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among web services, in contrast to traditional query optimization
where the analogous problem is NP-hard. We also give an algo-
rithm for determining the optimal granularity of data “chunks” to
be used for each web service call. Experiments with an initial pro-
totype indicate that our algorithms can lead to significant perfor-
mance improvement over more straightforward techniques.

1. INTRODUCTION

Web service$33] are rapidly emerging as a popular standard
for sharing data and functionality among loosely-coupled, hetero-
geneous systems. Many enterprises are moving towasdsvice-
oriented architectureby putting their databases behind web ser-
vices, thereby providing a well-documented, interoperable method
of interacting with their data. Furthermore, data not stored in tra-
ditional databases also is being made available via web services

Figure 1: A Web Service Management System (WSM S)

tem that enables clients to query multiple web services simultane-
ously in a transparent and integrated fashion.

Overall, we expect a WSMS to consist of three major compo-
nents; see Figure 1. Thdetadatacomponent deals with metadata
management, registration of new web services, and mapping their
schemas to an integrated view provided to the client. There is a
large body of work on data integration, see e.g, [7, 22], that applies
to the Metadata component; we do not focus on these problems in
this paper. Given an integrated view of the schema, a client can
query the WSMS through an SQL-like interface. TQaery Pro-

cessing and Optimizatiocomponent handles optimization and ex-

There has been a considerable amount of recent work [12, 24] onecution of such declarative queries, i.e., it chooses and executes a
the challenges associated with discovering and composing web serquery plan whose operators invoke the relevant web services. The
vices to solve a given problem. We are interested in the more basicProfiling and Statisticcomponent profiles web services for their

challenge of providing DBMS-like capabilities when data sources

response time characteristics, and maintains relevant statistics over

are web services. To this end we propose the development of athe web service data, to the extent possible. This component is

Web Service Management Sysi@SM$: a general-purpose sys-
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used primarily by the query optimizer for making its optimization
decisions. In this paper we take a first step at realizing a complete
WSMS: We address the problem of query optimization for Select-
Project-Join queries spanning multiple web services.

Most web services provide a function-call like interfate— )
whereX and) are sets of attributes: given values for the attributes
in X, the web service returns values for the attributed’inFor
example, a web service may take a credit card number and return
the card’s credit limit. Due to this very restricted interface, most
query processing over web services can be thought of in terms of
a “workflow” or pipeline: some input data is fed to the WSMS,
and the WSMS processes this data through a sequence of web ser-
vices. The output of one web service is returned to the WSMS and
then serves as input to the next web service in the pipeline, finally
producing the query results. Each web service in the pipeline typ-
ically performs operations such as filtering out data items that are



not relevant to the query, transforming data items, or appending ad-yet significant observation that forms the basis for our algorithms
ditional information to each data item. Transformed or augmented is that the performance of a pipelined plan over web services (the
data items may be required for further processing of the query (ef- rate of data processing through the plan) is dictated by the slowest
fectively performing a join across web services), or may become a web service in the pipeline (referred to as thwtleneck cost met-
part of the final query result. ric). In contrast, in a traditional centralized system, the cost of a
pipelined plan is dictated by the sum of the costs of the plan oper-
ators (referred to as theum cost metricrather than by the cost of
only the slowest operator. Previous related work [3, 8, 16, 18] has
considered only the sum cost metric. To the best of our knowledge,
our work is the first to consider the bottleneck metric.

We start by considering web services without precedence con-
straints and give a simple algorithm to find the optimal plan based
on the web service response times and selectivities. Our algorithm
reveals the somewhat counterintuitive property that when the selec-
tivity of all web services i< 1, the optimal arrangement depends
only on the response times of the web services and is independent
of their selectivities.

Next we give a polynomial-time algorithm to find the optimal

ExampPLE 1.1. Suppose a credit card company wishes to send
out mailings for its new credit card offer. The company continu-
ously obtains lists of potential recipients from which it wants to se-
lect only those who have a good payment history on a prior credit
card, and who have a credit rating above some threshold. For pro-
cessing this query, the company has the following three web ser-
vices at its disposal.

WS : name (n) — credit rating (cr)
WS : name (n) — credit card numbers (ccn)
WS : card number (ccn) — payment history (ph)

With a WSMS, one possible way of executing the query is as fol-
lows: The company’s initial list of names (we assume names are pjan when there may be arbitrary precedence constraints among
unique) is first processed by W& determine the corresponding  {he \eb services. It is surprising that such an algorithm exists,

credit ratings, and those below threshold are filtered out (either by gince under the sum cost metric, itis known that the optimal plan is

WS itself or by the WSMS). The remaining names are then pro- o\ time computable only for restricted types of precedence con-

cessed by WSo get the corresponding credit card numbers. Each  graints [18], and for arbitrary precedence constraints the optimal

card number is then processed by JV&nd if the card is found to plan is hard to even approximate [6].

have a good payment history, then the name is output in the result” gina|ly, we consider sending data to web services in chunks. We

of the query. [] show that our query optimization algorithm extends trivially to ac-

The first obvious step to speed up query execution in a WSMS is count for chunking. We also give an algorithm to determine the
to use the conventional idea pipelined parallelismdata already ~ Pest chunk size to use for each web service. The algorithm is based
processed by web service Wy be processed by a subsequent ©n profiling the web services to determine their response times as a
web service WS, ; in the pipeline, at the same time as WSo- function of the size of the data chunk sent to them.
cesses new data. Deciding the optimal way to perform this pipelin- ~ Since atfirst glance our work might seem closely related to much
ing poses several new challenges: existing literature, we discuss related work next, in Section 2. We

1. Different web services may differ widely in their response then present the maln_ contributions of this paper: ] ]
time characteristics, as well as in how many output tuples e We formally define the class of queries we consider, intro-
they produce per input tuple on average (hencefsetactiv- duce the model for query processing ina WSMS, and formal-
ity). Hence different arrangements of the web services in the ize the bottleneck cost metric that is used to compare query
pipeline may result in significantly different overall process- plans (Section 3).
ing rates. The optimizer must decide the best arrangement. e We give algorithms to decide the best arrangement of web
2. The web services in the pipeline may not always be freely services into a pipelined plan so that the overall processing
reordered, i.e., there might exjstecedence constraintgin rate is maximized, both in the absence of precedence con-
Example 1.1, WS must occur before WiSin the pipeline.) straints (Sectlgn 4), anq in the presence of arbitrary prece-
In such cases, the optimizer must pick the best arrangement dence constraints (Section 5).
that respects all precedence constraints. e We consider the case when data can be sent to web services in

3. Alinear ordering of the web services in a pipeline (as in Ex- chunks, and we give an algorithm to decide the optimal data
ample 1.1) may not be optimal. For example, if there are no chunk size for each web service in a query plan (Section 6).

precedence constraints between web servicesal& WS, e \We have implemented an initial prototype WSMS query opti-

we need not wait for results from one to invoke the other,
rather they may be invoked in parallel using the same in-
put data. On the other hand, parallelizing all web services

mizer (with simple instantiations of the other WSMS compo-
nents in Figure 1), and we report an experimental evaluation
of our algorithms (Section 7).

without precedence constraints may not be optimal either,
since one or more of the web services may vastly reducethe 2. RELATED WORK
amount of data the others need to process.

