Scalability for Virtual Worlds

Nitin Gupta#, Alan Demers*, Johannes Gehrkg& Philipp Unterbrunner, Walker White#

#Computer Science, Cornell University *Computer Science, ETH Zurich
Ithaca, NY Zurich, Switzerland
{ni ting, adeners, j ohannes, wmhi te}@s. cornel | . edu, philppu@nf.ethz.ch

L
«Q
>

Virtual Worlds

Abstract— Networked virtual environments (net-VEs) are the !
(Second Life)
°

next wave of digital entertainment, with Massively Multiplayer
Online Games (MMOs) a very popular instance. Current MMO

. 7T - Simulators (SIMNET)
architectures are server-centric in that all game logic is gecuted °

Computational
Complexity

at the servers of the company hosting the game. This architaare Games (WoW)

has lead to severe scalability problems, in particular sine MMOs °

require realistic graphics and game physics — computationty Collaborative

expensive tasks that are currently computed centrally. Low SOﬁ.""are
We propose a distributed action based protocol for net-VEs Tow Scalabiliy High

that pushes most computation to the computers of the players
and thereby achieves massive scalability. The key featuref our Fig. 1. Scalability versus Complexity

proposal is a novel distributed consistency model that allws us

to explore the tradeoff between scalability, computationhcom-)]])

plexity at the server, and consistency. We investigate our odel 10 degrading the realism of the virtual world, consistency
both theoretically and through a comprehensive experimerdl violations are a major source of security problems in net-
evaluation. VEs [3]. To maintain consistency, all net-VEs have a transac

tion management layer that employs a commercial database.
However, the transaction layer also introduces severa-scal
Networked virtual environments (net-VE) are software sy$ility problems. First, as users move about the virtual em4
tems in which users interact with each other in real-timdimit ment, they send transactions to the net-VE at an extremgly hi
some shared virtual environmemtiassively Multiplayer On- rate. Even the fastest MMOs cannot handle more than about 10
line Games(MMOs), and more specificallyyirtual worlds frames per second [4] through their database transactjen. la
such asSecond Lifeare a popular example; these gameSecond, the transaction layer architecture of most cumreit
allow large number of users to play together in fictional digiVEs requires that significant parts of their applicationiddge
tal worlds. Other examples include simulation environreengxecuted on the server side. As a result, the scalabilitynof a
like Microsoft's ESP platform [1]. Other application areaspplication is strongly related to the computational fowijpof
include teaching, distributed design, and military sintiolas a single user. Figure 1 illustrates this observation forrada
for training and tactical purposes. Virtual environmendsén of todays net-VEs. Collaborative software such as Wikigedi
become big business, as the MM&rld of Warcraftby itself is highly scalable because user actions involve only simple
generated up to $1.1 billion dollars of revenue in 2007 [2]. computations. MMO Games with a static environment such
Virtual worlds are typically designed to create a very highs World of Warcraftrequire comparatively more computa-
degree of immersion. Many feature 3D graphics and stertional resources, leading to a drop in scalability. Simurigt
sound, and have extremely interactive environments. Bait tharticularly military simulators such as SIMNET, are even
primary selling point of many virtual worlds is the largenore “real” than virtual worlds, in that users can interaghw
number of players that they can support. In MMOs Nkerld the virtual environment (e.g., destroy buildings); theuies
of Warcratftit is already popular for groups of up to 80 playerés even less scalability. Finally, user-designed virtualirlds
to work cooperatively in a “raid”. Other online virtual wadd such asSecond Lifeallow objects to be created, modeled,
like Habbo Hotel market themselves as social-networking@nd scripted by the users at run-time. This flexibility comes
environments, and must support large parties or other Isoskdth high computational complexity; for example, the ressig
events online. While high-bandwidth, low-latency interiee Scalability of Second Lifeis on the order of at most 25-30
now becoming ubiquitous, this is not enough to solve thésers per server. If the player-to-server ratio of collakive
scalability issues that net-VEs are beginning to encounter software were possible in a net-VE with the flexibility and
These scalability problems arise in part because of the nedggree of immersion of virtual worlds, this would allow for a
to maintain consistency between all the players. In the béer experience beyond the reach of current systems.
case, inconsistency may just lead to transient visibldaats The desire to support more players in complex environments
with no long-term consequences. However, in practice,nt caas spawned some research on distributed system archétgctu
easily cause much more serious problems, like objects befiog net-VEs [5], [6], [7], [8]. Unfortunately, as we discugs
lost or duplicated during a financial transaction. In additi Section II, these systems do not scale. They are often limite

|I. INTRODUCTION

to narrow classes of transactions, such as those that depend |l. NETWORKED VIRTUAL ENVIRONMENTS
on character visibility. The problem with this approachhiatt as discussed in the previous section, consistency is im-
transactions in real net-VEs often interact in complex arghrtant to net-VEs. In order to be realistic, everyone needs
subtle ways beyond visibility. For example, suppose we Bavgg share a single view of the virtual environment, therld
fantasy MMO designed to support a large number of playet§ate persistent net-VEs typically store the world state in a
A classic feature for such a game is a “scrying spell” thafatapase [10]. Any interaction in the world can be thought of
allows a healer to identify and heal the most wounded alls 5 database transaction: making an observation is a databa
in a crowd. During combat, the result of this spell trangacti query about the state of the world, and a change in state is a
interacts withall the other users, as the health of each playgkigphase update. However, because of throughput problems
is continually changing. The range and nature of such a spglth commercial databases, most net-VEs use commercial
makes character-visibility partitioning useless. databases only to commit and read at periodic checkpoiats. F
Fortunately, virtual worlds have a lot of semantic informareal-time interactions, they generally implement theimow-
tion that can be leveraged to ensure scalable consisteirey. ¥nemory transaction layer in front of the database. Thisgiesi
tual worlds and simulations are essentially high-dimemaio decision is not because database transactions are unsuited
databases where the attributes can change only in preldictahe task; rather, it is because existing commercial datsbas
ways [9]. For example, in a fantasy MMO game, health isre not optimized for the type of in-memory processing that
itself an attribute that changes as a player is damaged. Byt-VEs need for real-time performance [4].
examining semantic information such as the maximum damage)
that an attack transaction can cause, we can predict theimways" Net-VE Architectures
which the health attribute can change, and exploit this séima 1) Centralized VEs:MMO companies typically use an
information to reduce the number of messages neededatghitecture with multiple central servers to achieveaaiity.
maintain a consistent state among the many distributedtslie The most widely used techniques to achieve scalability béyo

In this paper, we propose a distributed model for network&jsingle server are the following: _ _
virtual environments that achieves massive scalabilityr O Z0ning. Zoning refers to the technique of geographically

model inherits concepts from distributed databases, winere Partitioning (“tiling”) the virtual environment into arszsmall
application logic and transaction processing take pladhet €nough for a single server to handle. Typically, playersimit

client machine, thereby relieving the server from much corfi-Zone form an event broadcast group and are assigned to the
putation. The key feature of our model is its novel trangacti SaMe server. A single server machine may host multiple zones
model, which exploits application semantics to reduce tfi@ improve resource utilization. Some MMOs allow players
number of messages needed to maintain consistency amBhgnove between zones—this requires a model that allows
the clients. Our proposed model imposes no major restristic®Verapping of zones. However, great complications ansenf

on the interaction between participants located in difiere@{t€mpts to overlap zones [11].

