
Robust Query Processing
through Progressive
Optimization

Appeared in SIGMOD 2004

Volker Markl, Vijayshankar Raman,
David Simmen, Guy Lohman,
Hamid Pirahesh, Miso Cilimdzic

raja@cse.iitb.ac.in

Motivation

� Current optimizers depend heavily
upon the cardinality estimations

� What if there errors in those
estimations?

� Errors can occur due to …
� Inaccurate statistics
� Invalid assumptions (e.g. attribute

independence)

Overview of talk …

� What's this all about
� Contribution of the paper
� Related work
� Progressive Query Optimization(POP)
� CHECK and its variants
� Performance analysis
� A real-world experiment results

Contribution

� Concept of CHECK and its various
flavors

� Method for determining validity
ranges for QEPs

� Performance analysis of prototype of
POP

Evaluating a re-optimization
scheme

� Risk Vs Opportunity
� Risk:
� Extent to which re-optimization is not

worthwhile

� Opportunity:
� Refers to the aggressiveness

Background

� KD98
� Tukwila
� Telegraph
� Parametric

optimization

Progressive Query Optimization(POP)

Architecture of POP

� Find out valid ranges
� Location of CHECKs
� Executing CHECKs
� Interpret CHECK
� Exploit intermediate results

Computation on Validity Ranges

� Validity range: is an upper and lower
bound which when violated,
guarantees that the current plan is
sub-optimal wrt to the optimizers cost
model

� No need to enumerate all possible
optimal plans beforehand

� Uses modified Newton-Raphson
method to find validity ranges

Exploiting Intermediate Results

� All the intermediate results are stored
as temporary MVs

� Not necessarily written out to disk
� In the end, all these temporary MVs

needs to be deleted (extra overhead?)

Variants of CHECK

� Lazy checking
� Lazy checking with eager

materialization
� Eager checking without compensation
� Eager checking with buffering
� Eager checking with deferred

compensation

Variants of CHECK (contd.)

� LC:
� Adding CHECKs above a materialization

point (SORT, TEMP etc)
� As, no results have been output yet
� And materialized results can be re-used

� LCEM:
� Insert materialization point if it does not

exists already
� Typically done only for nested-loop join

Eager Checking (EC)

� EC without Compensation:
� CHECK is pushed down the MP

� EC with buffering
� CHECK and buffer

Eager Checking with pipelining

� EC with Deferred Compensation
� Only SPJ queries
� Identifier of all rows returned to the user

are stored in a table S, which is used
later in the new plan for anti-join with
the new-result stream

CHECK Placement

� LCEM and ECB – outer side of nested-
loop join

� LC – above materialization points
� ECWC and ECDC – anywhere

Performance Analysis

� Robustness

Performance Analysis cont …

� Risk Analysis

� Opportunity Analysis

POP in (in)action

� 22 Vs 17

POP in (in)action (contd.)

� Re-optimization may result in the
choice of worse plan due to:
� Two estimation errors canceling out each

other
� Re-using intermediate results

Conclusions

� POP gives us a robust mechanism for
re-optimization through inserting of
CHECK (in its various flavors)

� Higher opportunity at low risk

Future work

� Lets decide ☺

� Extra Slides

	Robust Query Processing through Progressive Optimization�
	Motivation
	Overview of talk …
	Contribution
	Evaluating a re-optimization scheme
	Background
	Progressive Query Optimization(POP)
	Architecture of POP
	Computation on Validity Ranges
	Exploiting Intermediate Results
	Variants of CHECK
	Variants of CHECK (contd.)
	Eager Checking (EC)
	Eager Checking with pipelining
	CHECK Placement
	Performance Analysis
	Performance Analysis cont …
	POP in (in)action
	POP in (in)action (contd.)
	Conclusions
	Future work