4. Each web service call usually has some fixed overhead, typi- 2.1 Web Service Composition

cally parsing SOAP/XML headers and going throughthe net- A considerable body of recent work addresses the problem of
work stack. Hence some web services support sending datacompositior(or orchestration of multiple web services to carry out
to them in “chunks” rather than one tuple at a time. Through g particular task, e.g. [12, 24]. In general, that work is targeted more
experiments we found that the response time of a web service toward workflow-oriented applications (e.g., the processing steps
often is not linear in the input chunk size, so the optimizer jnvolved in fulfilling a purchase order), rather than applications co-
must decide the best chunk size to use. ordinating data obtained from multiple web services via SQL-like
In this paper, we develop new, efficient algorithms that address queries, as addressed in this paper. Although these approaches have
each of the above challenges to arrive at the optimal pipelined exe-recognized the benefits of pipelined processing, they have not, as
cution plan for a given query over a set of web services. A simple far as we are aware, included formal cost models or techniques that



result in provably optimal pipelined execution strategies. not perform static optimization of queries. A problem mathemat-
Languages such 8BPEL4WS[4] are emerging for specifying ically similar to ours has been considered in [9, 20], but only for
web service composition in workflow-oriented scenarios. While the simpler case of no precedence constraints and all web services
we have not yet specifically applied our work to these languages, being selective, i.e., returning fewer data items than are input to it.
we note that BPEL4WS, for example, has constructs that can spec-Interestingly, in distributed Eddies, as well as in [9, 20], different
ify which web services must be executed in a sequence and whichinput tuples may follow different plans, a possibility that we have
can be executed in parallel, similar to the presence and absencenot considered in our work. So far, we have focused on the prob-
of precedence constraints in our model. We are hopeful that the lem of finding the optimal single plan for all tuples. An important
optimization techniques developed here will extend to web-service direction of future work is to combine our techniques with those
workflow scenarios as they become more standardized, and doingdeveloped in [9, 20], thereby leading to even higher performance.
so is an important direction for future work.
ActiveXML is a paradigm in which XML documents can have 3. PRELIMINARIES
O e oo en e et SPATIZAION MO Consder a WSS = shoun i Figure 1 tatprovides an it
calls in the document need to be made in order to answer a querygrated query |nterfgce to web services WS- '.’WS"' we as-
posed over the XML document. As ActiveXML gains acceptance sume thgt for querying, eac_h wel_) service Mtaawdes_a func_tlon-
! . - - - . call like interfaceXx; — ), i.e., given values for attributes i,
it can be seen as an interesting mechanism to set up a distribute

query plan over web services: ActiveXML fragments might be in he web service returns values for the attribute‘,ﬁiinl;sing the no-
put to a web service, thereby making it invoke other web services. tation of binding patterng13], we write WS (X7, ;) to denote

that, treating Wgas a virtual table, the values of attributesii
22 Paralld and Distributed Query Processi ng :gltjr?;\?eeds(rt))?fﬁggd (dround while the values of attributes J; are
In our setting of query processing over web services, dalp Let z andy denote value assignments to the attributed’jrand
shippingis allowed, i.e., dispatching data to web services that pro- ; respectively. Logically, virtual table Wshas a tuple(z, )
cess it according to their preset functionality. In traditional dis- \ynenever the value assignmants among those returned fQf;
tributed or parallel query processing, each of which has been ad-,yen WS is invoked withX; = z. There may be zero, one, or
dressed extensively in previous work [10, 17, 26], in addition to many tuples in WSfor each possible. Note that if); is empty,

data shippingcode shippingalso is allowed, i.e., deciding which  han\veb service WiSacts as a filter, and virtual table Wéontains
machines are to execute which code over which data. Due to Iacka tuplez for every value assignmentpassing the filter.

of code shipping, techniques for parallel and distributed query opti-
mization, e.g., fragment-replicate joins [26], are inapplicable inour 3.1 Class of Queries Considered
scenario. Moreover, most parallel or distributed query optimization  The class of queries we consider for optimization are Select-
techniques are limited to a heuristic exploration of the search spacepyoject-Join (SPJ) queries over one or more web servicas WS
whereas we provide provably optimal plans for our problem setting. \ys  and a tabld corresponding to data input by the client to the
. . WSMS (e.g., the initial set of names in Example 1.1). We assume

2.3 Datal ntegration and Mediators that the correspondence among various attributes of various web

Our WSMS architecture has some similaritynediatorsn data services, required for joins, is tracked by the Metadata component
integration systems [7, 14, 22, 28]. However, query optimization of the WSMS (Figure 1).
techniques for mediators, e.g., [13, 25, 35], focus mostly on is-

sues such as choosing the ridfihding access patterto access DEFINITION 3.1 (SPJ QERIES OVERWEB SERVICES).
each data source, and aim at minimizing tb&al consumption

of resources rather than at minimizing running time by exploiting SELECT As b f ,
parallelism. An important focus in mediators is to optimize the FROM I(Ar) X WS (X7, Y]) X ... XWS, (X, )
cost incurred at the data integration system itself, for which clas- WHERE P1 (A1) A Pa(A2) A ... A P (Am)

sical relational database optimization techniques (or modifications where A; is the set of projected attributesd; is the set of at-
thereof) often can be applied. However, our techniques focus not tributes in the input data, andP, .. ., P, are predicates applied

on optimizing the processing at the WSMS, but on optimizing the on attributesA;, ..., A, respectively. [

expensive web service calls by exploiting parallelism among them.
A capability frequently required in a WSMS is that of using the

results from one web service to query another. This operation is

essentially the same as tBependent Joirwhich has been studied

in [13, 21], and whose techniques are applicable in a WSMS.

We assume in Definition 3.1 that all predicates are on single at-
tributes, i.e., there are no join conditions except implicit natural
equijoins. We also assume there is only one source of informa-
tion for each attribute: each attribute is either specified in the input
data, or is obtained as a free attribute from exactly one web service.

2.4 Query Processing over Remote Sour ces (When values are available from multiple web services it becomes

- . important to address issues such as deciding which web service is
Exploiting parallelism among data sources has generally not beenof higher quality, which are beyond the scope of this paper.)
the focus of prior work. WSQ/DSQ [15] does exploit parallelism gher quaitty, y P paper.

by making multiple asynchronous calls to web sources, but does  pgpgniTION 3.2 (PRECEDENCECONSTRAINTS). If abound
not perform any cost-based optimization. Other work [19, 31] has attribute in X; for WS is obtained from some free attribudé of
considered adaptive query processing over remote data sourcesys then there exists precedence constrai#S < WS, i.e., in

with dynamic reoptimization when source characteristics change any feasible execution plan for the query, Wiist precede WS
over time, but does not include optimizations to exploit parallelism

among sources. The precedence constraints may be represented as a directed
Our execution model of pipelined processing resemtiilgtsibuted  acyclic graph (DAG)g in which there is a node corresponding to
Eddieg29]. However, unlike our work, the Eddies framework does each web service, and there is a directed edge from WS8VS;