parts of the world. As a result, we show how computationally Sharding. Zoning works well to about a few dozen servers,

expensive net-VEs can easily be accommodated in our mo@lich translates into a few thousand players for most virtua
and can be scaled to a massive number of participants. Worlds. At this point, scaling effects force MMO companies t
instantiate completely separate world instances calletds
Sharding is also used because players are potentiallygsprea
Outline of the Paper across the globe; a player from India may not be willing to
accept a noticeable 300ms delay in server interactionshfor t
In Section I, we overview existing architectures of neta/Epurpose of playing with people from the US. So rather than
and virtual worlds. We also connect net-VEs and databasbsesting a single virtual environment for the whole user base
and discuss scalability limitations of today’s net-VEs.rOucompanies serve dozens of wholly disjoint instances of the
paper then continues with the following contributions. same world at strategic locations across the globe.
Instancing. Unlike shardingjnstancingis confined to small
artitions of the virtual environment. An instance is esisdiy
private zone into which no players may enter except those
at originally spun off the instance. IWorld of Warcraft
instancing is used heavily for dungeons that are intended to
« In Section IV, we present several technigues that leveralge personal experiences [12]. In general, instancing isnoft
spatial properties of net-VEs to optimize our protocolsemployed for game design reasons; it is not intended to be a
. . . .true scalability solution, as it severely limits playerdrdction.
« In Section V, we present an experimental evaluation using . : :
. . . . All these solutions split the user base in some way, degrad-
both simulation and real experiments demonstrating the o L : .
) ing the “massive” multiplayer experience [13]. For example
effectiveness of our new protocol. . . .
sharding and instancing prevent large groups of users from
We discuss related work in Section VI and conclude iworking together by design, while zones collapse if too
Section VII. many users crowd into a zone all at once [14]. Users often

« In Section Ill, we introduce a new protocol to increas
the scalability of net-VEs. We use application semanti
to provide theoretical bounds that show the scalability
our approach.

have difficulty finding their real life friends in such MMOs. The key component of a client-server net-VE is its con-
Some virtual worlds even require the users to pay if thesistency protocol. Since the computation is performed ley th
want to play with someone of their choice [15]. Thereforelients, a protocol needs to be established between thetclie
MMO companies are still struggling to meet the scalabilitand the server that ensures consistency and durabilitytaf da
requirements demanded by their user base. The following are three popular classes of protocols:

2) Distributed VEs: An alternative to multiple central Lock Based ProtocolsAn well-known family of protocols
servers is theistributed mode[10], in which computation is based on distributed locking. In order to process a ti@nsa
is distributed among clients in order to achieve scalabilittion, a client must acquire global locks on the objects reat! a
Distributing computation between clients has the poténtia written by the transaction. This can be implemented by hgvin
only to reduce load on the central server, but also to leweragll clients in the system agree on granting a lock requedtyor
capabilities of the client machines. managing locks at the server-side. Typically, a client aotst

While P2P architectures seem to be the natural choice the server for a lock. The server multicasts this requestito a
distributed models, there are both technical and non-teahn clients, which then respond with an acknowledgement gngnti
reasons to choose a client-server architecture. Btgingly the lock request. Any other conflicting transaction reguogst
consistentP2P architectures do not scale because they ube same lock is blocked. The server then communicates to
protocols such as Paxos [16] or Virtual Synchrony [17] tthe client the status of its lock requests. If it obtained all
enforce a consistent total order of events across all paatitss. the necessary locks, the client executes the transactiats on
Much complication and inefficiency in these protocols aisdocal state and transmits the effect of the transaction & th
from the attempt to consider all hosts in the P2P system sa&rver. The server then transmits this effect to all othientd
first-class, but unreliable, citizens [18]. who update their own local states and proceed to the next

However, there is an even stronger, non-technical reasoansaction. Sun’s Project Darkstar is an example of a fet-V
to rely on a client-server architecture. Net-VEs are dgyetb architecture using a lock based protocol [22].
and operated by companies that have a vital interest iniegert There are two major problems with using distributed locking
total control over the virtual world, even if that means istieg in net-VEs. The first problem is that that the minimum
in server hardware. In many virtual worlds, players pay retime required by a client to proceed to the next conflicting
money both to participate and for game content; hence ttiansaction is twice the round trip time between the client
MMO company has an obligation to provide uninterrupteand the server; this is often unacceptable performancesdisr n
service. Additionally, cheating is a major concern for acti VES. The second problem is that the consistence resolwion i
oriented MMOs, and it is much easier to prevent in a clientbject based, while many consistency problems in net-VEs ar
server architecture [19]. For these and other reasons, @omgemantic. The virtual world designer is forced to map every
nies desire to have all content stored securely and perliste single consistency issue in the world to an object accesshwh
by a trusted authority. is not always easy to do.

Overall, the client-server distributed model strikes aahaé Timestamp Based ProtocolsThe well-known alternative
between preserving the interests of the MMO companies tim locking in a distributed database is optimistic concucse
exerting control, scalability of the system, and allevigti control based on timestamps. Here, we associate a version
the problems of no centralized control compared to a P2#th every object, and a timestamp with every transactibe; t
architecture. Thus, we will adopt it in the remainder of thimestamp can be assigned by the server. Clients optiriistic
paper. Extensions to a hybrid architecture that strivedanlba execute tentative actions against their local, possibéjest
between P2P and client-server are an interesting direfmion versions of objects. The server integrates the local, &a@ans
future work (see Section VII). tional histories submitted by clients into a global multsien

. history. It can then choose to make decisions on the sucéess o
B. Client-Server Net-VEs transactions based on multiversion serializability, aautcast

A client-server net-VE architecture consists of a servéne global history, in which case clients can use certificadil-
cluster to which all clients connect. Without loss of getigra gorithms to reach consistent commit and abort decisionp [23
the clients run identical net-VE software, which we refer to If the server makes commit and abort decisions, then it
as client programs The client program contains the actuamust either be pessimistic, or it must understand gameifgpec
virtual world logic. Clients initiate and processtionsin the logic and perform possibly expensive operations in order
environment. An action is a sequence of atomic operatioats tho resolve conflicts. For example, any change in the read
updates the world state. Typically, each action involvest firset of a transaction, such as some player moving, would
an observation of the world state followed by an update pbtentially cause the transaction to abort. In order to ewtgl
the state. In this paper, we assume that each action consistsrelevant changes, the server must implement a significant
exactly one atomic operation. Though processing actiottsein part of the application logic that specifies what combimatio
client program may raise security issues, a lot of prioraese of movements are valid.
already exists for developing non-hackable clients [2P1]] If the server broadcasts the global history to clients itsuse
As an added security measure, the servers can also log MMOeast two phases, and therefore at least twice the roipd tr
statistics to detect any cheating or security threat [19]. time between the client and the server [23]. There has been

very little research on optimizations of such a protocol ttken ~ Algorithm 1: Client-Side Protocol
them suitablg for MMOS._Instead, de_sign_ers prefer pro®co] The client maintains a queue
based on object ownership that we will discuss next.

