configuration for the NREF bench-
mark. No index with more than 4 columns was recommended.

C SkTH3Js R C SkTH3J R C UnTH3J R
Table 1c 2c 3c 4c 1c 2c 3c 4c 1c 2c 3c 4c

Lineitem 2 2 1
Orders 1 1 1 1 2
Partsupp 2 1 2
Supplier 1
2 Views on Lineitem N/A N/A N/A N/A 1 1 N/A N/A N/A N/A
9 Views on Lineitem �� Partsupp N/A N/A N/A N/A N/A N/A N/A N/A 2 3 4 3

Totals 5 2 0 0 3 3 1 1 4 5 4 3

Table 3: Number of 1,2,3, and 4-column indexes in each recommended configuration for the TPC-H bench-
marks. No index with more than 4 columns was recommended. Also, no indexes on Customer or Part were
recommended.

tions for family NREF3J using system A (that is, the rec-
ommender did not output any recommended configuration
at all). We tried with a few other samples of 100 queries
from family NREF3J, as well as with smaller workloads con-
sisting of 25, 12, 6, and 3 queries. While we verified that
we could obtain recommendations for several of the smaller
workloads, it did not make sense to pick any such configu-
ration to represent the missing recommendation for the 100
query workload. Therefore, we do not report any recommen-
dation for family NREF3J using system A’s recommender.

Tables 2 and 3 show the number of indexes in each rec-
ommended configuration for the NREF and TPC-H exper-
iments, respectively. Note that the recommendations for
SkTH3J and UnTH3J contain indexes on both base tables
and materialized views. For SkTH3J, 2 recommended in-
dexes were defined on materialized views of Lineitem, while
for UnTH3J, 12 of the 16 indexes recommended were de-
fined on 9 materialized views over the join of Lineitem and
Partsupp.

4.2 Results on the NREF Benchmark
Recall the discussion in Section 2.2 about cumulative fre-

quency distributions, and how to use them for comparing
different configurations on the same system and workload.

Figure 3 in Section 2.2 describes the behavior of system A
for family NREF2J. The curves readily show substantial im-
provements in the query executions times for the workload
in both the A NREF 1C and A NREF2J R configurations
(which we will refer to as 1C and R within the context of the
family and the system) relative to A NREF P configuration
(similarly, P in context). The graphs also shows that the
reference configuration 1C behaves better than the recom-
mended configuration R, although the performance gap is
very small for queries that require more than 1000 seconds
to complete.

Figure 4 shows the result of System A on family NREF3J.
The graph shows a more pronounced difference in perfor-

Figure 4: Behavior of system A on NREF3J.

mance for the P and 1C configurations than before: on 1C,
59% of the queries finish in less than 6 seconds (each), while
on P, 60% of the queries may take as long as 1780 seconds
to complete. Another way of looking at these numbers is:
it takes 98 seconds to complete 60% of the queries on 1C,
while it takes 4 hours and 45 minutes to complete 60% of the
queries on P: an improvement of 174 times! There are only
two curves in Figure 4 since, as discussed in the preceding
subsection, the recommender in System A was unable to pro-
duce a recommended configuration R for this family. This
is particularly surprising giving the vast benefit provided by
the 1C configuration using only single column indexes.

Figures 5 and 6 show the behavior of system B on fam-
ilies NREF2J and NREF3J, respectively. As one can see,
the performance of the recommended configuration for query
family NREF2J is almost indistinguishable from that of the
P configuration. In family NREF3J, the recommended con-
figuration performs relatively better, but the gap it exhibits
to the 1C configuration is still significant.

In summary, the 1C configuration was always far superior
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Figure 5: Behavior of system B on NREF2J.

Figure 6: Behavior of system B on NREF3J.

to the initial configuration P. A careful look at Figures 4
and 6 shows wide gaps between the P and 1C configura-
tions, indicating large potential performance improvements
by the use of indexes. In many cases, 1C was also far bet-
ter than the configurations recommended by both systems.
Therefore, we arrive at the surprising observation that both
recommenders may fail to improve on the P configuration
even when the potential for improvement is considerable.