Local

Input Input, WS — 5% so the join threads ki hen joining tupl lete and stat
owWe It L join threads know when joining tuples are complete and state
| — WS, — WS, —~WS; —~Resdlts I\WSZQW%/V\J/%:AS Result ean be discarded.
According to Figure 3, the WSMS has only one outstanding call
Plan 1 Plan 2 to any individual web service at a time, i.e., while the WSMS is

waiting for the results from a previous call to 9 arrive, it does
not make another call to WS However, this assumption is not
) . ) . important to our approach. As we will see, our algorithms only
if there is a precedence constraint W8 WS;. Note thatg is not rely on a quantity representing the maximum rate at which data can
specified by the query, it is implied by which attributes are bound pe optained from a web service. This rate can often be boosted by
and which ones are free in the web services involved in the query. making multiple outstanding calls to the web service [15]; how the
rate is achieved does not affect the applicability of our algorithms.
Also, in this paper we assume that results from one web ser-
vice are returned to the WSMS before being passed on to another
web service. However, with sufficient standardization, it might be
possible for one web service to send it results directly to another.
SELECTn Our model for pipelined execution and our optimization algorithms

FROMI(n) X WS (n”, cr’) X WS (n®, cen’) X WS (cen®, ph) would not change under that model.

WHEREcr > thresholdA ph = good .
3.3 Bottleneck Cost Metric

As a first step in developing a query optimizer for web services,
we assume that the goal of optimization is to minimize the total run-

3.2 Query Plans and Execution M odel ning time of queries. In reality, there are other metrics that might

In the followi | . bl . | also be important. For example, if a web service call incurs a mone-
n the following example, we motivate possible execution plans. 4 cost, we may wish to minimize the total number of web service

calls. A study of other interesting metrics and their tradeoff with
guery running time is an interesting topic of future work.

To obtain an expression for the running time of a particular query
execution plan, we assume that the following two quantities can be
tracked and estimated for each web service by the Profiling and
Statistics component of the WSMS (Figure 1); we do not focus on
profiling techniques in this paper.

Figure 2: Plansfor Example 3.4

ExamMPLE 3.3. We continue with Example 1.1. With binding
patterns, the three web services can be expressed a&\INSrf ),
WS (n®, cenf), and WS(cen®, phf). Denoting the input names
by I, the example query can be expressed as:

Since the bound attributecn in WS is provided by WS there
exists a precedence constraint WS WS, [

EXAMPLE 3.4. We continue with Example 1.1. The execution
plan discussed in Example 1.1 is shown by Plan 1 in Figure 2. Al-
though we show direct arrows between web services, in reality the
arrows imply that data is returned to the WSMS, relevant predicates
are applied, and the results are passed to the next web service.

However, since there is no precedence constraint betwean WS
and WS, we need not wait for output from W$o invoke W&.
Thus, an alternative execution plan for the same query is shown by - per_tuple Response time (c;): If r; is the maximum rate at

Plan 2 in Figure 2, where the input list of naméss dispatched which results of invocations can be obtaihdtbm WS;, we use
in parallel to WS and WS (denoted by two outgoing arrows from ¢; = 1/r; as the effective per-tuplesponse timgor intuitively,

). The_results from V\éSgre the_n used @o_ir_woke Was in Plan the cost) of WS. The maximum rate-; for a web service WS
1. The final query result is obtained by joining the results from the (and hence its effective per-tuple response timjecan often be
two branches locally at the WSMSL] boosted by batching several calls together (data chunking, Sec-

tion 6), or making multiple parallel calls (as described at the end
of Section 3.2). Our optimization algorithms are applicable regard-
less of how the best response time for a web service is achieved.

The response time of a web service may depend on a variety of
factors, such as the web service provisioning, the load on the web
service, and the network conditions. In this paper, as a first step,
we give algorithms assuming the response time is a constant, so the
query may need to be reoptimized if significant changes in response
time are detected. As future work, we plan to explore ideas such
as adaptive plans, or plans that are provably robust to variations in
response time.

In general, an execution plan is an arrangement of the web ser-
vices in the query into a DAGH with parallel dispatch of data
denoted by multiple outgoing edges from a single web service, and
rejoining of data denoted by multiple incoming edges into a web
service. Note that the plan DA# is distinct from the DAGG of
precedence constraints among web services, although jfis\t$
ancestor of Wgin G, then it must also be so IK (i.e., H respects
the precedence constrairgpecified byg).

Given a plan DAGH, it is executed as follows (see Figure 3). A
threadT; is established for each web service WS¥hreadT; takes
input tuples from a separate join thredgdthat joins the outputs of
the parents of WSin . In the special cases when WBas no 2. Selectivity (s;): Recall lines 2-7 of thread; (Figure 3) where a
parents in{, T; takes input from the tablé, and when WShas tuple is input to WS and relevant filters are applied to the returned
exactly one parent it (say W$), T; takes input directly fromthe  results. The average number of returned tuples (per tuple input to
output of thread’},. ThreadT’; uses its input tuples to invoke WS Ws;) that remain unfiltered after applying all relevant predicates is
filters the returned tuples, and writes them to its output. The final denoted bys;, and is referred to as theelectivityof web service
query result is obtained from the output of a join thred: that WS;. s; may be< 1. For instance, in Example 3.3, if 10% of the
performs a join of the outputs of all the web services that are leaves names inl have credit rating above threshold, then= 0.1. In
in the planH. In the special case when there is only one leaf web general,s; may also be> 1. In the same example, if every person
service Wgin H (e.g., Plan 1 in Figure 2), the output from WS holds 5 credit cards on average, then= 5.
directly forms the query result and thredgl,. is not needed. In this paper, we assume web service selectivitiesratepen-

The join threads perform aultiway stream joirof their inputs,
and there are known techniques to perform such joins efficiently, inote thatr; incorporates the time for transmission over the net-
e.g., [32]. Furthermore, using a technique similaptmctuations  work, as well as the queuing delays and the processing time at the
in data streams [11], a unique marker is inserted when branching, web service.




Algorithm ExecutePlan(H)

‘H: An arrangement of web services into a DAG 1.

Thread T;:

while (tuples availablg;srinput)

1. for each web service WS 2. read a tuple from 7;’s input

2. launch athrea; 3. invoke WS with valuess. X;

3. if WS; has no parents it 4. for each returned tuple

4, set upl; to take input from/ 5. apply all predicate®; (A;) whereA; € V;
5. elseif WS has a single parent WSn H 6. if ¢ satisfies all predicates

6. set upT; to take input fronil},’s output 7. writes X ¢ to T;'s output

7. else

8. launch a join thread; Thread J;

9. set upl; to take input from/J;’s output 1. perform the join of the outputs of WSparents irH
10. launch join thread .+ Thread Jou:

11. return output of/,.; as query result

1. perform the join of the outputs of web services thd¢aves irH

Figure 3: Query Execution Algorithm

dent i.e., the selectivity of a web service does not depend on which

is R[P;(H)] - ¢;. Recall that plan cost is determined by the web

web services have already been invoked. Extending our algorithmsservice with maximum processing time per original input tuple in

to work with correlatedselectivities is an important direction for
future work. Although, our model of selectivities is fairly general,

it is not adequate to capture scenarios where the web service per-

forms some form of aggregation, i.e., producing a fixed number of
output tuples irrespective of the number of input tuples. Extension
of our algorithms to such web services is an interesting direction of
future work.