Object Ownership. Object ownership differs from lock- Q = [{a1,01),--, (ak, vg)]
based protocols in that each object is owned and managed bwhere each; is a locally generated action that has not
exactly one client, known as the object owner. Other clianés yet been received back from the server, ands the
allowed to cache a version of the object, but are not allowed t result of applyinga; to (co as described below.
make modifications to its state. RING [6], Cyberwalk [24]dan 2 Whenever the client creates an actigrthe action is first
WAVES [25] are three popular systems using such a protocol.executed orco producing a result. We call this the
Although this protocol is highly scalable, it does not allow optimistic evaluation ofi.. The pair(a,v) is then added
for any kind of object contention in the environment. If two to Q, and the action is sent to the server.
clients want to change the state of the same object, only theAssume that the client receives an actiofrom the
client owning the object is permitted do so. The server is server. There are two possible cases:
responsible for ensuring a fairness in ownership, which is (Action b originated at some other client): Actidnis
often based on semantics of the virtual world. In order to applied to(cs. Each writex «— v performed byb is also
allow object contention in such a protocol, applications ar performed on(co if (and only if) x ¢ WS(Q). (This
either degraded to a lower level of consistency, or are fbrce has the effect of updating items in the state that are not
to employ timestamp-based serializability [26], resuwtiim awaiting permanent values from the server).
unacceptable response time for net-VEs. 5 (Action b = a;): Action a, is applied to{cs producing
resultu. If uw = vy, indicating the new evaluation ef;
agrees with its optimistic evaluation, the entay, v1) is

All the techniques discussed in the previous section handleemoved from the head af. Otherwise (o is
consistency at the object level. In this section, we descaib reconciled with(cs using Algorithm 3.
novel class of protocols that we calttion based protocols
because they check consistency at the level of actions (i.@lgorithm 2: Server-Side Protocol

functions to update the game state) rather than at the leYeIrhe server maintains a global queue of actions. For each
of objects. We then propose models based on such protocolgnenta the server maintains the indgsc of the

that are practical and highly scalable. We use applicationgqtion in the queue that was last sentoAt the start
semantics to provide theoretical bounds that formally prov ¢ ihe protocol posc = 0 for all clients C.

the scalability of our approach. _ 2 When the server receives an actierirom clientC' (Step
To make the discussion more succinct and relevant 105 iy the client-side protocol), it performs two steps:

current MMOs, we assume that th(_e virtu_al worlq follows, (a) It timestamps: and puts it into the queue, assigning
the standard model of a discrete simulation engine, where, 5 unique order numberos(a) that isa’s position in
the world state changes only at regular time intervals, the,e queue.

simulation ticks[9]. We denote the non-zero time interval, by The server returns t6' all actions between positions
between two consecutive ticks by posc andpos(a), and it setgposc = pos(a).

A. The Basic Algorithms

In our action based protocols, the messages passed betwedrhe reconciliation procedure in our protocol, Algorithm 3,
the clients and the server primarily consist aftions as is designed to prevent the optimistic state from diverging t
opposed to objects. The state of the virtual world is a da@bdar from the stable state, by rolling back and re-applying
of objects, theworld state Each client program maintainsoptimistic actions when an actual conflict is discoveredisTh
two versions of the world state: an optimistic versigno approach is similar to that used in Bayou [27], and like Bayou
and a stable versiotics. To perform an actiom, a client we assume that actions contain code to check for conflicts:
first appliesa to {co, and also senda to the server to be when it is re-applied, an action either computes appropriat
serialized. Concurrently, the client is receiving from #egver new result values or else it detects a fatal conflict and behav
a serialized stream of the actions originatingadlt clients, as a no-op to simulate aborting.
and applying them in order tgcs. The results of applying Correctness of our protocol is easy to establish since each
locally originated actions taco and {cs are compared, client executes every action that originates anywhere @ th
and disagreements are reconciled if necessary. Pseud@&cod®ystem,in the same ordepn its stable version of the world
presented as Algorithms 1, 2 and 2. (cs as enforced by the timestamping and ordering of actions

Note that the only function the server provides is ton the server.
timestamp and serialize the actions of the clients. Thima&ir Our action-based protocol has two advantages. First, it
timestamp, together with the positions of actions on theugueguarantees response in one round trip while allowing any
at the server, establishes virtual synchrony between thveise kind of interaction, including object contention, in thetuil
and the clients [17]. environment. A second advantage is that the central server

IIl. ACTION BASED PROTOCOLS

Algorithm 3: Reconciliation Protocol
Only Bis _|

Require: Q = [(a1,v1), ..., {ak,vg)] is the results of visible 1o A
optimistic evaluation of locally generated actions.
CCO(W[?(Q)) — (cs(WS(Q))
Q «—
for (j=1;5<=k;j++) do
apply a; to {co producing resul
insert(a;,v) into Q

A's
actual
area of
interest

. . Fig. 2. The RING system limits itself to the visibility of aeais, resulting
does not execute any actions, and therefore is free of the gaman inconsistent state across clients. The actually drat dan causally

logic. The server merely timestamps actions, queues them iftfluence A is much larger than its visibility.

delivery for clients, and manages the network traffic. This Client A Client B Server ClientC Time

allows the server to handle a very large number of clients.
Popular systems such as SIMNET [28], [29] and WAVES [30] , .
L. . . . B’s|arrow is aborted
use similar protocols at the object level — they broadcast Athinks it is dead= - =
updated data objects to all clients. 3 is deadhy, v RTT
However, a major drawback of our first action based pro-
tocol is that every client sees and executes all actions for B shoots arrow+ I " A
the entire world, resulting in high computational load at th C shoots arrow 0
clients as well as substantial bandwidth requirements both
at the clients and the server. Thus this first protocol, while Fig. 3. Inconsistency in area of interest paradigm

ensuring a response time of one round trip and achieving
consistency between the clients, has very limited scafiabil interact with one another even if they cannot see one another
To achieve better scalability we exploit application setitan We illustrate this problem in Figure 2. Although entities A,

as described next. B, C, and D (filled circles) all inhabit the same virtual envi-
) o) ronment, very little interaction (filled and hatched polpgd
B. Using Application Semantics is possible due to the occlusion of walls (solid lines). lotfa

In the realm of object based protocols, numerous optimizia- this example, only two direct interactions are possible —
tions have been proposed to reduce the number of messdegiseen entity A and entity B; and between entity B and entity
that are sent to each client [6], [7]. Most of these optimizmet C. The restricted vision paradigm suggests that each action
are variants ofarea-of-interest paradignuescribed in prior submitted by entity3 should be sent to clients with entity
work [31], [32]. In such models, the server restricts the sand entityC, whereas an action submitted by entityshould
of update messages (and object data) sent to a client by sdraesent only to the client with entit3 (because entity”' is
syntactic constraint, for example, the visibility of an tra not visible to entity4). However, this observation leads to an
in the virtual world, a well-known approach. Anyone wouldnconsistent state in the system.
therefore naturally consider generalizations of the dxlitha Consider the case when entify shoots an arrow at entity
solutions proposed in these systems to action-based pietocB at time ¢ = 0, and entity B shoots at entityA at time
However, we argue that this approach has a couple of issues A where0 < A < RTT (Figure 3). Assuming that the
that prevent it from being a general solution to the scailgbil time for the arrow to travel i$ where0 < ¢ < A, entity
problem. B should die before it actually shot the arrow. However, the

