
Robust Query Processing 
through Progressive 
Optimization

Appeared in SIGMOD 2004

Volker Markl,       Vijayshankar Raman, 
David Simmen,    Guy Lohman, 
Hamid Pirahesh,   Miso Cilimdzic

raja@cse.iitb.ac.in



Motivation

� Current optimizers depend heavily 
upon the cardinality estimations

� What if there errors in those 
estimations?

� Errors can occur due to …
� Inaccurate statistics
� Invalid assumptions (e.g. attribute 

independence)



Overview of talk …

� What's this all about
� Contribution of the paper
� Related work
� Progressive Query Optimization(POP)
� CHECK and its variants
� Performance analysis
� A real-world experiment results



Contribution

� Concept of CHECK and its various 
flavors

� Method for determining validity 
ranges for QEPs

� Performance analysis of prototype of 
POP



Evaluating a re-optimization 
scheme

� Risk Vs Opportunity
� Risk:
� Extent to which re-optimization is not 

worthwhile

� Opportunity:
� Refers to the aggressiveness



Background

� KD98
� Tukwila
� Telegraph
� Parametric 

optimization



Progressive Query Optimization(POP)



Architecture of POP

� Find out valid ranges
� Location of CHECKs
� Executing CHECKs
� Interpret CHECK
� Exploit intermediate results



Computation on Validity Ranges

� Validity range: is an upper and lower 
bound which when violated, 
guarantees that the current plan is 
sub-optimal wrt to the optimizers cost 
model

� No need to enumerate all possible 
optimal plans beforehand

� Uses modified Newton-Raphson 
method to find validity ranges



Exploiting Intermediate Results

� All the intermediate results are stored 
as temporary MVs

� Not necessarily written out to disk
� In the end, all these temporary MVs

needs to be deleted (extra overhead?)



Variants of CHECK

� Lazy checking
� Lazy checking with eager 

materialization 
� Eager checking without compensation
� Eager checking with buffering
� Eager checking with deferred 

compensation



Variants of CHECK (contd.)

� LC:
� Adding CHECKs above a materialization 

point (SORT, TEMP etc)
� As, no results have been output yet
� And materialized results can be re-used

� LCEM:
� Insert materialization point if it does not 

exists already
� Typically done only for nested-loop join



Eager Checking (EC)

� EC without Compensation:
� CHECK is pushed down the MP

� EC with buffering
� CHECK and buffer



Eager Checking with pipelining

� EC with Deferred Compensation
� Only SPJ queries
� Identifier of all rows returned to the user 

are stored in a table S, which is used 
later in the new plan for anti-join with 
the new-result stream





CHECK Placement

� LCEM and ECB – outer side of nested-
loop join

� LC – above materialization points
� ECWC and ECDC – anywhere



Performance Analysis

� Robustness



Performance Analysis cont …

� Risk Analysis



� Opportunity Analysis



POP in (in)action

� 22 Vs 17



POP in (in)action (contd.)

� Re-optimization may result in the 
choice of worse plan due to:
� Two estimation errors canceling out each 

other
� Re-using intermediate results



Conclusions

� POP gives us a robust mechanism for 
re-optimization through inserting of 
CHECK (in its various flavors)

� Higher opportunity at low risk



Future work

� Lets decide ☺



� Extra Slides
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