Consider the pipelined execution of a plan as specified in Fig-
ure 3. There is a time period at the beginning (respectively end) of
query execution when the pipeline is filling up (respectively emp-
tying out), after which a steady state is reached during which input
tuples flow through the pipeline at a constant rate. For long-running
queries—typically queries in which the input talilés large—the
time spent to reach steady state is negligible compared to the to-
tal running time of the query. In such cases, minimizing the total
running time is equivalent to maximizing the rate at which tuples

I. Thus the cost of the query plar is given by the following
metric (referred to as theottleneck cost metrjc
(RIP.(H0) - 1) 3)

= max
1<i<n

cos(H)

ExampLE 3.5. Consider Plan 1 in Figure 2 for the query in
Example 3.3. Let the costs and selectivities of the web services be
as follows:

i 112 3
Cost of WS (c;) 2 10| 5
Selectivity of WS(s;) | 0.1 | 5 | 0.2

Let || be the number of tuples in the input dafa In Plan 1,
with the example selectivities, W8eeds to procesH| tuples,
WS needs to proces8.1|I| tuples , and W$needs to process
0.5|I] tuples. Thus, the time taken by W8/S and WS per tu-

in I are processed through the pipeline in steady state. When timeple in I is 2,1, and 2.5 respectively. The cost of the plan is then

to reach steady state is nonnegligible, then the query is typically
short-running and less in need of optimization anyway. Thus, we
focus on the processing rate during steady state.

Since all web services can be executing in parallel, the maximum
rate at which input tuples can be processed through the pipelined
plan is determined by thieottleneckweb service: the web service
that spends the most time on averageqgraginal input tuple in/.
Next, we derive a formal expression for this cost metric.

Consider a query plaK specified as a DAG on the web services
in the query. LetP;(H) denote the set of predecessors of Vs
'H, i.e., all web services that are invoked before MifSthe plan.
Formally,

P;(H) = {WS; | WS; has a directed pathto W H} (1)

Given a setS of web services, we define the combined selec-
tivity of all the web services ir§ as R[S]. By the independence
assumption among selectivitieR[S] is given by:

[1

i | WS;es

R[S] @)

[ex

Then, for every tuple i/ input to planH, the average number
of tuples that WS needs to process is given B{P;(H)]. Since
the average time required by W process a tuple in its input is
¢, the average processing time required by web service (S
intuitively, the cost incurred by W$ per original input tuple in/

max(2,1,2.5) = 2.5. We arrive at the same number usi(®).

Now consider Plan 2 in Figure 2. Its cost (usifg)) is max
(2,10, 25) = 25. Thus, for this example, Plan 2 is 10 times slower
than Plan 1. [J

It may appear that the bottleneck cost metric ignores the work
that must be done by the WSMS threads (Figure 3). Formally, we
can treat all the work done at the WSMS as just another call in the
pipeline. Our algorithms are designed under the assumption that
the pipeline stage constituted by the WSMS is never the bottleneck,
which seems realistic since it is unlikely that the simple operations
the WSMS needs to perform will be more expensive than remote
web service calls. This assumption is also validated by our experi-
ments (Section 7).

We can now formally define the query optimization problem
solved in this paper.

DEFINITION 3.6. (QUERY OPTIMIZATION OVER WEB SER-
VICES). Given an SPJ query over web services (Definition 3.1)
implying a DAGG of precedence constraints, find a query plan ar-
ranging the web services into a DAthat respects all precedence
constraints inG, where costH) as given by3) is minimized. [

It is important to understand the basic differences between our
scenario and a traditional centralized setting which also has query
operators characterized by costs and selectivities. In the traditional
setting, each operator is running on the same machine, so the cost



of the plan is given not by the bottleneck cost but by the sum of the We? set_rv_itce>s X"ith
costs incurred by the operators (referred to asstima cost metric selectivity

ces wi O
The sum cost metric has been considered in much previous work [3, wetl) se.r\(lce<s_v\ﬁth / \ Local
8, 16, 18], but to the best of our knowledge, our work is the first to Input _ Selectivity <= S )~ join

consider the fundamentally different bottieneck cost metric. One | ——C O =Co—==® ¢+ —() . / at — Result
critical difference between the two metrics as brought out in this In increasing cost order \ C.) WSMS

paper is that under the bottleneck cost metric, the optimal plan can

be found in polynomial time for general precedence constraints (as Figure4: Optimal Plan (No Precedence Constraints)

shown in Section 5), while under the sum cost metric, for general
precedence constraints the optimal plan is hard to even approximatevhere the other terms are the cost terms for the rest of the web
in polynomial time [6, 18]. services. These other terms remain the same when we cofgider

In the next two sections, we consider the problem given by Defi- Thus:
nition 3.6 first without, and then with precedence constraints. Then

in Section 6, we consider sending data to web services in chunks. CoS(H) = max(feiri, fsi+ci, Other termg ©)
Finally, we report on our experiments in Section 7. Consider the terms in cd8t’). fci+1 < fc; by the lemma state-

ment, andfs;+1c; < fc; sinces;y1 < 1. Since other terms in
4. NO PRECEDENCE CONSTRAINTS cos{’H') are also present in cq8t), cos{H') < cos(H). [J

In this section, we consider the special case of the problem given  Lemmas 4.1 and 4.2 immediately lead to the following result.
by Definition 3.6 when there are no precedence constraints, i.e.,
the DAG G has no edges. The absence of precedence constraints THEOREM 4.3. For selective web services with no precedence
implies that no web service depends on another for its bound at- constraints, the optimal plan is a linear ordering of the web ser-
tributes, i.e., all bound attributes are available directly from the in- Vices by increasing response time, ignoring selectivities.
put datal. Then, a simple execution plan is to dispatch the input
in parallel to each of the web services, with the results joined back
at the WSMS. o : web services that is optimal. If, in this ordering, there is a higher
The main problem with simultaneously dispatchinig all of the cost service followed immediately by a lower cost service, by
web services is simply that ee_lch web service mu_st process all Of_theLemma 4.2 we can swap them without increasing the cost of the
tuples in/. If some web services are selective (i.e., have selectiv- plan. We continue such swapping until there does not exist a higher

ity < 1), then it is better for the slower web services to come near ¢t web service followed immediately by a lower cost one, thereby
the end of the pipeline, reducing how much data they must Process.gptaining the result. [J

This basic observation forms the intuition behind our algorithm for

selective web services (Section 4.1). When web services may be Recall that in the derivation of the cost expression for plans (Sec-
proliferative (i.e., have selectivity 1), we do use the idea of dis-  tion 3.3), we assumed that the selectivities of web services are in-
patching input in parallel to multiple web services. One interesting dependent. If independence does not hold, the cost of the query
observation in our results is that the optimal arrangement of web plan can be written in terms of conditional rather than absolute se-
services depends only on whether their selectivityig or > 1, lectivities. However, as long the conditional selectivities are also
but not on the exact selectivity value. < 1, Theorem 4.3 applies. Thus our result extends to web services

. . with correlated selectivities
4.1 Selective Web Services

In this section, we focus on the case when there are no prece-4-2 Proliferative Web Services
dence constraints and the selectivity of each web servige is We now consider the case when some web services may have
Our algorithm for selective web services follows directly from the selectivity> 1.
following two simple but key observations.