The first problem is that restricted visibility applies onlyclient with entity B receives entityC's shoot request only at
to movement-like actions and does not generalize well tone t = RTT, by when it has already sent entify’'s shoot
arbitrary actions. For example, the RING architecture iegu request to the workstation with entity. This client with entity
that the designer create an obstruction layer represetiiing A receives entityB’s shoot request at time= A+ RTT, and
objects blocking visibility. This obstruction layer is whis subsequently announces entityto be dead. It is interesting
used to partition the database replicas [6]. If the gamegdesi to note that the client with entityl could have determined
wants to base actions on other senses such as sound or segtity B’s death only if it also knew that entit¢’ had shot
she must create a separate obstruction layer for each rewity B.
sense. Furthermore, in cases like our example of a scryingMe therefore conclude that although there is a bound on
spell from Section |, there may be no obstruction informaticthe visibility of an avatar, the actual area that can infl@enc
at all. an avatar is much larger than the visible region (Figure 2).

However, using of syntactic constraints such as restrict&thie main reason is that all prior work assumedyatactic
visibility has a deeper, subtle problem: They are not s@ffiti restriction on causal influence, however causal influence is
for maintaining consistency. For example, none of the currereally determined by the semantics of the actions in the&irt
proposals cover transitivity of actions—characters cagilyea world. In the next section, we propose exactly such a model

Algorithm 4: Incomplete World Client-Side Protocol Algorithm 5: Incomplete World Server-Side Protocol

1 The client maintains a queue 1 The server maintains thauthoritative state(s. It also
_ maintains a global queue of ordered actions. For each
Q = [<alvvl>7'-'7<akvvk>]

)) actiona in the queue it maintains the setnt(a) of
where eachu; is a locally generated action that has not gjients to which the action has been sent.

yet been received back from the server, ands the For anyi, let (5(i) be the state of the virtual world at
result of applyinga; to (co as described below. the server after applying the effects of actians . . a;.

2 Whenever the client executes an actigrit is executed Then at timet, the server holds: (i)s(j) for the least;
on {co producing a resulv. We call this the optimistic such that no response far, ; has yet been received,
evaluation ofa. The pair(a,v) is then added t®, and and (i) aj 1 . .. an.
the actiona is sent to the server. 2 When the server receives an actiorirom clientC' (Step

3 Assume that the client receives an actiofrom the 2 in the client-side protocol), it performs two steps:
server. There are three possible cases: 3 (a) It timestamps: and puts it into the queue, assigning

4 (Action b originated at some other client, or is a blind a a unique order numbaros(a) that isa’s position in
write created by the server): Actidnis applied to{cs. the queue. It also setgnt(a) — 0

Each_ writex «— v_performed byb is a_lso performed on (b) It computes a reply ta using Algorithm 6.
Cco if (and only if) z ¢ WS(Q). (This has the effect of 5 \when a completion message arrives at the serveafor

updating items in the state that are not awaiting (Step 5 in the client-side protocol), the server holds it

permanent values from the server). _ until ¢s (i — 1) is available. It then installs the values into
5 (Action b = ay): Action a, is applied to¢cs producing (s, resulting in¢s (i), and discards; from the action

resultu. If u = vy, indicating the new evaluation ef; queue.

agrees with its optimistic evaluation, the entm, v1) is

removed from the head ap. Otherwise(co is Algorithm 6: Transitive Closureq)

reconciled with{cg using Algorithm 3. In either case, a Require: o, @, is the action queue

. . . 3l s
completion messagg:;, u) is sent to the server. Require: a,;: has just arrived from client’

Require: + denotes prepending an action to a sequence

and we show that it can be used to achieve scalability without 4 < {an+1}

giving up consistency. § e RS(ana)

for (j=mn;j>i;j=4j—1)do
C. The Incomplete World Model if WS(a;)NS #0 then

if C' € sent(a;) then

In this section we introduce a nove¢mantic-basedction S — S\ WS(ay)

protocol that resolves the consistency problems that we dis

. : : else
covered in the previous section. What we learned from the S — SURS(a))
previous section is for a client to determine the effect of an A J
—aj + A

action a, the client needs to have enough information about
the virtual world to determine all actions that could poteiht
influencea. This causal dependence of actions depends on
their semantics and frequently cannot be captured by sjnitac
constraints.

Let us examine an action from a database perspective. Bandwidth. To achieve this goal, we augment the client proto
action a consists of a read se®S(a), a write setiWS(a) col to return acompletion messagehen the stable result of an
and the code that needs to be executed to compute valuesafetion is produced. The server uses these messages tauobnstr
WS (a) given values folRS (a). We assumerS(a) 2 WS(a). (s, an authoritative stable world state. The server performs
This allows us to drop the distinction between read sets aadalysis of read and write sets (Algorithm 6) to determine
write sets and focus on intersecting read sets in our digmussindependently for each client which additional actions mus
and protocols. Our algorithms occasionally use spddiad be sent for evaluation because they (transitively) affeet t
write actions: we denote by, = W(S,v) an action that client's submitted actions.
unconditionally stores the values into the object setS An interesting aspect of the Incomplete World Model is that
(assuming compatibility ofS and v). Clearly WS(a) = S, it can be made tolerant of client failures at a reasonablé cos
and by conventionRS(a) = S as well. Armed with these in network bandwidth, by letting each client send completio
definitions, we can now change our protocols as shown rnessages fagveryaction it applies, not just its own. With this
Algorithms 4, 5 and 6. change, the only case in which the server does not receive

The advantage of this model is that a client does natresponse to some action is when all clients that evaluate
(necessarily) evaluate every action, only those that affec that action have failed. In such cases, it is acceptable to
thus saving execution time at the clients as well as netwaaksume that the action was never submitted. The client can

sent(a;) «— sent(a;) U{C}
A—W(S,(s(9)+A
return A

S(1wW)RTT

also be optimized for memory. The server can inform the tlien
periodically of the last installed action, enabling theenti to
garbage collect the results of actions received in the st t
it is no longer explicitly interested in. The correctnessoaf

algorithm is stated as follows: S(L4W)RTT
Theorem 1:If the server follows Algorithm 5 and all clients
follow Algorithm 4, then in a distributed snapshot of the Circle of Circle of
system the stateécs at the clients and the statg at the radius ¢ radius f,
server will never be inconsistent. Fig. 4. The worst-case in First Bound Model
D. The First Bound Model other participant, we can use simple geometrical calanati

Under the Incomplete World Model, each client evaluatde determine if any of the participant's future actions ntiga
only a “necessary” subset of the actions—those actions ttgifiectly affected by the outcome of.
actually affect the client. Let us now investigate whettiex t The server now works as follows. Instead of waiting for
Incomplete World Model provides any bound on the numbér client to submit an actiont and then replying with a set
of actions each client evaluates. of previous actions that are known to affedt the server

Suppose a client could evaluate an action4gtin constant proactively pushes to each client a sk$ of all actions that
time ~ independent of the size aflS. Then the time for mightaffect that client's future actions, enabling the client to
the server to receive a response for any action from a cligitecute the actions aflS during what would otherwise be
would at most beRT'T +~, whereRT'T is the round-trip time idle time. More precisely, at regular intervalswfRTT" time,
between the client and the server. This effectively meaat thvhere0 < w < 1, the server sends to each cligntall actions
the server might need to send to the client all actions thetst submitted in the previous RT'T that could possibly affect
seen in the previou6RTT + ~)/7 ticks, which provides our any of C’s future actions.
first bound. This discussion assumes tRAtT is constant for c|aim: The server receives a response for any actlofiom

all clients—we can easily drop this assumption by substiflit the client in time(1 + w) RTT of sendingA to the client.