4.3 Results on the TPC-H Benchmarks
The behavior observed on both synthetic datasets (shown

in Figures 7, 8 and 9) is consistent with the behavior of the
NREF benchmarks described in the preceding subsection.
As mentioned earlier, we limit the results presented to one
of the DBMSs that we call System C.

Notably, the 1C configuration continues to be very com-
petitive with the R configurations (again, on occasions, 1C
is far superior to R). This happens despite some of the rec-
ommendations using materialized views defined on joins of
base tables, making the relatively better performance of 1C
even more remarkable.

The only recommendation R in all our experiments to
outperform 1C even on a small portion of the workload was
obtained on family SkTH3Js (see Figure 7). The R config-
uration succeeds in speeding up the most expensive queries
compared to 1C. Since the goal used by System C’s recom-
mender is total cost (instead of the quality of service curve
represented in the graph), it is not surprising that the rec-
ommender favors improving long-running queries (the ones

Figure 7: Behavior of System C on SkTH3Js.

Figure 8: Behavior of System C on SkTH3J.

that dominate total cost).
A comparison of Figures 7 and 8 shows a sharp contrast

between the behavior of System C for the simpler and the
“generalized” 3-way join families in the TPC-H benchmark.
This emphasizes the dependence of the configuration rec-
ommender on the input workload (for even relatively small
variations in the structure of the workload).

Another interesting observation can be made by compar-
ing the behavior of the recommender on skewed versus uni-
form data. Contrast the recommendations for SkTH3J and
UnTH3J (Table 3) and the relative performance of these
configurations in Figures 8 and 9. Clearly, the recommender
did perform better for the uniformly distributed data. Nev-
ertheless, the 1C configuration still proved the best overall.

Finally, given that the recommender considers the overall
workload performance, and not the distribution of the in-
dividual query execution times, it is informative to present
overall numbers for one workload. Consider the results of
running SkTH3J on the configuration P. We observe that
the total execution time for the queries that do not timeout
is 34461 seconds, while there are 78 queries that timeout
(taking at least 1800 seconds each). While we do not know
how long timeout queries could take, we can use the timeout
value to obtain a lower bound for the execution of workload
SkTH3J on P of 174,861 seconds. A similar calculation gives
lower bounds for the execution of workload SkTH3J on the
configurations 1C and R of 5445 and 91019 seconds, respec-
tively. Keep in mind, though, that 1C has only one timeout
query while P and R have 78 and 50 timeout queries respec-
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Figure 9: Behavior of System C on UnTH3J.

tively (hence the lower bound is much tighter on 1C than on
R and P). Thus, a very conservative overall workload assess-
ment results in 1C producing almost 17 times better results
than R!

4.4 The Impact of Insertions
The workloads considered in this paper do not include up-

dates. Designing update workloads (in particular, contain-
ing complex updates) is a valuable extension to the current
benchmark. However, it is important to observe that using
1C as a reference configuration remains valid in the presence
of a reasonable number of insertions.

To illustrate this, we run an experiment inserting tuples
into the Neighboring seq relation, both the widest and the
largest relation in the NREF database, with almost 80 mil-
lion rows. The insertions take roughly linear time in the
number of tuples inserted in all configurations. As expected,
it takes longer to insert tuples in the configuration 1C than
in the recommended configuration. Insertions in the initial
P configuration are faster than in the recommended con-
figuration. Considering the workload NREF2J, we can de-
termine the number of tuples that have to be inserted to
make the elapsed time of executing the insertions plus the
workload on 1C the same as the time of executing the in-
sertions plus the workload on R. This is the break point at
which the slower insertions, faster queries in 1C overtake the
slower queries, faster inserts in NREF2J R: in both systems
A and B this number is close to 400,000 tuples. Keep in
mind that this calculation is based on enforcing timeouts
for query executions, so this is just a lower bound for exe-
cution times. Furthermore, the threshold of 400,000 tuple
insertions is based on a single execution of each one of the
100 queries in the workload. If the queries are executed
20 times each, then the insertion threshold corresponds to
increasing the database size by almost 10%.