PrROOF From Lemma 4.1, there exists a linear ordering of the
web services that is optimal. Consider any linear ordering of the

THEOREM 4.4. The overall optimal plan for a query consisting
LEMMA 4.1. There exists an optimal plan that is a linear or-  of both selective and proliferative web services with no precedence
dering of the web services, i.e., has no parallel dispatch of data.  constraints is as shown in Figure 4.

PROOF Suppose the optimal plai{ has parallel dispatch of ProOF Consider a query consisting of a set of selective web
data to WS and WS. Modify H to H' where WS is moved to servicesW, and a set of proliferative web serviceg,, and hav-
the point before the parallel dispatch, and the restfofemains ing no precedence constraints. In the absence of precedence con-
unchanged. The amount of data seen by each web servigg in ~ straints, a web service WSc W, should not occur before any
is either the same as iH, or s; times that in7{. Sinces; < 1, other web service WSin a pipeline, since it will only increase
the bottleneck ir{’ is at most as much ifit. Continuing this ~ work for WS;. Thus, the web services W, should be invoked in
flattening, we find a linear plan having cost at most that/of [ parallel at the end of the plan. Using the results from Section 4.1,
the web services iV, should be placed in increasing cost order.
LEMMA 4.2. Let WS, ..., WS, be a plan with a linear order- Thus, the overall optimal plan is as shown in Figure £l
ing of the web services. & > c;+1, then WSand WS, can be
swapped without increasing the cost of the plan. 5. PRECEDENCE CONSTRAINTS
PROOF. Let H be the plan in which the ordering of the web In this section, we develop a general, polynomial-time algorithm
services is WS, . .., WS,, and let’ denote the same plan but ~ for the problem given by Definition 3.6 when there may be prece-
with WS; swapped with WS,;. Let f denotenifll s;. By 3): dence constraints among some of the web services in the query
j=

(recall Definition 3.2). Recall that precedence constraints are spec-
cos{H) = max(fci, fsici+1, Other term$ 4) ified as a DAGG.



Figure5: Placing WS, after acut C, in H

We defineM; as the set of all web services that are prerequisites

for WS, i.e.,

Our overall algorithm (described in Section 5.2) builds the plan
DAG H incrementally by greedily augmenting it one web service

at a time. At any stage the web service that is chosen for addition

to H is the one that can be added b with minimum cost, and

all of whose prerequisite web services have already been added t

‘H. The crux of the algorithm lies in finding the minimum cost of
adding a web service tH, described next.

5.1 AddingaWeb ServicetothePlan

Suppose we have constructed a partial ftamnd we wish to
add WS to H. To find the minimum cost of adding WSo H
(without modifying7), we compute the bestit C., in the DAGH,
such that on placing edges from the web servic&s,ito WS,, the
cost incurred by Wgis minimized. An example of a cut is shown
in Figure 5. Formally, a cut’ in a DAG H is defined as any set of
web services ir{ such that there does not exist a directed path in
‘H from one web service in the cut to another. For the@ylin H,
we also define the sét-, (also shown in Figure 5) as consisting
of all the web services i, and all their predecessors H, i.e.,

(recall (1) for definition ofP; (H))

Po, = C, U{WS; | WS; € Pj(H) for WS; € C.}  (7)

Note that givenPc,,, the cutC, can be easily computed as only
those web services ific, that are not predecessors of some other
web service inPc, .

Recall definition ofR[S] from (2). When we place edges from
the web services i, to WS, (as shown in Figure 5), the total
cost incurred by Wgis given by:

cos{WS,) = R[Pc,] - ¢x

Let us associate a variabte with every WS € 7 that is set tol
if WS, € Pc,, and to0 otherwise. Then, from (2), we have:

I )~
i| WS;er

Then the optimal sePc, (and hence the optimal cuf,) such
that cos{WS, ) is minimized, is obtained by solving the following
linear program where the variables are the.

R[Pc,] = ®)

Minimizelog c. + | WS, e Zi log o; subject to
1

zi >z Vi, j | WS; € P;(H)
Zi € [0, 1} Vi

The objective function of the above linear program minimizes
log(cos{WS;)) that is equivalent to minimizing ca®/'s.). We
take logarithms to ensure that the objective function is linear in the
variables. The first constraint in (9) ensures tRat, includes all

Algorithm Greedy
LH — ¢, F(H) — {WS; |M; = ¢}
2. while (H does not include all web services:if)
for each web service WSn F(H)
v, «— optimal value of linear program (9)
C, « optimal cut in{ from the solution to (9)
WS,,: < web service W$ with minimumuw,,
add WS, to H placing edges froni,,; to WS,

. updateF'(H) according to Equation (10)

©ONOo O~

Figure 6: Greedy Algorithm for Bottleneck Cost Metric

the prerequisite web services for W&o that it is feasible to add
WS, after the cutC;). The second constraint ensures that the set
Pc, is chosen according to the current structuréi.e., if a web
service W$ is chosen inPc,,, all predecessors of W3n H are
also chosen itPc, . Note that the third constraint relaxes the linear

0program to include fractionad;’s instead of just integers. How-

ever, there always exists an optimal integer solution to the above
linear program as shown by the following theorem (the proof ap-
pears in [23]).

LEMMA 5.1. The linear program(9) has an optimal solution
where eackh; is set to eithep or 1.

The optimal integer solution to (9) can be computed by con-
verting the linear program into a network flow problem [6]. Once
the optimal integer solution has been found, all web services with
z; = 1in the solution define the optimal sé&,, which in turn
defines the optimal cut’,..

5.2 Greedy Algorithm

We now describe our general greedy algorithm shown in Fig-
ure 6. For a partial plan DAG{, we first define thdrontier set
F(H) as the set of all web services that are candidates for addition
to H, since all their prerequisite web services have already been

added tgH. Formally :

F(H) = {WS; | WS; ¢ H A M; C H} (10)

We start by initializing#{ as empty, and the frontier s&t(H)
as all those web services that do not have any prerequisite web
services (Line 1). Then for each web service WS F (), we
solve the linear program (9) to determine the optimal cost of adding
WS, toH (Line 4). Let WS,,; be the web service having least such
cost (Line 6), and let the optimal cut for adding Wsbe Co,¢ as
given by the solution to the linear program. WSis then added
to 7{ by placing directed edges from the web services in@yt
to WS, (Line 7). We update the frontier sét(7) according
to Equation (10), and continue in this fashion until the DAG
includes all the web services.

5.3 Analysisof Greedy Algorithm

We now show that our algorithr@reedy(Figure 6) is correct,
i.e., it produces the optimal plan. Note that since the cost of a plan
is determined only by the bottleneck in the plan, in general there are
many possible optimal plans. We show that our greedy algorithm
finds an optimal plan. The proof is by induction on the number of
web services added I§yreedyto the partial plarf{.