RTT,,., for RTT. Assuming that all clients have reasonable))]
latency, and the virtual environment is very large, we helie Proof: We assume that it takes ¥2RTT time for an action to

that this is still a reasonable bound. travel from the server to the client. Therefore, if an action

The bound is not valid in practice, however, because tHe (&long with some other actions) is sent to the clignt
number of ticks required for the client program to execute f¢kS after the closesty RTT cycle from the server, where
action sequencels is, in the worst case, proportional to the/ < w RTT/7, it reaches the clienj ticks after the client
number of ticks thatdS represents. This worst case comel2s finished executing the previous action set. The client ca
about when there is at least one action for every distinkt ticherefore executel in at most; ticks and respond back to
in AS. Effectively, the time after which the server receives '€ Server. The response takes an additional %2RTT. Sinee
response for an action becores RT'T, which increases the Pounded by, RT'T, the maximum time for this entire process
size of the subsequentS. The final result of this iterative IS (1 +w) RTT. o n
process is a geometrically increasing size 4§, thereby As stated earlier, the_deC|_S|on whether an actibiis sent
invalidating the previously obtained bound. frqm the server to a client is bgsed on _vvhet_her or not the

Intuitively, the problem is that when a client submits &hen_t’s future actions could po_SS|ny c_onfllct with. Let _the
new action after having been idle for a while, the server mdjaximum area of influence of in the virtual world be given
respond with an unboundedly largks set, resulting in unac- Py @ sphere centered at the pojni and radiusr. Let the
ceptably high response time for that client. The solutiothts POSition of the character representing cli€hbe given bypc,
problem is provided by our MMO semantics. Most existingnd let the maximum radius of influence of an action®y
net-VEs have strict properties of locality that we can eitplo P€7c, and let the maximum rate of change in position of any
Every participant in can be represented as a high-dimeakiofiPiect be given bys. Then A can affect any ofC"s future
tuple. Furthermore, this tuple has a finite maximum rate @¢tion in time(1 +w) RTT if and only if
change in position. Certainly traditional _spatial at_tt'EtmIike _ | pa—pe ||< (25 x (1 +w) RTT) +re +74 (1)

x, y cannot change more than the maximum object velocity.

Similar restrictions apply to attributes like health if thietual This equation reflects a worst-case in whidhaffects an
world has a maximum damage amount. As a result, maopject at distance 4 from itself, that object and’s character

of the actions are restricted to a ball of fixed radius abontove towards one another, each traveling at maximum speed
a high dimensional point determined by the participant. Fer and they approach to distance within the specified time
example, when a combatant is looking a target to attack, ttisund of(1+w) RT'T, as illustrated in Figure 4. The equation

is ball about the combatant’s attack power and spatial iposit gives us the first bound on the number of actions that can
Therefore, given the position of these balls at titmand the directly conflict with the actions of the client, represehges
maximum rate of change, together with an actibrof some a sphere centered at the position of the client in the virtual

world.

Algorithm 7 : Information Bound Model

E. The Information Bound Model

Though the First Bound Model gives a bound on the number
of actions that can directly conflict with a client’s actiosusd
therefore have to be sent to the client, the actual set dfrati
that are sent to a client is the transitive closure of actibas
conflict with the aforementioned set of actions. 5

We claim that the number of uncommitted actions than can
directly or indirectly cause a conflict with any given actiisn
unbounded. We illustrate this using the following example.

Dining Philosophers Problem.Consider a scenario with
participants, with each of them trying to grab two forks—,
one to their left and one to their right. Let them be organizeg
in the form of a circular ring located on earth’s equator. Jf

each of them tries to pick up the two forks at the same tick,

1 global actionCount, previousCount, lastCommitted,
numcClients

2 function onActionSubmission{ction)
3 begin

AactionCount «— action
let ¢ = actionCount
for (j = 0;5 < clientCount; j+ = 1) do
if [pa, —pc;| < (2sx (14+w) RTT)+rc +1ra
then
CIientconflZ'Ctsi,clientConflictCounti —]
clientCon flictCount;i+ =1
end
end
actionCount+ =1

then although the direct conflicts never involve more tham tw, ong

participants, a transitive closure of conflicts encompsiske
entire world.

14 function onNextTick()

In order to counter this problem, we believe that the prewales begin

uncertainty in the system can be used to break the lamg
chains. This can primary be employed to restrict the size of
the transitive closure of actions bgropping some actions, 17
i.e. declaring some actions as invalid and aborting them
immediately upon a submission at the server. An alternateigo
dropping actions is delaying actions by some amount of tirme
so that the bulk of the actions in the conflicting action set ar
committed. 22
The optimal way to drop actions is unclear. For exampks,
fairness becomes an issue when we consider action dropping—
what if the actions for a client are repeatedly dropped z
delayed? Another issue is to find the optimal set of actiors
to drop in real-time, especially given the fact that most net
VEs are online and demand immediate response. With mere
and more people joining net-VEs, a fear in such a protocel
is that the cost of evaluating transitive closures of cotifigc 30
actions might surpass the cost of processing actions at the

server. Evaluating all such techniques is beyond the scbpex
this paper, and is interesting area for further research.

for (i = previousCount;i < actionCount;i+ = 1)
do
let S = RS(A;)
let invalid = false
for (j =i —1;j > lastCommitted; j— = 1) do
if isValid; and SN WS(A;) # 0 then
if |pa, —pa,| > threshold then
invalid «— true
break
end
S «— (S—WS(A,)) URS(4;)
ConfliCtSi,conflictCounti — j
conflictCount;+ =1
end
end
isValid; < not invalid
end
previousCount— actionCount

33 end

As a first step towards solving this problem, we propose
the Information Bound Model. This model greedily decides

whether or not an action should be dropped. Since all clieri@nge [previousCount, actionCountgives the identifiers of
do not submit actions exactly at the same time, we believie ti#dl actions submitted in the previous tick. For each suleditt
the random order of arrival of actions at the server will easuaction 4, onNext Ti ck() evaluates int@onflictsa transitive
fairness, i.e. the probability of an action getting dropged closure of all conflicting uncommitted actions. If any of the
the same for all clients. The greedy nature of the algoritam ¢onflicting actions is at a distance greater than stmeshold
computationally inexpensive, and therefore we conjedtua¢ distance fromA, then A is dropped.

the model can be used in real-time environments.

