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One slide Summary

Problem

In a peer-to-peer network, how
does one efficiently locate a node
which is storing a desired data
item?

Solution

Chord: A scalable, distributed
protocol which efficiently locates
the desired node in such a
dynamic network.
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Other efforts in the same direction

DNS

1 While DNS requires special root servers, Chord has no such
requirement.

2 DNS requires manual management of NS records. Chord
auto-corrects routing information.

3 DNS works best when hostnames are structured to reflect
administrative boundaries. Chord imposes no naming
structure.

Napster, Gnutella, DC++

1 Napster & DC++ use a central index. This leads to a single
point of failure.

2 Gnutella floods the entire network with each query.

3 No keyword search in Chord. Only unique Ids.
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Content Addressable Network (CAN)

Problem Identification

Scalability Bottleneck :- Centralized hash table

Scheme

d-dimensional co-ordinate space

Completely logical. Has no bearing with physical co-ordinates.

Map each Key deterministically to a point P using uniform
hashing.

Space creation. Bootstrapping.

Node join/departures.

Message routing.

Key Facts

Info maintained by each node is indepedent of N

How does one fix d?
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CHORD : Design Requirements

Network Assumptions

1 Symmetric:- If A→ B, then B → A

2 Trasitive:- If A→ B and B → C then A→ C

Targets

1 Load Balance:- Distributed hash function.

2 Decentralization :- No node is more important than the
other.

3 Scalable :- Achieved without any parameter tuning.

4 Availibility :- Handles most network failures.

5 Flexible naming :- Flat and unstructured key space.
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The big picture

presented by Durgesh Samant Chord



Consistent Hashing

How do you do it?

1 Assign an m bit identifier to
each node and key
separately.

2 Use SHA-1 to ensure keys
are evenly distributed.

3 Chord ring:- a 2m identifier
circle. m=6, 6 keys, 10 nodes

Theorem

1 Each node responsible for (1 + ε)K/N keys

2 Only O(K/N) keys change hands when (N + 1)st node
joins/leaves.
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Naive Key Lookup

Naive Algorithm
//ask a node n to find the successor of id

n.find_successor(id)

if(id \belongs (n,successor] )

return successor;

else

//forward the query around the circle

return successor.find_successor(id);

Performance

O(N)
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Scalable Key Lookup

Finger Table :- m entries, only O(log(N)) are distinct

i th entry = first node that succeeds the current node by
atleast 2i−1 on the identifier circle.

n.finger[i], a.k.a. i th finger of n

Successor :- next node, n.finger[1]

Predecessor :- previous node, p.finger[1]=n

Important Observations

1 Each nodes stores a small amount of info.

2 Each node, knows more about closer nodes than far off ones.

3 A node’s finger table does not contain enough info to directly
find the successor of any arbitrary node k.
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Sample Finger Table
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The Lookup Algorithm

N8 looks up K54 Algorithm
//ask a node n to find the successor of id

n.find_successor(id)

if(id \belongs (n,successor] )

return successor;

else

n’=closest_preceding_node(id);

return n’.find_successor(id);

//search the local table for the highest

//predecessor of id

n.closest_preceding_node(id)

for i= m down to 1

if (finger[i] \belongs (n,id))

return finger[i];

return n;

Theorem

The no. of nodes which need to be contacted are O(log(N))
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Node Join and Stabilization

Every node periodically runs the stabilize algo to learn about newly
joined nodes.

The algo is, basically ask the successor for its predecessor p. Decide
if p should be its successor.

Thereby, the successor also gets a chance to check its predecessor.

Each node periodically fixes its finger table by essentially
reconstructing it.

Similarly, each node periodically checks if its predecessor is alive. If

it is not, then it initializes it to nil

Theorem

If any sequence of join operations are interleaved with stabilize,
eventually, the successor pointers will form a cycle on all nodes in
the network.
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Impact of Node Joins on Lookups

Case 1: Finger table entries are reasonably correct : Theorem

The node is correctly located in O(log(N)) time.

Case 2: Successor pointers are correct, finger table inacccurate

Lookups will be correct. Just slower.

Case 3: Successor pointers incorrect

Lookup will fail. The high level application can try again after a
small pause. It will not take time for the successor pointers to get
fixed.
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Failure and Replication

Invariant Assumed so far :- Each node knows its successor.

To increase Robustness, maintain a successor list containing r
successors.

Probability of all r nodes concurrently failing = pr

Modified stabilize algorithm

Copy successors list, remove the last entry and prepend the
successor.

If the successor has failed, do the above with the first live
successor in own list.

Modified closest preceding node

Search not just the finger table, but also the successor list for the
most immediate successor of id
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Robustness Guarentee

Theorem

If we use a successor list of length r=Ω(log(N)), in a network
which is initially stable, and every node fails with probability 0.5,
then with high probability find successor returns the closes living
successor to the query key.

Theorem

In a network which is initially stable, if every node fails with
probability .5, then the expected time to execute find successor is
O(log(N))
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Voluntary Node Departures

Treating a departure as a node failure is rather wasteful.

A node which is about to leave may transfer its keys to its
successor as it departs.

It can also notify its predecessor and successor before
departing.

The predecessor can remove the node from its successor list
and add the last node in the new successor list to its own
successor list.

Similarly, the departing nodes successor can update its
predecessor to reflect the departure.
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Simulation

Environment

successor list size = 1

when the predecessor of a node changes, it notifies its old
predecessor about its new predecessor

packet delay modelled with exponential distribution with
meain 50ms.

node declared dead if it does not respond within 500ms.

not concerned with actual data. Lookup is considered
successful if current successor has the desired key.
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Load Balance

Without virtual nodes With virtual nodes

Parameter Settings

No. of nodes = 104

105 ≤ No. of keys ≤ 106

Increments of 105

20 runs per No. of keys
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Path Length

Node coount = 2k

Key count = 100 ∗ 2k

3 ≤ k ≤ 14

Picked a random set of keys

Find query length
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Improving Routing Latency

Nodes closer in identifier ring can be quite far in underlying
network.

Actual latency can be large although avg. path length is small.

Maintain alternative nodes for each finger

Route the query to the one which is closest.

Topologies

1 3-d space: The network distance is modeled as geometric
distance in a 3-d space

2 Transit stub: A transit-stub topology with 5000 nodes.
50ms link latency for intra-transit domain links.
20ms, for transit-stub links and 1ms for intra-stub links
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Summary

Major Contributions

Load Balance :- Consistent hashing.

Decentralization :- Each node knows about only O(log(N))
nodes for efficient lookup

Scalability :- Handles large number of nodes, joining and
leaving the system.

Availibility :- Graceful performance degradation : Single
correct info is enough

Efficiency :- Each node resolves lookups via O(log(N))
messages

Possible extensions

Deal with network partitions

Deal with adverserial/faulty nodes
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Questions?
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