Our inductive hypothesis is that whénwveb services have been
added to the DAGH constructed byGreedy H agrees (in terms
of edges placed) with some optimal solution restricted to just the
web services irf, i.e., there exists an optimal solution that Has



Figure 7: Modifying Hopt to Ho,p:

as a subgraph. The base case for our inductidn4s 0 which is
trivially satisfied since the empty DAG is a subgraph of any DAG.

LEMMA 5.2. When Greedy adds th& + 1)th web service, the
inductive hypothesis still holds.

PROOF. Let H denote the partial DAG wheh web services
have been added yreedy Let H be a subgraph of some optimal
plan H,,: (by the inductive assumption). Suppose {the+ 1)th
web service chosen b@reedyto be added td+ is WS,. Let the
optimal cut in7 for adding WS be C... An example is shown in
Figure 7.

Consider the position of WSin Hop:. Supposé,,: has some
other web service WS € F(H) that takes input only from web
services in*, and WS is placed such that WS€ P, (Hopt)
(see Figure 7). In general, there could be many such, s\iBat
are predecessors of WSn H,p¢; the proof remains unchanged.
Modify Hopt to H.,,; as follows. Remove the input to W Hop:
and make its input the cudt, (just asGreedydoes). The output of
WS, in Hop: is replaced by the join of the output of W M5,
and the input to Wsin Hop:. An example of this modification is
shown in Figure 7. We now show that, ,; is also an optimal plan.

CLAIM 5.3. On modifyingH,,: to Hs,,, the cost incurred by
any web service except \W8annot increase.

PrROOF. The only web services except W&hose cost irHy,,;
may be different from their cost i#,,: are those for which WS
is a predecessor ifl,,:. Let S denote this set of web services.
Let A be the set?, (Hop:) N H and B be the set?, (H,,;). See
Figure 7 for examples of, A, and B. Note thatB is the same
asPc,, i.e., the set thaBreedychooses to place before WSThe
combined selectivity of the sét— A, i.e., R[B— A], can be at most
one; if not,Greedywould have chose®c, to be B N A instead
of B. Note thatB N A is a feasible choice foPc, since A and
B are both feasible sets of web services to place before.WWs
Hopt, the web services i had input from the set of web services
AU{WS, } U{other web serviceg¢ H}. In'H,,., the web services
in S have input from the expanded set of web servides B U
{WS,} U {same other web services{}. SinceR[B — A] is at
most1, the number of data items seen by web servicesimHy,,,
is at most as many as ... Thus the cost of any web service in
S cannot increase on modifyirffop: to Hy,pp. O

Now consider the cost incurred by WSin H,,. If
R[Py(Hopt)] < R[P:(Hopt)], the cost incurred by WSalso
does not increase, hence combined with Claim 5.3, we have
cos(H,,,:) < COS(Hopt). If R[Px(Hopt)] > R[P:(Hope)], there
are two cases:

1. Suppose WSis the bottleneck irt,,;. Then the cost in-
curred by any other web service, specifically by yVi&

Hopt, is smaller. But then since WSe F(H), Greedy

would have chosen WSo add to} instead of WS. Hence
this case is not possible.

2. If WS, is not the bottleneck irt,,,;, then costH,,;) is
given by the cost incurred by some other web service. Hence,
by Claim 5.3, we have cot(,,,;) < cos{Hop:).

Thus in all cases, co$tl,,,;) < COS(Hopt). SinceH.p: is an opti-

mal plan,H,,; is also optimal. AfteGreedyadds WS to H, H is

a subgraph ot{,,,;. Hence assuming that the inductive hypothesis
holds whenk web services have been addedHoit still holds on
adding the(k + 1)th web service. [J

THEOREM 5.4. Algorithm Greedy computes an optimal plan in
O(n®) time wheren is the number of web services.

PROOF The correctness is immediate from Lemma 5.2 by in-
duction on the number of web services addedto The running
time of Greedyis at most the time taken to solve the linear program
(9) O(n?) times. The linear program (9) can be solvedin®)
time using a network flow algorithm [6]. Thus the total running
time of Greedyis O(n°). O

AlthoughO(n®) complexity may seem high, Theorem 5.4 is still
very interesting since it demonstrates that under the bottleneck cost
metric, the optimal plan can be found in polynomial time for ar-
bitrary precedence constraints. This result is somewhat surprising
given previous negative results for the analogous problem under the
sum cost metric [6, 18]. Also note that the analysis in Theorem 5.4
to obtain theD(n®) bound is pessimistic since it assumes the fron-
tier set is constantly of size; in practice, the frontier set will be
smaller due to precedence constraints.

ExAMPLE 5.5. We demonstrate the operation of our algorithm
for optimization of the query in Example 3.3 with costs and selec-
tivities as given in Example 3.5. Initially, W&nd WS belong
to the frontier set"(7). Sincec; < co, WS is added first to the
plan#. F(H) remains unchanged. Now to add W8ere are two
possibilities: either after WS or in parallel with WS. Since the
former possibility has lower cost, W® added after WS F(H)
is now updated t§WS }. There is only possibility for its addition:
after WS. Thus we find that the optimal plan is a linear one as
shown by Plan 1 in Figure 2. []

6. DATA CHUNKING

There is usually some amount of overhead incurred on making
any web service call, e.g., parsing SOAP/XML headers and fixed
costs associated with network transmission. Hence it can be very
expensive to invoke a web service separately for each tuple. To
amortize the overhead, a web service may provide a mechanism
to pass tuples to it in batches, dtunks Each tuple is still treated
individually by the web service, but the overall overhead is reduced.

When a chunk of input data is passed to web service, WS
assume the entire answer arrives back at the WSMS as a single
chunk. The response time of W8sually depends on the size of
the input chunk. We use;(k) to denoting the response time of
WS; on a chunk of sizé. We assume there is a liniit"** on the
maximum chunk size accepted by web service; WShunk-size
limits can arise, e.g., from limits on network packet lengths.

When web services can accept input in the form of chunks, the
query optimizer must decide the optimal chunk size to use for each
web service. The optimal chunk size for web service ;\M&l
obviously depend on how the response titg:) of WS; varies as
a function of the chunk sizk. We first give an example, based on
areal experiment we conducted, showing th&k) may depend in



unexpected ways oh. We then show that the optimal chunk size services whenever possible. For example, if there are no

for a web service depends only er(k) and is independent of the precedence constraints, data is dispatched in parallel to all
query plan in which it is being invoked, and we give an algorithm web services followed by a join at the end. An example of
for choosing optimal chunk sizes. how this algorithm operates in the presence of precedence

constraints will be given in Section 7.3.