The First Bound Model and the Information Bound Model

Algorithm 2 gives two important modules of the Informatiortogether give two bounds. The first bound is on the maximum

Bound model. The functiomnAct i onSubmi ssi on() is

number of actions that need to be sent to a client due to direct

called when any client submits an action. This action is dddeonflicts, represented as a function of time and distanckdn t

to a global queue of actions (line 7). The function theattribute hyperspace. The second bound is on the maximum
evaluates the set of clients (given tientConflictg that could number of actions that can be a part of any actions transitive
be interested in the action sometime in the near futureqlinelosure, represented as a function of distance. Combihieggt
9-14). The second functioonNext Ti ck() is invoked at two bounds, we get the following (loose) bound on the number
every tick, i.e. at regular intervals of time The identifier of actions sent to a client at each tick, represented as didunc

2s(1w)RTT threshold new chain

‘ an arrow, or even walking, normally have a velocity vector

associated with them. Even health may have an associated
“velocity” vector to it, if the damage is occurring over time
(such the “corrupted blood” disease\vorld of Warcrafj. We

can therefore integrate this velocity vector in the bound ca
culation to predict any future conflicts. The conflict eqaati

Uncommitted Dropped ; .
Move M Move M (Equation 1) can be restructured as:

Fig. 5. Chain breaking in the Information Bound Model H P+ (@M X (tM — tc)) —DPc HS (25 X (1 —|—w)RTT) +rc,

of time and distance: where 7,; is the velocity vector associated withl, ¢y, is

the time of occurrence of\f, andtc is the time at which

the position of client”' was last updated tp-. Note that the
An important aspect of the Information Bound Model is theerm, r,,, corresponding to the area of influenceidfis now

conflict detection algorithm. Although virtual worlds reécg1 represented as a vector and moved to the left hand side of the

an unordered evaluation of actions with the same timestanggyuation.

the decision to drop actions is sequential (lines 19-34)s Th

enables the model to accept a majority of the actions, while V. EXPERIMENTS

dropping only those actions that invalidate the bound. To pu

things in perspective, we again consider the Dining Philoso We built a system implementing the action based protocol

phers problem. If all participants try to pick up the two fsrkin Java 5.0 and conducted experimental studies to quamtify a

at the same tick, we conjecture that the decision to dropfall @/aluate its performance. We call our implementaB#VE

the requests iS SuboptimaL The primary reason for th|ses tfpr Scalable Engine for Virtual Environments. We also built

fact that the intention was to break long chains, and not maR8 optimized version of a centralized system that represent

a decision. By dropping a few actions at regu|ar interva|§$.|rrent online virtual worlds such as Second Life or World

the chain can be broken into numerous pieces, each of whhWarcraft. Furthermore, we implemented the NPSNET and

| pa—pc |I< (2sx (1+w) RTT)+7rc+ra+threshold (2)

satisfies the requisite threshold. the RING architectures, which represent the state of thaart
distributed simulations.
IV. OPTIMIZING THE PROTOCOL Our experimental evaluation is based on a synthetic work-

We next give some basic optimizations for our modeload that stresses the consistency issues in MMOs. The syn-
Though most of these techniques have been well-reseanshethetic workload is generated by a simple virtual world, &mi
graphics and rendering space [33], they also generalizeeto to the example in Section III-B. We call this virtual world
domain of event propagation. In particular, as the virtuaild/ Manhattan Peoplelt consists of avatars moving about in a
is representable by a high-dimensional database, all we hagctangular area and colliding with walls or other avatars.
to do is apply many of these techniques to higher dimensioWghenever an avatar bumps into something, it changes its
. . L direction by 90°. By adjusting the number of walls, we
A. Inconsequential Action Elimination . . . :

can control the computational complexity per action, while

Throughout the discussion in this paper, we have assumgd number of participants controls the expected number of
that an action submitted by any participant can affect ther& -gnflicts between actions.

actions of all other participants that satisfy a certainrimban

the distance petween their positions. We cIaim_that thg reumby Experimental Setup

of such conflicts can be sharply reduced by integrating non-

trivial MMO semantics into the system. For example, supposel) System SetupAll performance results were obtained by
that a net-VE contains humans and insects. A participant wH#ning the virtual world on an EMULab [34] testbed consist-
is pretending to be an insect in the VE would probably neddd of 65 machines—64 clients and 1 server. Each EMULab
to consistently know the location of other insects and of tHBachine was a Pentium Il Processor with 2 GB of RAM,
humans. However, a participant who is acting as a humanfi#nning Linux 2.4.0. Timings were obtained using the Java
the VE may not need to reliably know the locations of aystem current Ti meM I | i s() method. Each machine,
of the insects. We can therefore extend the system so asL¥§ept one designated as the central server, was runnieg oth
allow the clients to specify exactly what kind of actions angrograms such as a desktop manager, a document editor and a
information they are interested in, instead of assuminglakes Web browser in the background. We consider this a simple

uniformity. way to emulate a typical client machine. Additionally, we
. used EMULab to introduce latency at the network level in
B. Area Culling order to simulate deployment on a wide-area network. The

Another assumption that has been made is that the areaaeérage latency between machines was 238ms. The numbers
influence of any action is a sphere centered at its point wk present are repeatable, and were averaged over 10 runs of
occurrence. However, most of the actions such as shootihg system, with each run lasting approximately 1 hour.

Virtual world size 1000 x 1000 25000
Number of walls 0 — 100,000 Central —a— ' '
Number of clients 0-64 SEVE ——
Average latency 238ms 20000 Broadeast .
Maximum bandwidth| 100Kbps 2
Moves per client 100 e
Move generation ratd Every 300ms per client g 15000]
Move effect range 10units 'q_)
Avatar visibility 30units € 10000 i
Threshold 1.5 x Avatar visibility 173
[0
TABLE | 000 _
SIMULATION SETTINGS
0
0 5 10 15 20 25
16000 T Centrall T T T T Complexity as Time per Action (ms)
14000 | SEVE —— S Fig. 7. Response Time vs. Action Complexity
Broadcast
% 12000 |
I
= 10000 L 1) Scalablllty_ VS. C(_)mpIeX|tyF_or this first set of experi-
E ments, every single client submitted a total of 100 moves at
8 8000 1 intervals of 300ms per move. The number of walls was fixed
g 6000 at 100,000, while we varied the number of clients between
& 4000 F 0 and 64. In a single run of the simulation, the number of
2000 L other avatars that a client’s avatar could see was emgyrical
determined to be 6.87 on average.
1 1
00 10 20 30 40 50 60 We empirically determined that the time it took for a
Number of Clients machine to evaluate a single move was 7.44ms. Figure 6
Fig. 6. Scalability of SEVE vs. Central architecture compares the response time observed by clients against the

number of clients. As apparent from the figure, the centdliz
2) Virtual World Setup:The size of the virtual enVironmemarchltecture and the broadcast model break down at about

in Manhattan People was fixed at 1000 x 1000 points. Eagf-32 clients. This is not too surprising for the centralize
wall had length 10, and the number of walls was limited tgrehitecture since for every action that a client submits, t
100,000. Each move evaluation checked for conflicts with 3"V€" hés about 300ms to e"a'!‘ate it. f 3? clients submit
varying number of walls closest to the client's avatar, alid £6t0ns simultaneously, each action consuming 7.44ms of a
other avatars within walk-able range. Checking for cadlis SE€'Vers time, the total time required to evaluate a round of
with walls, we made heavy use of trigonometric functions—actions is 240ms. The remaining 60ms can be attributed to syn
complexity that was forced in to simulate the performance Gfronization and networking overhead. As noted earlieshea
virtual worlds such as Second Life. client in the broadcast model has computational requirésnen

