CS632 Midsem, Spring 2011, Feb 26, 2011, 5.30-7.30 PM
Total Marks: 60

NOTE: Answer all subparts of a question together, do not split them up.

1. Volcano/MQO:

(a)

In Volcano, a goal with a required physical property is satisfied by either an algorithm
node guaranteeing the property, or by an enforcer from the null property. This ensures
that the physical equivalence DAG is actually a DAG, i.e. it does not have cycles. Explain
using a small example with (fake but not unreasonable) costs, why in the context of MQO,
it may make sense to allow derivations in the other direction, from a physical equivalence
node with a stronger property to one with a weaker property. ;)
Consider the problem of index selection for a given set of queries and updates, i.e. what
indices should be created to handle the given set of queries/updates at minimum cost.

Explain how the MQO greedy algorithm can be applied to solve this problem. In par-

ticular, make sure you explain clearly how to compute the benefit of a particular index.
;)

2. Explain very briefly (a) how the split-delta idea helps minimize random IO when updating

an index, and (b) why in addition to sorting on keys, a secondary sort on the operation

(insert/delete) is required. A4

3. Eddies/POP:

(a)
(b)

()

In terms of benefit to reoptimization, compare the approaches of LCEM and ECB. ...2

Explain, using an example, why the failure of the independence assumption can not only
lead to a bad join order, but can also result in POP repeatedly finding bad plans. .4

Explain with an example (using qualitative arguments, no need for exact numerical values)
why it is possible for Eddies to use (in effect) a join order that is better than any static
join order on the same set of relations. .4

4. BigTable/PNUTS/Asynchronous View Maintenance

(a)

(b)

Both BigTable and PNUTS use replication and logging to handle failure, but the ap-
proaches differ significantly. What are the key differences in their approaches to (a)
replication and (b) logging. 242

The test-and-set-write feature of PNUTS can be useful to implement concurrency control
without locking. Consider a case of two transactions, with two data items A and B. (a)
Give an example of a non-serializable execution that would be prevented by the above
feature, and (b) give an example of a non-serializable execution that would be allowed
using the same feature. .4

Megastore (which you may not have read about) uses an idea similar to test-and-set-write
at the level of an entity-group, which is a set of related records, for which it maintains a
single version number. Show that if we allow transactions to access only one entity group,
serializability would be guaranteed. (Hint: the ordering is actually serial). .5

In PNUTS, what is the need for a tablet master, given that each record specifies which
site is its master? .3

Although preaggregation (also known as combiner in Hadoop) could be used to reduce
network traffic when maintaining an aggregate view, the Agrawal et al paper on Asyn-
chronous view maintenance does not use it. Explain why. !



5. Hyracks:

(a)

(b)

()

Explain the difference between how Hyracks handles failures and how Hadoop handles
failures. .3

Based on the above, outline a situation where Hyracks will not make any progress, but

Hadoop can complete the given task. .2

Explain why the Compat mode performs better than Hadoop, while Native mode performs
better than Compat. .3

6. Consider the following task on a graph:

e In the first step, node 0 (a special node not part of the graph really) sends, an initial

score v[i] to each node S[i] (ignore the issue of how to read the arrays, assume they are
available). All other nodes set their own value to 0 and vote to halt.

In subsequent steps, each node sums up the values it has received in the previous step,
adds a fraction d of the sum it has computed to its own value, and spreads the remaining
1 — d fraction amongst all its out neighbours (assume even distribution). However, if the
value to be spread is less than some value € it votes to halt.

Write Pregel code to implement the above task. .4

Now suppose at the end, each node also sends its value to an aggregator; the job of the
aggregator is to output the top-k values. Outline how to implement such an aggregator;
don’t worry about exact code since the paper does not give the API for aggregators, just
explain in words how you would implement such an aggregator. .4

Total Marks = 60