2. SelOrder One heuristic for efficient query processing is to
reduce data as early as possible by putting the web services
with lower selectivities earlier in the pipelin8elOrdemod-
els this heuristic by building a (linear) plan as follows: Out of
all web services whose input attributes are available, the web

ExAMPLE 6.1. We implemented an ASP.NET web service as
follows. We created atablg(i nt a, int b, primry key
a) in a commercial database system, with a clustered index on at-
tribute a. The table was loaded with 100,000 tuples. The web ser-
vice accepted a list of values far (the chunk) and returned the
corresponding values fdr, by issuing a SQL query to the database service with lowest selectivity is placed in the plan, and the
system in which the list @f values was put in an IN clause. '

A : . process is repeated until all web services have been placed.
We measured the response time of the web service when queried | dth o ¢ ) ith and with
by a remote host with various chunk sizes. We found that the re- Ve also compared the running times of queries with and without

sponse time was not just linear in the chunk size, but also had a data chunking, to demonstrate the benefits of chunking. Finally,
small quadratic component to it. Thus, the time per tuile) /k we compared the total CPU cost at the WSMS against the cost of

first decreases, and then increases with Our current (unveri- the slowest web se_rvic_e tc_) substantiate_ our claim that 'the_ WSMSis
fied) hypothesis is that the quadratic component may be due to not the bqttleneck in pipelined processing. The main findings from
sorting of the IN list by the database query optimizer. The main OUr €xperiments are:

point to glean from this example is that depending upon implemen- 1. For scenarios both with and without precedence constraints,

tation, web service response times may vary in unexpected ways ~ the plans produced b@ptimizercan perform vastly better
with chunk size. [J (up to about 7 times better for the problem instances we
experimented with) than the plans producedRayallel or
The following theorem gives the optimal chunk size for each web SelOrder
service W$ and shows that it is independent of the query plan. 2. Using data chunking query running time can be reduced by

up to a factor of 3.
THEOREM 6.2. The optimal chunk size to be used by, W% P

such thate; (k7) /k; is minimized forl < ki < k™%, [ 3. The WSMS cost is significantly lower than the cost of the
Lo -t slowest web service in the plan, demonstrating that the WSMS
PROOF Letc; denote the average response time of, W& in- is not the bottleneck in a pipelined plan.

puttuple as in Section 3.2. If W8ises a chunk size,, its per-tuple

We first describe our WSMS prototype and the experimental
response time is given by = c; (k;)/k:. Recall from Equation (3) pro’oyp P

setup in Section 7.1. We then describe our experiments for scenar-

that the cost of a plan is given byax; <;<n ((H;;ll sj)ci> . Since ios with no precedence constraints in Section 7.2, and for scenarios
the selectivity values remain unchanged in the presence of chunk-With precedence constraints in Section 7.3. In Section 7.4, we de-
ing, the cost of the plan is minimized when is minimized for scribe our experiments with data chunking. Finally, in Section 7.5,

each web service WS Hence, independent of the actual query We report our results of measuring the cost incurred at the WSMS.

plan, the optimal chunk size for WS k; such that;(k;)/k; is 71 Prototype and Experimental Setup

minimized. O
The experimental setup consists of two parts: the client side,
In general, the response timg k) of a web service WSmay be consisting of our WSMS prototype, and the server side, consisting
any function of the chunk size, as demonstrated by Example 6.1  of web services set up by us.
above. Hence, to apply Theorem 6.2, the optimizer relies on the  Our WSMS prototype is a multithreaded system written in Java.
Profiling and Statistics component to measuyg:) for different It implements AlgorithmExecutePlar{Figure 3), and can execute
values ofk. Profiling may be combined with query processing by any general execution plan with any specified chunk sizes. For
trying out various chunk sizes during query execution and measur- communicating with web services using SOAP, our prototype uses
ing the corresponding response times. Once the optimal chunk sizeApache Axis [2] tools. Given a description of a web service in the
k; for each web service W®as been determined, the optimal plan  Web Service Definition Language [34], Axis generates a class such
is found by setting; = ¢;(k;)/k; for each WS, and applying our that the web service can be invoked simply by calling a method
query optimization algorithm from Section 5. of the generated class. The input and output types of the web ser-
Note that according to Theorem 6.2, it might be optimal to use vice are also encapsulated in generated classes. Our prototype uses
different chunk sizes with different web services. In steady state, these classes to conveniently invoke each web service as if it were
this is ensured by maintaining a buffer of intermediate results be- a local function call. However, since the web service that a par-
tween any two consecutive web services in the pipelined plan. ticular thread has to interact with is known only at runtime (recall
Figure 3), the names of the corresponding classes to be used are
7. IMPLEMENTATIONAND EXPERIMENTS also known only at runtime. To get around this problem, our pro-
We implemented an initial prototype WSMS, described in Sec- totype uses Java Reflection [27] to load classes and their methods
tion 7.1. Here we report on a few experiments with it. Not surpris- dynamically.
ingly, in our experiments, query plan performance reflects our theo- we use Apache Tomcat [30] as the application server and Apache
retical results (thereby Validating our cost model). USing total run- Axis [2] tools for web service dep|oyment. Each of our experi_
ning time of queries as a metric, we compared the plans producedmental web services WSuns on a different machine, and has a
by our optimization algorithm (referred to @ptimize) againstthe  table7; (int a, int b, primary keya) associated with it. WSis of
plans produced by the following simpler algorithms: the form WS(a®, b%): given a value for attribute, WS; retrieves
1. Parallel: This algorithm attempts to exploit the maximum the corresponding value for attribuierom 7; (by issuing a SQL
possible parallelism by dispatching data in parallel to web query) and returns it. Data chunking is implemented by issuing
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a SQL query with an IN clause. The tabl&s are stored using lectivities to web services in the reverse order of cost: the selectiv-
the lightweight IBM Cloudscape DBMS. Since attributds the ities of WS, ..., WS, were set a8.4,0.3,0.2, 0.1 respectively.

primary key, Cloudscape automatically builds an indexcomhe Figure 8 shows the costs of the plans produced by the various
tablesT; were each populated with tuples of the fo(ij) for j algorithms as the range of cosids varied from[0.2, 2] seconds
in{1,...,10,000}. per tuple to[2, 2] seconds per tupleRarallel dispatches data to all

For our experiments, we needed web services with different costsweb services in parallel and hence has a bottleneck cost equal to the
and selectivities. To obtain different costs, we introduced a delay cost of the highest-cost web service WSelOrderputs WS first
between when a web service obtains the answer from its databasesince it has lowest selectivity, so it incurs the same bottleneck cost
and when it returns the answer to the caller of the web service. The asParallel. Optimizeris able to reduce the bottleneck cost to well
web service cost is varied by varying this delay. Our experimental below the cost of Wby placing the web services in increasing
web services, as described in the previous paragraph, return exactlyorder of cost. Only when all the web services become expensive

one tuple for each input value of attribuigsincea is a key). To doesOptimizerincur a cost equal to that &arallel or SelOrder In
obtain a selectivitys; < 1 for web service Wg we rejected each this experiment we also verified that the actual per-tuple process-
tuple returned by Wsat the WSMS with probabilitl — s;. To ing time is very close to that predicted by our cost model, thereby

obtains; > 1, for each tuple returned by WSwe created between  showing the accuracy of our cost model.

1 and2s; new tuples, each with the same value in attributes the .

returned tuple, and randomly generated values in attribditem 7.3 Precedence Constraints

the rangel, . .., 10,000 (so that these values 6fcould be used as In this experiment, we again set up for four web services, WS

input to another web service). ..., WS4, The single attribute in the input tuples served as the
The WSMS is run on a different machine from the ones on which input attribute to W$ and WS. The output attribute from WS

the web services_were running. For every run, the WSMS randomly (respectively W$) served as the input attribute to \W&espec-

generated 2000 input tuples that formed the input tébkach in- tively WS,). Thus, we had two precedence constraints,; WS

put tuple had a single attribute with value in the raige . , 10,000. WS;, and WS < WS,. We did not use data chunking.