As our simulations have shown, the average time requir88mparable to the central server; and therefore we observe a

to calculate a single move is as expected linearly related ﬁgmlar scalability for the bfoadcast mofje'- _
the number of walls in the virtual world. We omit details on | contrastto that, SEVE's response time remained peyfect

this due to space constraints except that clients requined %gble as th_e number of cll_ents mcreas_egl. We emp|r|ca_tkyrde
average of 6.95ms per move, per 1,000 visible walls (1 ofgned the time for calculating the transitive closure offtiots

is very close to the average number of walls a client sees ff€" @ Single move to be 0.04ms on average. However, as the
100,000 walls in our virtual world). Table | gives an ovemvie NUMber of clients goes up, so does the number of concurrent

of the simulation parameters. For our experiments, we darigoves and the time required to evaluate a transitive closure
This factor is alleviated by the fact that the size of the itive

the number of walls and clients to measure scaling effects.) _

closure is bounded as a result of the moves getting dropped.
We performed experiments on a single server and determined
the limit of our implementation to be about 3500 clients.

We performed three batteries of experiments. First, we Figure 7 compares the response time observed by the clients
evaluated the scalability-complexity tradeoff in (a) attalh against the time it took to evaluate a single move. The number
ized model (Central)—to represent Second Life and WoWf clients employed in this experiment was fixed at 25. The
the state of the art in online games; (b) a broadcast modentralized model and broadcast model performed well for
(Broadcast)—representing NPSNET and SIMNET, the stamoves that took less than 10ms for processing. Howevergas th
of the art in distributed simulations; and (c) our actiondzhs complexity increased, the response time increased daégfic
distributed model (SEVE). Second, we explored the bandwidgffectively making the game unplayable. Again, the respons
requirements of the three models. Third and last, we evadatime for SEVE remained unaffected.
the consistency-performance tradeoff. Finally, we evaluated the sensibility of SEVE with respect

B. Performance Evaluation

3000 T T T T T T 1000 T T T T T T
SEVE (without move dropping) —=— Central —=—
SEVE (with move dropping) —=— SEVE —=—
2500 B 800 Broadcast
_)
9 =3
£ 2000 | 5
g 2 600
=]
5 1500 - =
2 I
S < 400
2 1000 - e
] [
& 5
500 | o F 200
O 1 1 1 1 1 1 0 1 1 1 1 1 1
5 10 15 20 25 30 35 40 0 10 20 30 40 50 60
Avatars Visible (average) Number of Clients
Fig. 8. Effect of increasing density of avatars Fig. 9. Total data transfer
Move effectrange| 1 | 3 [5 7 9 11 600 T T T T T T T T
% Moves dropped| 0 | O | 0.01 | 1.53 | 4.03 | 8.87
500 |- -
TABLE I . W
(2]
PERCENTAGE OF MOVES DROPPEDVISIBILITY = 20UNITS) E 400t i
£
to the density of avatars. Recall that humans are sociabbgin E 300 |- §
so avatars can be expected to form clusters in a real system. s
For this test, the number of clients was fixed at 60. The size § 200 & i
of the virtual world was reduced to 250x250 units, and the 100 L |
avatars were initially positioned 4 units apart from eadheat %mg —=—
We varied the visibility of avatars from 10units to 100units 0 — T

20 25 30 35 40 45 50 55 60
Number of Clients
Fig. 10. SEVE vs RING-like Architecture

Figure 8 gives the observed response time versus the average
number of other avatars visible to each avatar.
The naive implementation of SEVE bogged down as the

m_meer of visible avatars ex_ceeded 35, primarily be_cause t&iginal reason why systems such as RING were proposed. We
f:l|ents rgn. oult of C?Tputa?ogglvpéowter.t Ig gompgrlson, thﬁc"ote that the total traffic for the server in SEVE does notediff
|rt:1prove imp e_merll alonho. I starte rEpplng MOoVeg nificantly from a centralized model, which obviously is
that were causing long chains, allowing it to keep respongfiim | in total traffic. We conclude that SEVE does not incur

time stable regardless_ of the density of avatars._ The numlﬁ'éher costs on network infrastructure than current system
of dropped moves varied from 1.5%-7.5% for different runs 3) Performance vs. ConsistencyNe evaluated the per-

of the s_ystem.) formance impact of calculating transitive closures in SEVE
At this point, it should be noted that the percentage Qi 64 clients and 100,000 walls compared to a RING-like

moves dropped is in fact independent of avatar visibilityisT 5 chitecture which only evaluates actions within the \isib

is because the length of chains depends orrahge of Move ,nqe of an avatar. The average number of avatars that an

effect and not avatar visibiIity_. Table Il gives the percentag_gVatar could see was increased to 14.01 as opposed to 6.87
of moves dropped as a function of move effect range. Whilg,jier |eading to more conflicts processing at the clients

the numbers appear to be fairly high for a large move eﬁeﬂgure 10 shows the results we obtained.

range, the density of avatars in this particular experiment a0y ating the transitive closure in SEVE accounted for a
really an extreme case. We can safely consider this a WOyghtime overhead of 1% compared to the RING-like archi-

case scenario. _ tecture. This shows that the runtime overhead of our styong|
Varying the number of moves per client, or the rate of movg,nsistent approach is negligible.

generation had no impact on the performance of SEVE. The|, summary, our experiments show that our architecture
centralized model and the broadcast model, however, ddergs massively scalable while preserving strong consistency
when the number of moves, or the rate of generation, WaSgives an order of magnitude improvement over existing

increased. We omit the corresponding graphs due to Spag@ngly consistent architectures for networked virtuavie
constraints. ronments.

2) Bandwidth Requirementgs main concern of distributed
systems is in the amount of network traffic generated. Figure VI. RELATED WORK
shows the comparison between Central, Broadcast and SEVERecent work in commercial MMOs has introduced the
As expected, the broadcast model requires excessive rietwidea of dynamic zoning [4]. While dynamic zones are more
traffic (quadratic in the number of clients). This was th#exible than traditional zones, they still restrict playstions

to a geographic area. Reality Build For Two [5] and MR12]
Toolkit [8] are two net-VEs that maintain consistent state

. .) : 13]
among N workstations by sending a point-to-point messag}e
to each of the workstations for every single state changes)
This approach yield€)(N?) update messages during eve%5
simulation step, and this does not scale. NPSNET [35] fadlo]

Wikipedia, “Instance dungeon.” Available:
http://en.wikipedia.org/wiki/Instancdungeons

R. R. Koster, “From instancing to worldy games.” [O]n Available:
Raph Koster's Blog: http://www.raphkoster.com

Tobold, “Servers and critical mass.” [Online]. Avala: Tobold's
MMORPG Blog: http://tobolds.blogspot.com