5. RECOMMENDER LIMITATIONS
This section presents additional empirical evidence that

highlights an important limitation in the existing crop of
commercial recommenders.

5.1 Reliance on Estimation
As discussed in Section 2.2, current RDBMS configuration

recommenders look at statistics from an existing system con-
figuration Ci and are given query workload W together with

a space budget B that limits the target size of the recom-
mended configuration.

Recommendations are produced by performing a heuristic
search on the space of possible configurations Cj1 , . . . , Cjn

that satisfy the budget B, while minimizing the estimated
cost of execution of (possibly a sample of) the workload W.
That is, none of the configurations considered by the con-
figuration recommender are actually built during the rec-
ommendation phase. The estimated performance of a given
hypothetical configuration Cjk considered by the configura-
tion recommender is obtained by feeding the RDBMS query
optimizer with parameters that describe Cjk (e.g., statis-
tical information about indexes in Cjk). The parameters
describing Cjk are also estimated by the query optimizer [6,
14].

The use of the RDBMS query optimizer by the recom-
mender tool has several practical advantages. Most notably,
it avoids potential mismatches in estimated query costs for
a given configuration, as the same estimator (i.e., the query
optimizer) is used for both recommending configurations
and executing queries. In practice, this eliminates the risk of
having indexes that are recommended but never used in the
execution plans selected by the optimizer. However, the rec-
ommender tool ends up relying extensively on the RDBMS
query optimizer producing accurate estimates for the costs
of executing queries (it is well known that the quality of such
estimates degrades severely as query complexity increases
[13]). The recommender is also vulnerable to estimation er-
rors in the optimizer when assessing the parameters of the
hypothetical configurations considered.

We note that there has been work on improving the accu-
racy of estimates based on observing actual query execution
costs. The learning optimizer LEO described in [15] is an
example of a technique that has been shown to continuously
improve cardinality estimates on a commercial optimizer.
However, this approach has limitations when applied to a
recommender: since LEO depends on observed executions
in the current configuration, the technique may not improve
estimator accuracy for hypothetical configurations (as there
is no way to observe these executions without changing the
current system configuration).

Recall that Figure 6 shows the actual execution times of
the three configurations P, R and 1C for family NREF3J
on System B. Figure 10 shows similar cumulative frequency
curves for family NREF3J on System B but looking at the
values of the optimizer estimates (represented here by ar-
bitrary units and not as seconds). Five different curves are
presented in the figure. The curves EP, ER and E1C are the
estimates for the queries provided by the optimizer when
the system is in the configuration P, R and 1C respectively.
The optimizer correctly estimates that the behavior of R
improves over P and that 1C improves even further. How-
ever, the magnitude of the improvements is quite conser-
vative compared with the improvements seen in the actual
executions (again, refer to Figure 6).

The recommender does not have access to the ER and E1C
curves while the system is in the configuration P. Instead
it can obtain hypothetical estimates HR and H1C for the
configurations R and 1C (respectively) while on the current
configuration P. The curves HR and H1C also appear in
Figure 10. Note that while the curve for HR almost coincides
with the curve for ER, the curve for H1C is much more
conservative about the advantages of 1C than E1C. While
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Figure 10: Cumulative curves for the estimates for
family NREF3J on System B.

in this example the relative goodness of HR and H1C are
correct, the data shows that the accuracy of the hypothetical
estimations is not always closely related to the estimates
taken at the target configuration.

5.2 Measuring Improvements
We define the estimated improvement ratio of query qk

when estimated on configuration Ci compared to configu-
ration Cj as the ratio EIR(qk) = E(qk, Ci)/E(qk, Cj); simi-
larly, the actual improvement ratio of changing between con-
figurations Ci and Cj is AIR(qk) = A(qk, Ci)/A(qk, Cj). For
simplicity, actual improvements involving timeout queries
are not considered.

We also define H(qk, Ch, Ca), the hypothetical cost of ex-
ecuting query qk in the hypothetical configuration Ch, which
is an estimate obtained while the system is in the actual con-
figuration Ca as discussed in the previous section. Since in
our experiments we are interested in evaluating hypothetical
configurations in P, we define the hypothetical improvement
ratio of query qk when hypothetically estimated on P for
configuration Ci compared to the hypothetically estimation
on P for configuration Cj as the ratio

HIR(qk) = H(qk, Ci, P )/H(qk, Cj , P ).

We are interested in the improvement ratios that compare
the recommended configuration R to the reference configu-
ration 1C. Larger than 1 ratios indicate that R will do worse,
while smaller ratios indicate how much faster R is than 1C
for a given query.

Figure 11 shows the histograms (instead of cumulative
polygons) of the three improvement ratios defined above
comparing R to 1C for the queries in family NREF3J on
System B. Looking at the actual executions (the AIR his-
togram curve), we see that 31 queries are 10 times faster in
1C than in R and 17 queries are 100 times faster in 1C than
in R, while 33 queries show no improvement at all (ratio
1). When we look at the hypothetical estimates obtained in
the configuration P (the HIR curve) we see that 20 queries
are 10 times faster in 1C than in R and 15 queries are 100
times faster in 1C than in R, while 56 queries show no im-
provement at all. The HIR curve states that the R and 1C
configurations would (hypothetically) perform much closer
than they actually do. In contrast, looking at the estimates
obtained in the configurations 1C and R (the EIR curve),
we see improvement ratios that much more clearly favour 1C

Figure 11: Histograms for the improvement ratios
for family NREF3J on System B.

over R (in fact, even more so than the actual ratios AIR).
The previous example further illustrates the point made

in the preceding section regarding the discrepancies between
estimates and hypothetical estimates. The configurations
are evaluated by the recommender on the basis of hypothet-
ical estimates in the current configuration, since it has no
access to estimates in the target configurations (although
these estimates could be much more accurate than the hy-
pothetical ones).

6. CONCLUSION
This paper introduces a benchmarking framework for as-

sessing the quality of autonomic configuration recommenders.
We propose a flexible notion of workload performance, we
employ large and diverse query workloads described by fam-
ilies of similar queries, and we identify comprehensive single
column indexing as a very useful configuration for baseline
comparisons. Our use of curves depicting the cumulative fre-
quencies of query execution times to characterize workload
performance bring forward the advantages of designing rec-
ommenders that can accept quality of service goals specified
by constraints on these curves.

Using the proposed framework, we describe three bench-
marks using real and synthetic data and several classes of
families which are used to provide the first assessment in
the literature of current commercial configuration recom-
mendation tools. We believe that the extensive experimen-
tal results we report have substantial value as they not only
confirm the practical applicability of the approach proposed,
but also demonstrate that improvements of several orders of
magnitude can still be achieved.

We can regard the experimental data collected from our
experiments as the missing observation step in the observe,
predict and react loop applied to autonomic indexing. Cur-
rent recommenders predict based on estimates and hypo-
thetical configurations and react by recommending a new
configuration but there is no attempt to observe the actual
cost of query execution.

We note that the proposed benchmark methodology can
be extended to support the evaluation of non-relational sys-
tems, such as recently proposed XML-based recommender
tools [19].

Conducting extensive experimental evaluations are a first
step towards assessing and improving the effectiveness of
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existing relational recommenders. More significantly, mean-
ingful benchmarks form the basis for the scientific evaluation
of future research in autonomic recommenders.
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