The query executed was a join of all the web services and the input WS, and WS were set up to be proliferative, with selectivities

table I. For this query, a particular execution pl&halong with 2 and1 respectively. The selectivities of W&nd WS were set as

the chunk sizes to be used by each web service was specified tQ).1 each. The cost of each of WS . ., WS; was set a8.2 second

the WSMS. The WSMS then processed all the tuples tirough per tuple. The cost of WSwas varied fromD.4 to 2 seconds per
the plan? in a pipelined fashion. Oves independent runs, the  tuple.

average processing time per tuple/a then used as a metric for For this scenarioParallel chooses a plan in which data is first
comparingP against other plans. dispatched in parallel to WSand WS. Then, to exploit paral-
. lelism between Wgand WS, WS; is placed in the WSbranch,
7.2 No Precedence Constraints and WS in the WS branch. Based on selectivitieSelOrderor-
In this experiment, we set up four web services \WS. , WS; ders the web services as WSNS;, WS;, WS;. Optimizerfirst

with no precedence constraints among them, i.e., the single at-groups W$ and WS together, and WSand WS together. Then
tribute in the input tuples served as the input attribute to all the the group containing WsSis placed before the other, since it has
web services. We did not use data chunking in this experiment. lower cost. Thus the overall order produced®ytimizeris WS,,
With its basic functionality of one database lookup, each web ser- WS, WS;, WS;.

vice had a response time (or cost) of approximatedysecond per Figure 9 shows the costs of the plans produced by the various
tuple. We added additional delay to control the costs of different algorithms as the cost of WSs increased. BotfParallel and
web services. SelOrderincur the cost of WS as the bottleneck, whil®ptimizer

We consider various cost rang&sand assign WS ..., WS, reduces the bottleneck cost to below the cost of W placing it

uniformly increasing costs in the range To ensure that different  lastin the pipelined plan.

plans are produced ptimizer(which orders the web services by .

increasing cost according to Theorem 4.3), an@biOrder(which 7.4 Data Chunking

orders the web services by increasing selectivity), we assigned se- In this experiment, we again set up four web services with no



200 the results at the WSMS was measured.

Figure 11 shows the bottleneck cost, the WSMS cost, and the
cost of the join thread as the number of web services involved in the
160 - query is increased. Even as the number of web services increases,
the WSMS cost remains significantly lower than the cost of the
bottleneck web service. Figure 11 also shows that the cost of the
join thread is negligible compared to the bottleneck cost.

Itis important to note that our measurements in the above exper-
iment are only conservative, and numbers in a real setting can only
be better, due to the following reasons:

e In our experiments, the WSMS and the web services were
running on different machines but on the same network. Ac-
40 cessing web services over the internet may add an additional
10 20 30 40 50 order of magnitude to their response time.

Chunk Size e Our WSMS prototype makes heavy use of the Java Reflec-
tion API [27], which is known to be extremely slow com-
pared to direct method invocations. In a separate experiment,
we found that a method call using Reflection can béo 20
times slower than a direct call to the same method. The in-
efficiency of Reflection is also evident in how the cost of the
join thread (which does not use Reflection) compares with
the rest of the WSMS cost. In the next version of our pro-
totype, we plan to redesign the system to avoid the use of
Reflection, giving up the convenience of classes generated
by Axis, but decreasing the cost incurred at the WSMS by at
least an order of magnitude.

Given the above factors, it is unlikely that in any real setting, the

WSMS cost can become the bottleneck in the pipelined processing

of a query over multiple web services.
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8. CONCLUSIONS

We have proposed the overall goal of a general-purpose Web
Service Management System (WSMS), enabling clients to query
a collection of web services in a transparent and integrated fash-
ion. In this paper, we focus on new query optimization issues that
precedence constraints as in Section 7.2. For this experiment, wearise in a WSMS. Our execution model consists of pipelined query
did not add additional delay to any web service so costs were uni- processing over web services, and we derive the “bottleneck” cost
form, and the selectivity of each web service was sdt.as The metric to characterize the cost of a pipelined plan. For this cost
web services were arranged in a linear pipeline accordir@ypti- metric, we have devised new algorithms to: (a) decide the opti-
mizer, and the chunk size used by each web service was equal.  mal arrangement of web services in a pipelined plan, respecting

Figure 10 shows how the per-tuple cost varies as the chunk sizeprecedence constraints, and (b) decide the optimal chunk size to
used by the web services is increased. For comparison, we alsouse when sending data to each web service. While the algorithms
show the per-tuple cost without chunking, i.e., with chunk dize in this paper form the basis of a WSMS query optimizer, we be-
Even using a chunk size @b reduces the per-tuple cost by more Jieve they only scratch the surface of what promises to be an excit-
than a factor oB8. However, on increasing the chunk size further, ing new research area. There are several interesting directions for
the cost does not reduce significantly. Hence most of the benefit of fyture work:
c_hunking can be achieved even by using a relatively small chunk  § Ap important next step is to extend our algorithms to allow
size. different input tuples to follow different plans as in [9, 20],

75 WSMS Cost leading to even higher overall performance.

. . . Our algorithms currently do not incorporate variance or un-
In this experiment, we compared the cost incurred at the WSMS * g y P

Figure 11: WSM S Cost vs. Bottleneck Cost

. X X A certainty in the response times of web services, or more gen-

against the bottleneck web service cost in a pipelined plan. We var-
ied the number of web services involved in the query. There were
no precedence constraints, uniform web service costs, and the se-
lectivity of each web service was set@s. To demonstrate that the
WSMS does not become the bottleneck even with data chunking,
each web service used a chunk size@f

The WSMS cost was measured with the web services arranged
in a linear pipeline according ©ptimizer To demonstrate that the
join threads in a plan (recall Figure 3) does not make the WSMS
the bottleneck, we also executed another plan in which data was
dispatched in parallel to all web services, and the cost of joining

erally, quality of service (QoS) information about web ser-
vices. It is important to address the problem of finding plans
that consistently choose the highest-quality available web ser-
vices and that adapt to changes in web service response times.

Our query optimization algorithm relies on knowledge of
web service response times and selectivities. Hence we need
to develop profiling techniques that can accurately track these
quantities and detect changes in them. Work on self-tuning
histograms [5] may be relevant to track selectivities.

e \We have not considered web services witbnetarycosts.



In that scenario, we may wish to use optimization algorithms
that minimize the running time of a query subject to a certain
budget limit. The dual problem, i.e., minimizing the cost in-

curred subject to a limit on the running time of the query, is

also interesting. Moreover, the response time of a web ser- [16]

vice, or the QoS offered by a web service, may be a function
of how much money is paid per invocation.

e Caching of web service results at the WSMS may lead to sig-

nificant speedups in query processing. Extending the query [17]

optimization algorithms to incorporate caching is an impor-
tant direction for future work.
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