A. Taylor, “The problem with world of warcraft.” [Onlig]. Available:

Wonderland Blog: http://www.wonderlandblog.com

[Online].

a basic object based broadcast model. It broadcasts mess@@e L. Lamport, “The part-time parliament,ACM Trans. Comput. Syst.

to all workstations at once, yieldinG(/N) update requests for
N workstations. However, the computational requirementfro
each client is the same in MR Toolkit. RING [6] and DIVE [7][18]
handle message filtering by sending all updates to the dentra
server. The server tracks the current location of eachyentitq,
and it can determine which users would not be interested in
a particular update. This approach takes these framewold&
very close to our model. However, in both these systems;;
the server forwards updates only to users who can “see” the
entity, leading to inconsistency (cf. Section 111-B). Wieann

et al. [36], [37] evaluate replication techniques based 62nz]
broadcasting events in total order. Our algorithm can Is]
understood as a fast-paced instance of 2-tier replica88h [
which in turn builds on multi-version serializability thgo |54,
[39]. Content-based publish-subscribe [40] is a geneatitin

of our perceptions-as-continuous-queries model, howthesr [25]
focus is on data distribution and not consistency [41]. 26]

[17]

VII. CONCLUSIONS [27]

In this paper we motivate that at the core of networked vir-
tual environments lie data management problems. We iden#gl
fied an interesting concurrency problem to which we proposga]
a novel practical solution based on taking semantics into geo]
count. We believe, however, that we just scratched the cairfa
of this (for the database community) new area, and that bt
virtual worlds as well as other virtual networked enviromtse
— from collaborative problem solving to online games — cal3?l
benefit from solutions from the database community for years,

to come.
[34]
REFERENCES

(1]
(2]

(3]
(4]
(5]

Microsoft Corp, “http://www.microsoft.com/esp.”

S. Carless, “The Activision/Blizzard merger.” [Onlihe Available:
http://www.gamasutra.com/php-bin/newslex.php?story=16458

T. Keating, “Dupes, speed hacks and black holes: Howgrtagheat in
MMOs,” in Proc. Austin GDC 2007.

B. Dalton, “Online gaming architecture: Dealing withetheal-time data
crunch in mmos,” inProc. Austin GDC 2007. [37]
C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Laské. Oberman,

and M. Teitel, “Reality built for two: a virtual reality toglin Proc.

SI3D pp. 35-36, 1990 [38]
T. A. Funkhouser, “RING: A client-server system for mulser virtual
environments,” inProc. SI30 pp. 85-92, 209, 1995. [39]
0. Hagsand, R. Lea, and M. Stenius, “Using spatial tephes to
decrease message passing in a distributed VE systerRfoin VRML, [40]
pp. 7-ff, 1997

C. Shaw and M. Green, “The MR toolkit peers package and
experiment,” inVR, pp. 463-469, 1993. [41]
W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagapai&caling
games to epic proportions,” iRroc. SIGMOD pp. 31-42, 2007.

R. Bartle,Designing Virtual Worlds New Riders Games, 2003.

|. Kazem, D. T. Ahmed, and S. Shirmohammadi, “A visityildriven
approach to managing interest in distributed simulatiofth @ynamic

load balancing,” inProc. DS-RT pp. 31-38, 2007.

[35]

(6]
(7]

(8]
El

[10]
[11]

vol. 16, no. 2, pp. 133-169, 1998.

K. Birman and T. Joseph, “Exploiting virtual synchrony distributed
systems,” inProc. SOSPpp. 123-138, 1987.

K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,dan
Y. Minsky, “Bimodal multicast,” ACM Trans. Comput. Systvol. 17,
no. 2, pp. 41-88, 1999.

P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buchmanndt#essing
cheating in distributed mmogs,” iRroc. NetGamespages 1-6, 2005.
A.-R. Sadeghi and C. Stuble, “Taming "trusted platfisi’ by operating
system design,” inWISA 2003, pp. 286-302.

A.-R. Sadeghi and C. Stiible, “Property-based attiestdor computing
platforms: caring about properties, not mechanisms,Pinc. NSPW
pp. 6777, 2004.

Sun Microsystems, “Project
http://www.projectdarkstar.com
M. K. Sinha, P. D. Nandikar, and S. L. Mehndiratta, “Tisteamp based
certification schemes for transactions in distributed llzga systems,”
in Proc. SIGMOD pp. 402-411, 1985.

B. Ng, A. Si, R. W. Lau, and F. W. Li, “A multi-server ardktcture for
distributed virtual walkthrough,” ifProc. VRST pp. 163-170, 2002.

R. Kazman, “Making WAVES: On the design of architecturéor
low-end distributed virtual environments,” MR, pp. 443-449, 1993.
A. Bharambe, J. Pang, and S. Seshan, “Colyseus: aldittd architec-
ture for online multiplayer games,” iRroc. NSD| pp. 12-12, 2006.

K. Petersen, M. Spreitzer, D. Terry, and M. Theimer, yBa: repli-
cated database services for world-wide applicationsPiioc. SIGOPS
European workshappp. 275-280, 1996.

H. A. Taha, “Introduction to SIMNET v2.0,” irfProc. WSC 1988.

J. M. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Milland D. Owen,
“The SIMNET virtual world architecture,” iVR, pp. 450-455, 1993.
R. Kazman, “Making WAVES: On the design of architectufer low-
end distributed virtual environments,” MR, pp. 443-449, 1993.

S. Han, M. Lim, and D. Lee, “Scalable interest managemesing
interest group based filtering for large networked virtualimnments,”
in Proc. VRST pp. 103-108, 2000.

G. Morgan, F. Lu, and K. Storey, “Interest managemerddigware for
networked games,” ifProc. 13D, pp. 57—64, 2005.

I. Pantazopoulos and S. Tzafestas, “Occlusion cullgorithms: A
comprehensive surveyy. Intell. Robotics Systvol. 35, no. 2, 2002.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gurupmsi. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated expernte
environment for distributed systems and networks,Pioc. OSD]| pp.
255-270, 2002. USENIX Association.

M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and
S. Zeswitz, “NPSNET: A network software architecture fagkxscale
virtual environment,” inPresencevol. 3, no. 4, pp. 265-287, 1994.
M. Wiesmann, “Comparison of database replication names based
on total order broadcast,” iEEE TKDE pp. 551-566, 2005.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. #don
“Understanding replication in databases and distributgstesns,” in
Proc. ICDCS p. 464, 2000.

J. Gray, P. Helland, P. O’'Neil, and D. Shasha, “The damgéreplication
and a solution,” inProc. SIGMOD pp. 173-182, 1996.

P. A. Bernstein and N. Goodman, “Concurrency contrgbgthms for
multiversion database systems,”froc. PODG pp. 209-215, 1982.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Karrac, “The
many faces of publish/subscribefCM Comput. Sury.vol. 35, no. 2,
pp. 114-131, 2003.

E. S. Liu, M. K. Yip, and G. Yu, “Lucid platform: applyin@pla ddm to
multiplayer online game middlewareComput. Entertain.vol. 4, no. 4,
p. 9, 2006.

Darkstar.” [Online]. Alable:

