
The VLDB Journal manuscript No.
(will be inserted by the editor)

Nilesh Dalvi · Dan Suciu

Efficient Query Evaluation on Probabilistic Databases

the date of receipt and acceptance should be inserted later

Abstract We describe a framework for supporting ar-
bitrarily complex SQL queries with ”uncertain” predi-
cates. The query semantics is based on a probabilistic
model and the results are ranked, much like in Informa-
tion Retrieval. Our main focus is query evaluation. We
describe an optimization algorithm that can compute ef-
ficiently most queries. We show, however, that the data
complexity of some queries is #P -complete, which im-
plies that these queries do not admit any efficient eval-
uation methods. For these queries we describe both an
approximation algorithm and a Monte-Carlo simulation
algorithm.

1 Introduction

Databases and Information Retrieval [3] have taken two
philosophically different approaches to queries. In data-
bases SQL queries have a rich structure and a precise
semantics. This makes it possible for users to formu-
late complex queries and for systems to apply complex
optimizations, but users need to have a pretty detailed
knowledge of the database in order to formulate queries.
For example, a single misspelling of a constant in the
WHERE clause leads to an empty set of answers, frus-
trating casual users. By contrast, a query in Information
Retrieval (IR) is just a set of keywords and is easy for
casual users to formulate. IR queries offer two important
features that are missing in databases: the results are
ranked and the matches may be uncertain, i.e. the an-
swer may include documents that do not match all the
keywords in the query1. While several proposals exist
for extending SQL with uncertain matches and ranked
results [1,20,15], they are either restricted to a single ta-
ble, or, when they handle join queries, adopt an ad-hoc
semantics.

University of Washington, Seattle.

1 Some IR systems only return documents that contain all
keywords, but this is a feature specific to those systems, and
not of the underlying vector model used in IR.

SELECT *
FROM Actor A
WHERE A.name ≈ ’Kevin’

and 1995 =
SELECT MIN(F.year)
FROM Film F, Casts C
WHERE C.filmid = F.filmid

and C.actorid = A.actorid
and F.rating ≈ "high"

Fig. 1 An Approximate Query

To illustrate the point consider the query in Fig 1.
It is a structurally rich query, asking for an actor whose
name is like ‘Kevin’ and whose first movie with ‘High’
rating appeared in the year 1995.

The two ≈ operators indicate which predicates we
intend as uncertain matches. Techniques like edit dis-
tances, ontology-based distances [14], IDF-similarity and
QF-similarity [1] can be applied to a single table: to rank
all Actor tuples (according to how well they match the
first uncertain predicate), and to rank all Film tuples.
But it is unclear how to rank the entire query. To date,
no system combines structurally rich SQL queries with
uncertain predicates and ranked results.

In this paper we propose such a system. We show
that, using the concept of possible worlds semantics, data-
base queries with approximate matches can be given
meaning in a principled way and a ranked list of an-
swers can be computed. Given a SQL query with uncer-
tain predicates, we start by assigning a probability to
each tuple in the input database according to how well
it matches the uncertain predicates. Then we derive a
probability for each tuple in the answer, and rank the
answers accordingly.

An important characteristic of our approach is that
any SQL query with approximate predicates has a mean-
ing, including queries with joins, nested sub-queries, ag-
gregates, group-by, and existential/universal quantifiers2.

2 In this paper we restrict our discussion to SQL queries
whose normal semantics is a set, not a bag or an ordered list.

2 Nilesh Dalvi, Dan Suciu

Queries have a probabilistic semantics, which is simple
and easy to understand by both users and implementors.

While simple, the semantics gives no indication on
how to evaluate the query. The main problem that we
discuss in this paper is query evaluation. Our approach
is to represent SQL queries in an algebra, and modify the
operators to compute the probabilities of each output tu-
ple. This is called extensional semantics [26], and is quite
efficient. While this sounds simple, the problem is that
it doesn’t work: the probabilities computed this way are
wrong in most cases, and lead to incorrect ranking. The
reason is that, even if all tuples in the base relations are
independent probabilistic events, the tuples in the in-
termediate results of a query plan have often correlated
probabilities, making it impossible to compute the new
probabilities precisely. The previous workaround is to use
an intensional semantics [29,31,12], which represents tu-
ple events symbolically and, hence, tracks tuple correla-
tions precisely. However, as we show here, this approach
is too inefficient to be practical. Our approach is differ-
ent: we rewrite the query plan, searching for one where
the extensional evaluation is correct. We show however
that certain queries have a #P-complete data complexity
under probabilistic semantics, and hence do not admit a
correct extensional plan. While they are not frequent in
practice (only 2 out of the 10 TPC/H queries fall in this
category, and only when all their predicates are uncer-
tain), we describe two techniques to address them: using
heuristics to chose a plan that avoids large errors, and
using a Monte-Carlo simulation algorithm, which is more
expensive but can guarantee arbitrarily small errors.

Outline We give motivating examples in Sec. 2, de-
fine the problem in Sec. 3, and describe our techniques
in Sec. 4-9. Sec. 11 reports experiments and Sec. 12 de-
scribes related work. We conclude in Sec. 13.

2 Examples

We illustrate the main concepts and techniques of this
paper with two simple examples.

Probabilistic Database In a probabilistic database
each tuple has a certain probability of belonging to the
database. Figure 2 shows a probabilistic database Dp

with two tables, Sp and T p: the tuples in Sp have prob-
abilities 0.8 and 0.5, and the unique tuple in T p has
probability 0.6. We use the superscript p to emphasize
that a table or a database is probabilistic. We assume in
this example that all the tuples represent independent
probabilistic events.

The meaning of a probabilistic database is a probabil-
ity distribution on all database instances, which we call
possible worlds, and denote pwd(Dp). Fig. 3 (a) shows
the eight possible instances with non-zero probabilities,
which are computed by simply multiplying the tuple
probabilities, as we have assumed them to be indepen-
dent. For example, the probability of D2 is 0.8∗(1−0.5)∗

Sp

A B
s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p

C D
t1 1 ‘p’ 0.6

Fig. 2 A probabilistic database Dp

pwd(Dp) =
world prob.
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) :− Sp(x, y), T p(z, u), y = z

(b)

qpwd(Dp) =

answer prob.
{′p′} 0.54
∅ 0.46

(c)

Fig. 3 (a) The possible worlds for Dp in Figure 2, (b) a
query q, and (c) its possible answers.

0.6 = 0.24, since the instance contains the tuples s1 and
t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 3 (b).
Its meaning on Dp is a set of possible answers, shown in
Fig. 3 (c). It is obtained by applying q to each determin-
istic database in pwd(Dp), and adding the probabilities
of all instances that return the same answer. In our ex-
ample we have q(D1) = q(D2) = q(D3) = {′p′}, and
q(D4) = . . . = q(D8) = ∅. Thus, the probability of the
answer being {′p′} is 0.24+0.24+0.06 = 0.54, while that
of the answer ∅ is 0.46. This defines the set of possible
answers, denoted qpwd(Dp). Notice that we have never
used the structure of the query explicitly, but only ap-
plied it to deterministic databases taken from pwd(Dp).
Thus, one can give a similar semantics to any query q,
no matter how complex, because we only need to know
its meaning on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user. In
our simple example, there are only two possible answers,
since T p has only one tuple. In general, if T p has n tuples,
there can be as many as 2n possible answers, and it is
impractical to return them to the user.

Efficient Query Evaluation on Probabilistic Databases 3

Our approach is to compute for each possible tuple t
a probability rank that t belongs to any answer, and sort
tuples sorted by this rank. We denote this qrank(Dp). In
our example this is:

qrank(Dp) =
D Rank
’p’ 0.54

In this simple example qrank(Dp) contains a single tu-
ple and the distinction between qpwd and qrank is blurred.
To see this distinction clearer, consider another query,
q1(x) :− Sp(x, y), T p(z, u), y = z. Here qpwd

1 and qrank
1

are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′})+Pr({′m′}). While in general qpwd(Dp)
may be exponentially large, qrank(Dp) is simply a set of
tuples, which are sorted by Rank. The problem in this
paper is now to compute qrank(Dp) efficiently.

Extensional Query Semantics A natural attempt
to compute qrank(Dp) is to represent q as a query plan
then compute the probabilities of all tuples in all inter-
mediate results. For the query q in Fig. 3 (b), such a
plan is P = ΠD(Sp 1B=C T p), and the correspond-
ing probabilities are shown in Fig. 4. The formulas for
the probabilities assume tuple independence, are taken
from [12] and are rather straightforward (we review them
in Sec. 4). For example the probability of a joined tu-
ple s 1 t is the product of the probabilities of s and t.
Clearly, this approach is much more efficient than com-
puting the possible worlds qpwd(Dp) and then computing
qrank(Dp), but it is wrong ! It’s answer is 0.636, while
it should be 0.54. The reason is that the two tuples in
Sp 1B=C T p are not independent events, hence the for-
mula used in ΠD is wrong.

However, let us consider an alternative plan, P ′ =
ΠD((ΠB(Sp)) 1B=D T p). The extensional evaluation of
this expression is shown in Figure 5, and this time we
do get the correct answer. As we will show later, this
plan will always compute the correct answer to q, on any
probabilistic tables Sp, T p. In this paper we show how to
find automatically a plan whose extensional evaluation
returns the correct answer to a query q. Finding such a
plan requires pushing projections early (as shown in this
example) and choosing join orders carefully.

A B C D prob
‘m’ 1 1 ’p’ 0.8*0.6 = 0.48
‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp 1B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp 1B=C T p)

Fig. 4 Evaluation of ΠD(Sp 1B=C T p)

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) 1B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) 1B=C T p)

Fig. 5 Evaluation of ΠD(ΠB(Sp) 1B=C T p)

Queries with uncertain matches While query eval-
uation on probabilistic databases is an important prob-
lem in itself, our motivation comes from answering SQL
queries with uncertain matches, and ranking their re-
sults. We illustrate here with a simple example on the
Stanford movie database[21].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regular
query over a probabilistic databases. Each tuple in the
table Films is assigned a probability based on how well it
matches the predicates title ≈ ’rain man’ and year
≈ 1995. Several techniques for doing this exist already,
and in this paper we will adopt existing ones: see Sec. 9.
The result is a probabilistic table, denoted Filmsp. Sim-
ilarly, the uncertain predicate on Director generates a
probabilistic table Directorp. Then, we evaluate the fol-
lowing query, obtained by dropping the similarity pred-
icates from the original SQL query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

4 Nilesh Dalvi, Dan Suciu

This is similar to the query q considered earlier (Fig-
ure 3 (b)), and the same extensional plan can be used to
evaluate it. Our system returns:

title year rank
The Rainmaker (by Coppola) 1997 0.110
The Rain People (by Coppola) 1969 0.089
Rain Man (by Levinson) 1988 0.077
Finian’s Rainbow (by Coppola) 1968 0.069
Tucker, Man and Dream (Coppola) 1989 0.061
Rain or Shine (by Capra) 1931 0.059
.

3 Problem Definition

We review here the basic definitions in probabilistic data-
bases, based on ideas taken from several papers [32,12,
2], and state our problem.

Basic Notations We write R for a relation name,
Attr(R) for the set of its attributes, and r ⊆ Uk for a
relation instance, where k is arity(R) and U is a fixed,
finite universe of atomic values. We denote with R̄ =
R1, . . . , Rn a database schema, and write D = r1, . . . , rn

for a database instance of that schema. We consider func-
tional dependencies in this paper, and denote with Γ a
set of functional dependencies. We write D |= Γ when
D satisfies the functional dependencies in Γ .

Probabilistic Events In order to represent prob-
abilistic events, we use a set of symbols, AE: each e ∈
AE represents an independent probabilistic event, called
atomic event. We fix a probability function Pr : AE →
[0, 1], associating a probability to each atomic event. A
special symbol ⊥ ∈ AE denotes the impossible event,
and we define Pr(⊥) = 0.

A complex event is an expression constructed from
atomic events using the operators ∧, ∨, ¬. E denotes
the set of all complex events. For each complex event e,
let Pr(e) be its probability.

Example 1 Consider e = (s1 ∧ t1) ∨ (s2 ∧ t1), and as-
sume Pr(s1) = 0.8, Pr(s2) = 0.5, Pr(t1) = 0.6. To com-
pute Pr(e) we construct the truth table for e(s1, s2, t1)
and identify the entries where e is true, namely (1, 0, 1),
(0, 1, 1), (1, 1, 1). The three entries have probabilities given
by Pr(s1)(1−Pr(s2))Pr(t1) = 0.8×0.5×0.6 = 0.24, (1−
Pr(s1))Pr(s2)Pr(t1) = 0.06 and Pr(s1)Pr(s2)Pr(t1) =
0.24 respectively. Then Pr(e) is their sum, 0.54.

This method of computing probabilities generalizes
to any complex event e(s1, . . . , sk) which is a function
of atomic events s1, . . . , sk. But it is important to no-
tice that this algorithm is exponential in k, the number
of atomic events, because the size of the truth table for
e(s1, . . . , sk) is 2k. This cannot be avoided: it is known
that computing Pr(e) is #P-complete [36] even for com-
plex events without negation.

Probabilistic Databases A probabilistic relation is
a relation with a distinguished event attribute E, whose

value is a complex event. We add the superscript p to
mean “probabilistic”. Thus, Rp denotes a relation name
having E among it’s attributes; rp denotes an instance
of Rp, i.e. where for each tuple t ∈ rp, t.E is a complex
event; R̄p denotes a database schema where some rela-
tions names have an E attribute; and, finally, Γ p denotes
a set of functional dependencies over R̄p, where the func-
tional dependencies may use both regular attributes and
the event attribute. Note that we allow for a probabilis-
tic database schema R̄p to consist of both probabilistic
relations and deterministic relations.

As a convenient notation, by dropping the p super-
script we mean the deterministic part, obtained by re-
moving the event attribute. Thus, R is such that Attr(R)
= Attr(Rp)−{E}, while r represents the project of rp on
all attributes other than E. The intuition is that users
“see” only R, but the system needs to access the event
attribute Rp.E in order to compute correctly the proba-
bility ranks. For a simple illustration, consider the proba-
bilistic relation name Sp(A,B, E): then S has attributes
A,B. Users care to see a binary table S(A,B), while the
system maintains probabilistic events in Sp(A,B, E).

We assume that the set of functional dependencies
Γ p always contains, or implies the following functional
dependency:

Attr(R) → Rp.E

for every relation Rp: this ensures that we don’t asso-
ciate two different events e1 and e2 to the same tuple t
(instead, we may want to associate e1 ∨ e2 to t).

In addition to this tabular representation of a prob-
abilistic relation, we consider a functional representa-
tion, where a probabilistic instance rp, of type Rp, is
described by the following function eR : Uk → E, where
k = arity(R). When t occurs in rp and its event is
t.E = e, then eR(t) = e, otherwise eR(t) = ⊥. Con-
versely, one can recover rp from the function eR by col-
lecting all tuples for which eR(t) 6= ⊥.

The probabilistic databases we consider have only
atomic events: complex events are introduced only dur-
ing query evaluation. If a probabilistic relation has a
distinct atomic event for each tuple, we call it a tuple-
independent probabilistic relation. For example, both the
relations in Fig. 2 are tuple-independent, where the atomic
events are s1, s2, t1 respectively.

Possible Worlds Database A possible worlds re-
lation of type R is simply a probability distribution on
the set of all deterministic relations of type R. Similarly,
a possible worlds database of schema R̄ is a probability
distribution on all possible data instances with the given
schema.

Semantics of a probabilistic database Now, we
give a simple and intuitive meaning to a probabilistic
relation. Consider a probabilistic relation rp of type Rp

and let r be its deterministic part. The meaning of rp is
a possible worlds relation, which we denote pwd(rp) and
is defined as follows. Let eR : Uk → E be the functional
representation of rp. Given s ⊆ Uk, Pr(s) is defined to

Efficient Query Evaluation on Probabilistic Databases 5

be Pr(
∧

t∈s eR(t) ∧
∧

t6∈s ¬eR(t)). Intuitively, this is the
probability that exactly the tuples in s are “in” and all
the others are “out”. One can check that

∑
s⊆Uk Pr(s) =

1. Also, it follows that for s 6⊆ r, Pr(s) = 0 because ele-
ments not in r have the event ⊥. Similarly, the meaning
of a probabilistic database Dp is a probability distribu-
tion on all deterministic databases D, denoted pwd(Dp).
For an instance, D = s1, . . . , sn and its probability is
Pr(s1)Pr(s2) . . . P r(sn).

We discuss next how possible worlds relations inter-
act with functional dependencies, and focus on a single
relation name Rp. Given a set of functional dependen-
cies Γ p, denote Γ its projection to the deterministic at-
tributes of Rp, i.e. let Γ consist of those dependencies
that can be derived from Γ p and that do not refer to the
event attribute Rp.E. For example, if Rp is Rp(A,B, E)
and Γ p = {A → E,E → B}, then Γ = {A → B}.
Consider a probabilistic instance rp that satisfies Γ p (in
notation: rp |= Γ p), and let Pr be the probability distri-
bution on instances induced by rp (the possible worlds
relation). The question is if a relation s that does not
satisfy Γ can have a non-zero probability, i.e. Pr(s) > 0.
The answer is no: if Pr(s) > 0, s must be a subset of
r (which is rp without the event attribute), and, hence,
must also satisfy the functional dependencies in Γ .

Query semantics Let q be a query of arity k over
a deterministic schema R̄. We define a very simple and
intuitive semantics for the query. Users think of q as nor-
mal query on a deterministic database, but the database
is given by a probability distribution rather than being
fixed. As a result, the query’s answer is also a probabil-
ity distribution. Formally, given a query q and a proba-
bilistic database Dp: qpwd(Dp) is the following probabil-
ity distribution on all possible answers, Prq : P(Uk) →
[0, 1]:

∀S ⊆ Uk, P rq(S) =
∑

D|q(D)=S

Pr(D)

We call this the possible worlds semantics. This definition
makes sense for every query q that has a well defined
semantics on all deterministic databases.

It is impossible to return qpwd(Dp) to the user. In-
stead, we compute a probabilistic ranking on all tuples t ∈
Uk, defined by the function: rankq(t) =

∑
S{Prq(S) |

S ⊆ Uk, t ∈ S}, for every tuple t ∈ Uk. We denote
with qrank(Dp) a tabular representation of the function
rankq: this is a table with k + 1 attributes, where the
first k represent a tuple in the query’s answer while the
last attribute, called Rank is a real number in [0, 1] rep-
resenting its probability.

The Query Evaluation Problem This paper ad-
dresses the following problem: given schema R̄p, Γ p, a
probabilistic database Dp and a query q over schema R̄,
compute the probabilistic rankings qrank(Dp).

Application to queries with uncertain predi-
cates Consider now a deterministic database D and a
query q≈ that explicitly mentions some uncertain pred-

icates. We convert this problem into evaluating a de-
terministic query q, obtained by removing all uncertain
predicates from q≈, on a probabilistic database, obtained
by associating a probability Pr(t) to each tuple t based
on how well t satisfies the uncertain predicates.

3.1 Representation power of probabilistic databases

We have shown that every probabilistic database has a
representation as a possible worlds database. We show
here the converse: that probabilistic databases are pow-
erful enough to represent any possible distribution on
databases. Recall that in a probabilistic database, we
can only store with each tuple an event that is a boolean
function of independent atomic events.

Theorem 1 Let W be any possible worlds database, i.e.
a probability distribution on the set of data instances.
Then, there exists a probabilistic database Dp such that
W = pwd(Dp).

Proof We have a fixed, finite universe U . Let a1, a2, · · ·
be the arities of the relations in the schema and let k =
|U |a1+|U |a2+· · · . Thus, k denotes the number of distinct
possible tuples. The number of possible databases is n =
2k. Let D1, · · ·Dn be all possible data instances. W (Di)
denotes the probability of Di.

We will create n−1 independent events E = {e1, · · · ,
en−1} with probabilities p(e1), · · · , p(en−1) and a boolean
expression fW (Di) in terms of these events for each data
instance so that the following holds: W (Di) = p(fW (Di))
for all i, and the events fW (Di) are all disjoint.

We do it recursively. Let pL =
∑2k−1

i=0 W (Di). Con-
sider the distribution WL that is given by WL(Di) =
W (Di)/pL on domain {D1, · · · , D2k−1} and distribution
WR given by WR(Di) = W (Di)/(1− pL) on the domain
{D2k−1+1, · · · , D2k}.

Recursively, represent WL and WR using 2k−1 − 1
independent variables each. Also create a new variable e
with p(e) = pL. Define

fW (Di) =

{
fWL

(Di) ∧ e i ≤ 2k−1

fWR
(Di) ∧ ¬(e) i > 2k−1

We see that fW uses 2k − 1 independent variables. It
is easy to verify that W (Di) = p(fW (Di)) and fW (Di)
are all disjoint events.

Finally, we create a probabilistic database as possible.
For a relation R in the schema, and for every tuple t, let
eR(t) =

∨
{Di|t∈Di.R} fW (Di). Since the events fW (Di)

are all disjoint, one can verify that when this probabilis-
tic database is converted to possible worlds database, we
get back W .

6 Nilesh Dalvi, Dan Suciu

eσi
c(P)(t) =


eP(t) if c(t) is true
⊥ if c(t) is false

eΠi
Ā

(P)(t) =
W

t′:ΠĀ(t′)=t eP(t′)

eP×iP′(t, t
′) = eP(t) ∧ eP′(t

′)

Fig. 6 Intensional Evaluation

4 Query Evaluation

We turn now to the central problem, evaluating qrank(Dp)
for a query q, and a probabilistic database Dp. Applying
the definition directly is infeasible, since it involves iter-
ating over a large set of database instances. Instead, we
will first review the intensional evaluation of [12], then
describe our approach in Sec 4.3.

We restrict our discussion first to conjunctive queries,
or, equivalently select (distinct)-project-join queries. This
helps us better understand the query evaluation problem
and its complexity, and will consider more complex query
expressions in Sec. 8. We use either datalog notation for
our queries q, or plans P in the select/project/product
algebra3: σ,Π,×.

4.1 Intensional Query Evaluation

One method for evaluating queries on probabilistic data-
bases is to use complex events. We review it here and
discuss its limitations. Start by expressing q as a query
plan, using the operators σ,Π,×. Then modify each op-
erator to compute the event attribute E in each interme-
diate result: denote σi,Πi,×i the modified operators. It
is more convenient to introduce them in the functional
representation, by defining the complex event eP(t) for
each tuple t, inductively on the query plan P, as shown
in Fig 6.

The tabular definitions for σi,Πi,×i follow easily: σi

acts like σ then copies the complex events from the input
tuples to the output tuples; Πi associates to a tuple t the
complex event e1 ∨ . . . ∨ en obtained from the complex
events of all input tuples t1, . . . , tn that project into t;
and ×i simply associates to a product tuple (t, t′) the
complex event e ∧ e′.

Example 2 Let us consider the database Dp described in
Fig. 2. Consider the query plan, P = ΠD(Sp 1B=C T p).
Fig. 7 shows the intensional evaluation of the query (we
used the tuple names as atomic events). Pi(Dp) contains
a single tuple ′p′ with the event (s1 ∧ t1) ∨ (s2 ∧ t1).

It can be shown that Pi(Dp) does not depend on
the particular choice of plan P, and we denote qi(Dp)
the value Pi(Dp) for any plan P for q, and call it the

3 Notice that Π also does duplicate elimination

A B C D E
‘m’ 1 1 ’p’ s1 ∧ t1
‘n’ 1 1 ’p’ s2 ∧ t1

(a) Sp 1i
B=C T p

D E
‘p’ (s1 ∧ t1) ∨ (s2 ∧ t1)

(b) Πi
D(Sp 1i

B=C T p)

D Rank
‘p′ Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) = 0.54

(c) qrank(Dp) = Pr(Πi
D(Sp 1i

B=C T p))

Fig. 7 Intensional Evaluation of ΠD(Sp 1B=C T p)

intensional semantics4 of q on the probabilistic database
Dp. We prove now that it is equivalent to the possible
worlds semantics, qpwd(Dp).

Theorem 2 The intensional semantics and the possible
worlds semantics on probabilistic databases are equiva-
lent for conjunctive queries. More precisely, pwd(qi(Dp))
= qpwd(Dp) for every probabilistic database Dp and ev-
ery conjunctive query q.

Proof Every tuple t in qi(Dp) has a complex event t.E as-
sociated with it. pwd(qi(Dp)) consists of a set of worlds,
each world assigning a truth value to the set of atomic
events. A tuple t belongs to a world in pwd(qi(Dp)) if
t.E is true in that world.

qpwd(Dp) also consists of a set of worlds, each assign-
ing a truth value to the set of atomic events. The content
of a world in qpwd(Dp) is the output of q on the database
defined by that world.

Given a world W (i.e. a deterministic database W),
which is defined by an assignment of truth values to the
atomic variables, let qpwd(Dp)[W] and pwd(qi(Dp))[W]
denote the set of tuples in the corresponding worlds.

We will prove, by induction on the size of q, that
for all W , qpwd(Dp)[W] = pwd(qi(Dp))[W]. This will
show that both the semantics result in exactly the same
possible worlds with same probabilities.

If a query just selects a single relation, this holds triv-
ially. If q is a larger query, there are three possibilities:

1. q = ΠA(q1). Consider any world W . By induction
hypothesis, pwd(qi

1(D
p))[W] = qpwd

1 (Dp)[W]. Thus,

4 In [12] this is the only query semantics considered.

Efficient Query Evaluation on Probabilistic Databases 7

t ∈ qpwd(Dp)[W] ⇔ t.E = true
⇔ (∨t1:ΠA(t1)=tt1.E) = true

⇔ ∃t1,ΠA(t1) = t,

t1 ∈ pwd(qi
1(D

p))[W]
⇔ ∃t1,ΠA(t1) = t,

t1 ∈ qpwd
1 (Dp)[W]

⇔ t ∈ qpwd(Dp)[W]

2. q = σc(q1). Consider any world W . Again, we have

pwd(qi
1(D

p))[W] = qpwd
1 (Dp)[W]

t belongs to pwd(qi(Dp))[W] iff t.E is true, i.e. t sat-
isfies σc and t belongs to pwd(qi

1(D
p))[W]. Similarly,

t belongs to pwd(qi(Dp))[W] iff t satisfies σc and t

belongs to qpwd
1 (Dp)[W]. Therefore, we get

pwd(qi(Dp))[W] = qpwd(Dp)[W]

3. q = q1 1 q2. We have

pwd(qi
1(D

p))[W] = qpwd
1 (Dp)[W],

pwd(qi
2(D

p))[W] = qpwd
2 (Dp)[W]

Given a tuple t = (t1, t2) belonging to q, t.E = t1.E∧
t2.E1. Thus,

t ∈ qpwd(Dp)[W] ⇔ t.E = true
⇔ t1.E = true, t2.E = true
⇔ t1 ∈ pwd(qi

1(D
p))[W],

t2 ∈ pwd(qi
2(D

p))[W]

⇔ t1 ∈ qpwd
1 (Dp)[W],

t2 ∈ qpwd
2 (Dp)[W]

⇔ t ∈ qpwd(Dp)[W]

Thus, by induction, pwd(qi(Dp)) and qpwd(Dp) are
equal.

Theorem 2 allows us to compute qrank(Dp) as follows.
First compute qi(Dp), then compute the probability Pr(e)
for each complex event. Then qrank(Dp) = Pr(qi(Dp)).

Example 3 Fig. 7(c) shows prank(Dp) for Ex. 2. Pr((s1∧
t1) ∨ (s2 ∧ t1)) was shown in Ex. 1.

It is very impractical to use the intensional semantics
to compute the rank probabilities for two reasons. First,
the event expressions in qi(Dp) can become very large,
due to the projections. In the worst case the size of such
an expression can become of the same order of magnitude
as the database. This increases the complexity of the
query operators significantly, and makes the task of an
optimizer much harder, because now the cost per tuple is
not longer constant. Second, for each tuple t one has to
compute Pr(e) for its event e, which is a #P-complete
problem.

PrR(t) = Pr(eR(t))

Prσe
c(P)(t) =


PrP(t) if c(t) is true
0 if c(t) is false

PrΠe
Ā

(P)(t) = 1−
Q

t′:ΠĀ(t′)=t(1− PrP(t′))

PrP×eP′(t, t
′) = PrP(t)× PrP′(t

′)

Fig. 8 Extensional Evaluation

4.2 Extensional Query Evaluation

We now modify the query operators to compute proba-
bilities rather than complex events: we denote σe,Πe,×e

the modified operators. This is much more efficient, since
it involves manipulating real numbers rather than event
expressions. We define a number PrP(t) ∈ [0, 1] for each
tuple t, by induction on the structure of the query plan
P. The inductive definitions in Fig 4.2 should be com-
pared with those in Fig 6. Unlike the formulas in Fig. 6,
the extensional operators assume that the input tuples
have independent events. Recall that eR(t) is the event
associated with tuple t in relation R as defined in Sec 3.

Again, the tabular definitions of σe,Πe,×e follow
easily: σe acts like σ then propagates the tuples’ proba-
bilities from the input to the output, Πe computes the
probability of a tuples t as 1−(1−p1)(1−p2) . . . (1−pn)
where p1, . . . , pn are the probabilities of all input tuples
that project to t, while × computes the probability of
each tuple (t, t′) as p× p′.

We call the result, Pe(Dp), the extensional semantics
of the plan P. If we know Pe(Dp) = qrank(Dp), then we
simply execute the plan under the extensional semantics.
But, unfortunately, this is not always the case, as we saw
in Sec. 2. Moreover, Pe(Dp) depends on the particular
plan P chosen for q. Our goal is to find a plan for which
the extensional semantics is correct.

Definition 1 Given a schema R̄p, Γ p, a plan P for a
query q is safe if Pe(Dp) = qrank(Dp) for all instances
Dp of that schema.

We show next how to find a safe plan.

4.3 The Safe-Plan Optimization Algorithm

Recall that a probabilistic database schema R̄p may con-
sists both of probabilistic relation names, which have
an event attribute E, and deterministic relation names.
Consider a conjunctive query q; we use the following no-
tations:

– Rels(q) = {R1, . . . , Rk} all relation names occurring
in q. We assume that each relation name occurs at
most once in the query (more on this in Sec. 8).

– PRels(q) = the probabilistic relation names in q,
PRels(q) ⊆ Rels(q).

8 Nilesh Dalvi, Dan Suciu

– Attr(q) = all attributes in all relations in q. To dis-
ambiguate, we denote attributes as Ri.A.

– Head(q) = the set of attributes that are in the output
of the query q. Head(q) ⊆ Attr(q).

For a simple illustration, consider the three relations
Rp(A,B, C, E), S(D,F), T (G, H,K) and the query:

q(A,F) :− Rp(A,B, C), S(D,F), T (G, H,K),
A = D,D = H,F = K

Then Rels(q) = {Rp, S, T}, PRels(q) = {Rp}, Attr(q) =
{A,B, C, D, F,G, H,K} and Head(q) = {A,F}.

Let q be a conjunctive query. We define the induced
functional dependencies Γ p(q) on Attr(q):

– Every FD in Γ p is also in Γ p(q).
– For every join predicate Ri.A = Rj .B, both Ri.A →

Rj .B and Rj .B → Ri.A are in Γ p(q).
– For every selection predicate Ri.A = c, ∅ → Ri.A is

in Γ p(q).

We seek a safe plan P, i.e. one that computes the
probabilities correctly. For that each operator in P must
be safe, i.e. compute correct probabilities: we define this
formally next.

Let q1, q2 be two queries, and let op ∈ {σ,Π,×} be a
relational operator. Consider the new query op(q1, q2) (or
just op(q1) when op is unary). We say that ope is safe if
ope(Pr(qi

1(D
p)), P r(qi

2(D
p))) = Pr(opi(qi

1(D
p)), qi

2(D
p))

(and similarly for unary operators), ∀Dp s.t. Dp |= Γ p.
In other words, op is safe if, when given correct proba-
bilities for its inputs ope computes correct probabilities
for the output tuples.

Theorem 3 Consider a database schema where all the
probabilistic relations are tuple-independent. Let q, q′ be
conjunctive queries that do not share any relation name.
Then,

1. σe
c is always safe in σc(q).

2. ×e is always safe in q × q′.
3. Πe

A1,...,Ak
is safe in ΠA1,...,Ak

(q) iff for every Rp ∈
PRels(q) the following can be inferred from Γ p(q):

A1, . . . , Ak, Rp.E → Head(q) (1)

Proof

1. Follows trivially from definition.
2. Since we assume all relations in the query to be dis-

tinct, the complex events in the output of q and q′

comprise of distinct atomic events. Thus, given a tu-
ple tjoin = (t, t′) ∈ q × q′, Pr(tjoin.E) = Pr(t.E ∧
t′.E) = Pr(t.E)Pr(t′.E). So, the join operator is safe.
The independence assumed by the operator indeed
holds.

3. For each output tuple t of the project, consider the set
St of input tuples that map to t. The operator is safe
if for each such t, the complex events corresponding to
tuples in St are independent. Thus, among all tuples
having the same value for A1, · · ·Ak, no atomic event

(i.e. Rp.E for some probabilistic relation Rp) occurs
in two of them having different values of Head(q).
Thus, the following functional dependency must hold
for each Rp.

A1, . . . , Ak, Rp.E → Head(q)

Note that we can replace Rp.E in Eq.(1) by Attr(Rp),
since for tuple-independent relations, Rp.E → Attr(Rp)
and Attr(Rp) → Rp.E always hold.

Obviously, a plan P consisting of only safe operators
is safe. As we prove below, the converse also holds.

Theorem 4 Let P be a safe relational algebra plan for
a query q consisting of selects, projects and joins. Then,
all operators in p are safe.

Proof We will prove the following statement: If P is a
plan for a query q that has at least one unsafe operator
and t is any tuple that can be produced by q, there is a
database Dp such that Pe(Dp) consists of a single tuple
t with incorrect probability.

First, it is easy to see that for any plan P and database
Dp, Pe(Dp) ≥ qrank(Dp). This is because the only op-
erators that are unsafe are projects, and it is easy to see
that they can only overestimate the probabilities. Thus,
there can only be one-sided errors in the probabilities.

We will prove the theorem by induction on the size
of the plan.

If P returns a single relation, its safe and the assertion
holds trivially.

Consider a larger plan P and assume it is safe. There
are three cases:

1. P = q1 1 q2. Since P is unsafe, at least one of q1 and
q2 is unsafe. W.L.O.G, assume q1 is unsafe. Given
any tuple t = (t1, t2), a database can be constructed
such that q1 results in a single tuple t1 with incorrect
probability. Since PrP(t1, t2) = Prq1(t1) ∗ Prq2(t2),
for the final probability to be correct, both Prq1(t1)
and Prq2(t2) have to be correct (since errors can only
be one-sided). Thus, we have constructed a database
that results in a single tuple t with incorrect proba-
bility.

2. P = ΠA(q1). If q1 is safe, the final project operator
must be unsafe and hence, by definition, there exists a
database where the final result is incorrect. If t is any
tuple in the output whose probability is incorrect, we
can restrict the database to produce only the tuple t
(whose probability is still incorrect).
If q1 is not safe, there is a database on which q1 pro-
duces a single tuple with incorrect probability. Thus,
the final project also produces a single tuple whose
probability is still incorrect.

3. P = σc(q1). Consider any tuple t that satisfies the
condition c and create a database on which q1 pro-
duces t with incorrect probability. Thus, σc(q1) also
produces a single tuple with incorrect probability.

Efficient Query Evaluation on Probabilistic Databases 9

We explain safe plans with an example below.

Example 4 Continuing the example in Sec. 2, assume
that both Sp and T p are tuple-independent probabilistic
relations. Hence Γ p is:

Sp.A, Sp.B → Sp.E

T p.C, T p.D → T p.E

Sp.E → Sp.A, Sp.B

T p.E → T p.C, T p.D

The last two functional dependencies follow from the fact
that a tuple-independent relation has a distinct atomic
event for each tuple. Consider the plan ΠD(Sp 1B=C

T p). We have shown in Fig. 4 that, when evaluated ex-
tensionally, this plan is incorrect. We explain here the
reason: the operator Πe

D is not safe. An intuitive justi-
fication can be seen immediately by inspecting the rela-
tion Sp 1i

B=C T p in Fig. 7 (a). The two complex events
share the common atomic event t1, hence they are corre-
lated probabilistic events, while the formula for Πe

D only
works when these events are independent. We show how
to detect formally that Πe

D is unsafe. We need to check:

T p.D, Sp.E → Sp.A, Sp.B, T p.C, T p.D

T p.D, T p.E → Sp.A, Sp.B, T p.C, T p.D

The first follows from Γ p and from the join condition
B = C, which adds Sp.B → T p.C and T p.C → Sp.B.
But the second fails: T p.D, T p.E 6→ Sp.A.

Example 5 Continuing the example, consider now the
plan ΠD(ΠB(Sp) 1B=C T p). We will prove that Πe

D
is safe. For that we have to check:

T p.D, Sp.E → Sp.B, T p.C, T p.D

T p.D, T p.E → Sp.B, T p.C, T p.D

Both hold, hence Πe
D is safe. Similarly, Πe

B is safe in
ΠB(Sp), which means that the entire plan is safe.

Before we describe our algorithm for finding a safe
plan, we need some terminology.

Definition 2 (Separate relations) Let q be a conjunc-
tive query. Two relations Ri, Rj ∈ Rels(q) are called
connected if the query contains a join condition Ri.A =
Rj .B and either Ri.A or Ri.B is not in Head(q). The
relations Ri, Rj are called separate if they are not con-
nected.

Definition 3 (Separation) Two sets of relations Ri and
Rj are said to form a separation for query q iff

1. They partition the set Rels(q)
2. For any pair of relations Ri and Rj such that Ri ∈ Ri

and Rj ∈ Rj, they are separate.

Algorithm 1 is our optimization algorithm for finding
a safe plan. It proceeds top-down, as follows. First, it
tries to do all safe projections late in the query plan.
When no more late safe projections are possible for a
query q, it tries to perform a join 1c instead, by splitting
q into q1 1c q2. Since 1c is the last operation in the
query plan, all attributes in c must be in Head(q). Hence,
Rels(q1) and Rels(q2) must form a separation.

To find a separation, we construct a graph G(q) which
we call the constraint graph. The nodes of G(q) are Rels(q)
and the edges are all pairs (Ri, Rj) of connected rela-
tions, i.e. s.t. q contains some join condition Ri.A =
Rj .B with either Ri.A or Rj .B not in Head(q). Find
the connected components of G(q), and choose q1 and
q2 to be any partition of these connected components:
this defines Rels(qi) and Attr(qi) for i = 1, 2. Define
Head(qi) = Head(q) ∩Attr(qi), for i = 1, 2. If G(q) is a
connected graph, then the query has no safe plans (more
on this below). If G(q) has multiple connected compo-
nents, then we have several choices for splitting q. If q
has a safe plan at all, then we will show that all these
choices lead to a safe plan; hence we can deploy any
standard cost based optimizations algorithm that works
in top-down fashion to select the cheapest plan among
several possibilities5. More on this in Sec 6.

Finally, the algorithm terminates when no more pro-
jections are needed. The remaining join and/or selection
operators can be done in any order.

Algorithm 1 Safe-Plan(q)
1: if Head(q) = Attr(q) then
2:
3: return any plan P for q
4: (P is projection-free, hence safe)
5: end if
6: for A ∈ (Attr(q)−Head(q)) do
7: let qA be the query obtained from q
8: by adding A to the head variables
9: if ΠHead(q)(qA) is a safe operator then

10:
11: return ΠHead(q)(Safe-Plan(qA))
12: end if
13: end for
14: Split q into q1 1c q2

15: s.t. ∀R1 ∈ Rels(q1) R2 ∈ Rels(q2)
16: R1, R2 are separated.
17:
18: if no such split exists then
19:
20: return error(“No safe plans exist”)
21: end if
22:
23: return Safe-Plan(q1) 1c Safe-Plan(q2)

Example 6 Continuing the example in Sec. 2, consider
the original query in Fig. 3 (b), which we rewrite now

5 It is also possible to adapt our algorithm to work with a
bottom-up optimizer.

10 Nilesh Dalvi, Dan Suciu

as:
q(D) :− Sp(A,B), T p(C,D), B = C

Here Attr(q) = {A,B, C, D} and Head(q) = {D}. The
algorithm first considers the three attributes A,B, C in
Attr(q)−Head(q), trying to see if they can be projected
out late in the plan. A cannot be projected out. Indeed,
the corresponding qA is:

qA(A,D) :− Sp(A,B), T p(C,D), B = C

and Πe
D is unsafe in ΠD(qA) because T p.D, T p.E 6→

Sp.A, as we saw in Example 4. However, B and C can
be projected out. By successively doing the projections,
we get the plan for q as ΠD(ΠBD(qBC)), where:

qBC(B,C,D) :− Sp(A,B), T p(C,D), B = C

Now we process qBC , where Attr(qBC) = {A,B, C, D},
Head(qBC) = {B,C,D}. No projection is possible, but
we can split the query into q1 1B=C q2 where q1, q2 are:

q1(B) :− Sp(A,B)
q2(C,D) :− T p(C,D)

The split qBC = q1 1B=C q2 is indeed possible since both
B and C belong to Head(qBC). Continuing with q1, q2,
we are done in q2, while in q1 we still need to project
out A, q1 = ΠB(Sp), which is safe since B,Sp.E → A.
Putting everything together gives us the following safe
plan:

P ′ = ΠD(ΠDB((ΠB(Sp) 1B=C T p))

The plan can be further optimized. For instance, it can
be shown that the projection ΠDB is redundant in the
above join. We discuss the optimization of safe plans in
details in Sec 6.

We state now the soundness of our algorithm: the
proof follows easily from the fact that all projection op-
erators are safe. We prove in the next section that the
algorithm is also complete.

Proposition 1 The safe-plan optimization algorithm
is sound, i.e. any plan it returns is safe.

Proof Define the size of the query q to be |Rels(q)| +
|Attr(q)| − |Head(q)|. We will prove the proposition by
induction on the size of the query.

Algorithm 1 returns a plan in the following three
cases:

1. It returns at line 2. In this case, the plan consists only
of joins and selects, and hence, is safe.

2. It returns at line 9. Note that qA is smaller in size
that q. By induction, Safe-Plan(qA) is safe. Also,
by definition, the final project operator is safe. Thus,
the algorithm returns a safe plan.

3. The algorithm returns at line 16. q1 and q2 are both
smaller that q. By induction, both Safe-Plan(q1)
and Safe-Plan(q1) are safe plans. These plans are
then connected by a join operator, which is always
safe. So the returned plan is safe.

4.4 Completeness of Safe-Plan algorithm

We have shown that Safe-Plan algorithm is sound. We
next prove that it is complete, i.e., if the query is safe,
the algorithm finds a safe plan for it.

We start with few basic results about extensional
evaluation.

Lemma 1 Under extensional evaluation, for any query
q,

Πe
A(Πe

A∪B(q)) = Πe
A(q)

Proof These two expressions have the same output tu-
ples. We only have to show that the tuples have the same
probability in both expressions.

Consider a tuple t belonging to ΠA(ΠA∪B(q)). Then,

1− PrΠA(ΠA∪B(q))(t)

=
∏

(t′|ΠA(t′)=t)

(1− PrΠA∪B(q)(t′))

=
∏

(t′|ΠA(t′)=t)

∏
(t′′|ΠA∪B(t′′)=t′)

(1− Prq(t′′))

=
∏

(t′′|ΠA(t′′)=t)

(1− Prq(t′′))

= 1− PrΠA(q)

This proves the lemma.

Lemma 2 Consider a query q and let A be any attribute
in Head(q). If Π(Head(q)\A)(q) has a safe plan, q also has
a safe plan.

Proof Let P be a safe plan for query Π(Head(q)−A)(q).
By Lemma 1, we can assume that each project operator
in P removes exactly one attribute. Consider the project
operator op in P that removes A. Create a new plan P ′

with op removed from P. We will now show that this plan
is safe for q. Since P is a safe plan, every project operator
satisfies the condition in Theorem 3 given by Equation
(1). For the operators in P ′ that are not ancestors of op,
Equation (1) remains same. So they are still safe. For the
operators in P ′ that are ancestors of op, A gets added to
the left of equation (1). So the functional dependencies
still hold and the operators are still safe. Thus, a safe
plan exists for q.

Lemma 3 Consider a plan P1 = ΠA(q1 1 q2), where
q1 and q2 are queries and Heads(q1) ⊆ A. Also, let A
contain all the attributes used in the join between q1 and
q2. Let P2 = q1 1 (ΠA∩Heads(q2)(q2)). Then P1 is safe
implies that P2 is safe.

Proof First, P2 is a valid plan because A contains all the
attributes that are used in the final join.

Since ΠA(q1 1 q2) is safe, the following can be in-
ferred from Γ p(q1 1 q2) for each Rp ∈ PRels(q1 1 q2):

A,Rp.E → Heads(q1 1 q2)

Efficient Query Evaluation on Probabilistic Databases 11

The above can be rewritten as

Heads(q1), A ∩Heads(q2), Rp.E → (2)
Heads(q1) ∪Heads(q2)

We know that plans q1 and q2 are safe. Thus, to
show that P2 is safe, we only need to show that the
project operator ΠA∩Heads(q2)(q2) is safe. So, for each
Rp ∈ PRels(q2), Γ p(q2) must imply the following:

A ∩Heads(q2), Rp.E → Heads(q2) (3)

Let Γjoin be the set of FDs introduced by the final
join. Then, Γ p(q1 1 q2) = Γ p(q1)∪Γ p(q2)∪Γjoin. Since A
contains all the attributes that occur in Γjoin, Γjoin does
not help in inferring Equation (2). Thus, Γ p(q1)∪Γ p(q2)
imply Equation (2) and hence the following:

Heads(q1), A ∩Heads(q2), Rp.E → Heads(q2)

But now, since Γjoin is not present, Heads(q1) and Γ p(q1)
have no contribution in the above equation. Thus, Γ p(q2)
alone implies Equation (3).

This shows that P2 is a safe plan.

Theorem 5 Let q be a query that has a separation (S, T).
Then, if q has a safe plan, there must be another safe
plan of the form PS 1 PT such that PRels(PS) = S and
PRels(PT) = T (where the join may contain a set of
select conditions).

Proof We will prove this by induction on the size of the
query. The base step corresponding to queries over a sin-
gle relation holds trivially. Let P be a safe plan for q.
There are three cases:

1. The top operator on P is a join. Thus, P can be writ-
ten as P1 1 P2. Let q1 and q2 be the queries corre-
sponding to the plans P1 and P2. It is easy to see that
(PRels(P1)∩S, PRels(P1)∩T) form a separation for
q1. By induction, there is a safe plan PS1 1 PT1 for q1

where S1 = PRels(P1)∩S and T1 = PRels(P1)∩T .
Similarly, there is a safe plan PS2 1 PT2 for q2 where
S2 = PRels(P2)∩S and T2 = PRels(P2)∩T . Thus,
the following is a safe plan for q:

(PS1 1 PS2) 1 (PT1 1 PT2)

The safety of the about plan follows from the safety
of the individual subplans and the safety of the join
operators.

2. The top operator on P is a select. Thus, P can be
written as σc(P ′). Let q′ be the query corresponding
to the plan P ′. (S, T) is still a separation for q′. By
induction, there is a safe plan P ′

S 1 P ′
T for q′. By

simply adding the select condition to the top join, we
get a safe plan as required.

3. The top operator on P is a project. Thus, P can be
written as ΠA(P ′). Let q′ be the query corresponding
to P ′. Note that (S, T) is still a separation for q′.
By induction hypothesis, there is a safe plan for q′

of the form P ′
S 1 P ′

T . Also, A can be written as the
disjoint union of AS and AT , where AS are attributes
of relations from S and AT are attributes of T . Thus,
the following plan is safe for q:

Π(AS ,AT)(P ′
S ,P ′

T)

Using Lemma 1, we get the following equivalent safe
plan:

ΠAS ,AT
(ΠHeads(P′S)∪AT

(P ′
S 1 P ′

T))

We observe that Lemma 3 is applicable to the plan
(ΠHeads(P′S)∪AS

(P ′
S 1 P ′

T)) since (S, T) is a separa-
tion. Thus, the following equivalent plan is also safe:

ΠAS
(P ′

S 1 (ΠAT
(P ′

T)))

Another application of Lemma 3 yields the following
plan

(ΠAS
(P ′

S)) 1 (ΠAT
(P ′

T))

Setting PS = ΠAS
(P ′

S) and PT = ΠAT
(P ′

T), we get
the required result.

The theorem then follows from the principle of induction.

Theorem 6 Algorithm Safe-Plan is complete.

Proof Let q be the given query. Suppose it has an at-
tribute A belonging to Attr(q)−Head(q) such that the
operator ΠHead(q)(qA) is a safe operator, where qA is as
defined in the algorithm. Then, by Lemma 2, q has a safe
plan if and only if qA has a safe plan. So the algorithm
recursively solves for qA. On the other hand, suppose
there is no such attribute A. This implies that in any
safe plan, the final operator cannot be a project opera-
tor as it is not safe. So a safe plan must consist of a join
of two subplans. These two subplans must form a separa-
tion because after they are joined, there is no projection.
Hence, there must exist a separation for q. If not, the al-
gorithm correctly returns false. Otherwise, by Theorem
5, it is sufficient to solve each of the subproblems cor-
responding to the separation separately. This completes
the proof of completeness of the algorithm.

5 Complexity Analysis

We show here a fundamental result on the complexity
of query evaluation on probabilistic databases. It forms
a sharp separation of conjunctive queries into queries
with low and high data complexity, and shows that our
optimization algorithm is complete.

The data complexity of a query q is the complexity of
evaluating qrank(Dp) as a function of the size of Dp. If q
has a safe plan P, then its data complexity is in PTIME,

12 Nilesh Dalvi, Dan Suciu

because all extensional operators are in PTIME. We start
by showing that, for certain queries, the data complexity
is #P -complete. #P is the complexity class of some hard
counting problems. Given a boolean formula ϕ, counting
the number of satisfying assignments, denote it #ϕ, is
#P -complete [36]. (Checking satisfiability, #ϕ > 0, is
NP-complete.) The data complexity of any conjunctive
query is #P , since qrank(Dp) = Pr(qi(Dp)). The follow-
ing is a variant of a result on query reliability by Gradel
et al. [13].

Theorem 7 Consider the following conjunctive query
on three probabilistic tables:

q() : −Lp(x), J(x, y), Rp(y)

Here Lp, Rp are extensional probabilistic tables and J is
deterministic6. The data complexity for q is #P -hard.

We used here a more standard datalog notation for
conjunctive queries. In our notation the query becomes:
q : −Lp(A), J(B,C), Rp(D), A = B,C = D.

Proof (Sketch) Provan and Ball [27] showed that com-
puting #ϕ is #P -complete even for bipartite monotone
2-DNF boolean formulas ϕ, i.e. when the propositional
variables can be partitioned into X = {x1, . . . , xm} and
Y = {y1, . . . , yn} s.t. ϕ = C1∨ . . .∨Cl where each clause
Ci has the form xj ∧ yk, xj ∈ X, yk ∈ Y . (The satis-
fiability problem, #ϕ > 0, is trivially true.). Given ϕ,
construct the instance Dp where Lp is X, Rp is Y and
J is the set of pairs (xj , yk) that occur in some clause
Ci. Assign independent probability events to tuples in
Lp, Rp, with probabilities 1/2. Then qrank(Dp) returns
a single tuple, with probability #ϕ/2m+n. Thus, com-
puting qrank(Dp) is at least as hard as computing #ϕ.

We state now the main theoretical result in this pa-
per. We consider it to be a fundamental property of
query evaluation on probabilistic databases. First, we
need some notations. Given a set of attributes S ⊆ Attr(q),
we denote with S+ = {A ∈ Attr(q) | Γ p(q) ` S →
A}, i.e. the set of attributes A such that S → A can
be inferred from Γ p(q). We say that S determines A
if A ∈ S+. For each relation R, denote Attr0(R) =
(Attr(R))+ − (Head(q))+. That is, Attr0(R) consists
of all attributes that are determined by R but not by
Head(q) 7.

Theorem 8 (Fundamental Theorem of Queries on
Probabilistic DBs) Consider a schema R̄p, Γ p which
consists of a set of probabilistic and deterministic rela-
tions. Let q be a conjunctive query s.t. each relation oc-
curs at most once. Assuming #P 6=PTIME the following
statements are equivalent:

6 Allowing J to be deterministic strengthens the result. The
theorem remains true if J is probabilistic.

7 In general, Attr(R) and Attr0(R) may overlap, without
one of them having to contain the other.

1. The data complexity of q is #P -complete.
2. The Safe-Plan optimization algorithm fails to re-

turn a plan.
3. There exists a sequence of relations R0, R1, · · ·Rk,

Rk+1, and attributes A1 and A2, with the following
properties:
(a) R0 and Rk+1 are probabilistic
(b) Attr0(R0)∩Attr0(R1) contains A1 but Attr0(R0)

does not contain A2

(c) Attr0(Rk)∩Attr0(Rk+1) contains A2 but Attr0(Rk+1)
does not contain A1

(d) Attr0(Ri)∩Attr0(Ri+1) 6⊆ Attr0(R0)∪Attr0(Rk+1)
for 1 ≤ i ≤ k − 1

Before we give the proof, let is look at some examples.

Example 7 Consider the following four queries:

q1() :− Lp(A), J(B,C), Rp(D), A = B,C = D

q2(U) :− Lp(A), J(B,C), Rp(D), A = B,C = D,

S(U,U1), U1 = A

q3() :− Rp
0(A), R1(B,C), R2(D,F), Rp

3(H),
A = B,C = D,F = H

q4() :− Rp
0(A,B), R1(C,D), R2(F,G), Rp

3(H, I)
B = D,D = G, G = I,A = C,F = H

q1 is exactly the query in Theorem 7, which we know
is unsafe. Let us show that it satisfies the condition (3)
of the above theorem.

Since Head(q1) = ∅ and Γ p contains only trivial
functional dependencies, we have Attr0(L) = {A,B},
Attr0(J) = {A,B, C, D}, Attr0(R) = {C,D}, and condi-
tion (3) above follows by taking A1 = A, A2 = D, R0 =
Lp, R1 = J , and R2 = Rp. Indeed Lp and Rp are prob-
abilistic relations, Attr0(L) ∩ Attr0(J) contains A but
Attr0(L) does not contain D, and Attr0(J) ∩ Attr0(R)
contains D but Attr0(R) does not contain A. Also, (d)
holds vacuously because k = 1 here.

If we modify q1() to q1(A,B, C, D), the query be-
comes safe, since no projections are needed; this illus-
trates the need to remove the head variables in the defi-
nition of Attr0.

Let us now look at q2, which is a variation of the
previous query. Assume that U is a key for the relation
S(U,U1). Now, Head(q2) = {U} and (Head(q2))+ =
{U,U1, A, B}, since we have the functional dependency
U → U1 and the query equates U1, A and B. Now,
Attr0(L) = ∅, Attr0(J) = {C,D} and Attr0(L) = {C,D}.
The conditions of Thm. 8 are not satisfied and in fact,
the query is safe. It can be verified that the following
plan is safe:

Πe
U (S 1e

U1=A Lp 1e
A=B (Πe

B(J 1e
C=D Rp)))

q2 illustrates the need to take Head+ rather than
Head in the definition of Attr0.

Efficient Query Evaluation on Probabilistic Databases 13

Query q3 shows that the length of the sequence of
relations that satisfy condition (3) could be arbitrar-
ily large8. The only probabilistic relations here are Rp

0
and Rp

1, and the only sequence that satisfies Thm 8 is
Rp

0, R1, R2, R
p
3. This query is unsafe, while if we drop

any relation from the query, it becomes safe.
Finally, query q4 shows the need for the property

(d) in condition (3). With A1 and A and A2 as H, the
query satisfies properties (a),(b) and (c) but fails (d).
This query is safe, with the following safe plan

Πe
{}(ΠB(Rp

0 1e
A=C,B=D R1) 1e

B=D

ΠD(R2 1e
F=H,G=I Rp

3))

Theorem 8 provides a sharp separation of feasible
and infeasible queries on probabilistic databases. It also
shows that all the queries that can be evaluated in poly-
nomial time can in fact be evaluated using a safe plan.

Before we give the proof, we need a simple result.

Lemma 4 Let q by any query and A be any attribute not
in Head(q). Let qA denote the query obtained by adding
A to the head variables. Then, Πe

A(qA) is safe if A ∈
Attr0(Rp) for all Rp ∈ PRels(q).

Proof For Πe
A(qA) to be safe, Eq 1 must hold. It holds be-

cause for any probabilistic relation Rp, if A ∈ Attr0(Rp),
then Attr(Rp) → A and hence, Rp.E → A.

Now we prove Thm 8.

Proof (Theorem 8)
(1) ⇒ (2) is obvious, since any safe plan has data

complexity in PTIME.
(2) ⇒ (3) Let us assume that Safe-Plan algorithm

fails on q. Then, it must have a sub-query q′ such that
(i) it has no separation and (ii) for every A ∈ Attr(q′)−
Head(q′), Πe

Head(q′)(q
′
A) is not safe where q′A is the query

q′ with A added to head.
For each attribute in Attr(q′)−Head(q′), by Lemma 4,

there is at least one probabilistic relation that does not
determine that attribute. Let A1 be the attribute that
is determined by the largest number of probabilistic re-
lations and let R̄A1 be the set of those probabilistic re-
lations. There is at least one probabilistic relation not
contained in R̄A1 . Let R′ be one such relation. Since the
query has no separation, the constraint graph G(q′) (de-
fined in Sec 4.3) is connected. Its easy to see that an
edge between two relations R1 and R2 in G(q′) implies
Attr0(R1) and Attr0(R2) intersect. Thus, there is a se-
quence of relations R1, R2 · · ·Rk, Rk+1 = R′ such that
R1 ∈ R̄A1 and

Attr0(Ri) ∩Attr0(Ri+1) 6= ∅ (1 ≤ i ≤ k) (4)

Consider the shortest such sequence. Let A2 be any
attribute in Attr0(Rk) ∩ Attr0(Rk+1). There is at least

8 Cor. 1 says that when the schema contains only proba-
bilistic relations, we never need a sequence of relations more
than three.

one relation R0 ∈ R̄A1 that does not determine A2 (oth-
erwise |R̄A2 | would be strictly greater that |R̄A1 |). We
claim that the sequence R0, R1, . . . , Rk, Rk+1 satisfies all
the four properties. We have R0 and Rk+1 probabilistic,
hence (a) holds. (b) and (c) follows from our construc-
tion. If k = 1, (d) holds vacuously. If k > 1, observe that
Attr0(R0) must be disjoint from Attr0(Ri) for i > 1,
otherwise we can obtain a shorter sequence that con-
nects R̄A1 and R′. Similarly, Attr0(Rk+1) must be dis-
joint from Attr0(Ri) for 1 ≤ i ≤ k − 1. (d) follows from
these properties.

(3) ⇒ (1) We prove this by extending the ideas in
Th. 7. We show a reduction from the problem of counting
the number of assignments of bipartite monotone 2-DNF
to evaluating the query q.

Let X = {x1, . . . , xm}, Y = {y1, . . . , yn} and ϕ =
C1∨. . .∨Cl where each clause Ci has the form xf(i)∧yf(i).
We will construct a database as follows. Consider a sin-
gle relation RU , which we call the universal table, whose
attributes are the union of the attributes of all the rela-
tions that occur in the query. We partition the attributes
into four sets: SX consists of attributes in Attr0(R0) −
Attr0(Rk+1), SY consists of Attr0(Rk+1) − Attr0(R0),
S0 is (Attr0(R0) ∪ Attr0(Rk+1)) ∪ (Head(q))+, and SC

consists of all the remaining attributes.
We populate RU with l tuples, one corresponding to

each clause, as follows: in row i, assign a value of xf(i)

to all variables in SX , a value of yf(i) to variables in
SY , a constant value 0 to variables in S0 and a value of
Ci to variables in SC . From this table, construct indi-
vidual tables by taking the projections on corresponding
columns. For tables R0 and Rk+1, let all events have
a probability of 0.5 (which we can assign because both
of them are probabilistic) and let all other tables have
events with probability 1. The resulting database sat-
isfies all the functional dependencies. To see why, con-
sider any FD, Ā → A′, where Ā is a set of attributes
and A′ is an attribute. For this to be violated, one of
the following must hold: (i) Ā ⊆ S0 and A′ 6∈ S0, (ii)
Ā ⊆ S0 ∪ SX and A′ ∈ SY , (iii) Ā ⊆ S0 ∪ SY and
A′ ∈ SX . None of the three cases is possible: S0 is equal
to (Attr(R0))+∩ (Attr(Rk+1))+, S0∪SX is (Attr(R0))+
and S0 ∪ SY is (Attr(Rk+1))+, and all of these sets are
closed under implication.

Claim: The query q, when evaluated on the above
database, returns a single tuple with all attributes 0,
with probability equal to #ϕ/2m+n.

First, since Attr0(R0) does not intersect with SC but
contains SX , the relation R0 will have m tuples corre-
sponding to m distinct values of SX attributes. We use
the variable names x1, . . . , xm to denote corresponding
events. Similarly, the relation Rk+1 will have n distinct
tuples with events denoted by y1, . . . , yn. Now, consider
the intensional evaluation of q that first joins everything
and then projects on Head(q). When we join all the ta-
bles back using the join conditions in the query, we get
back the RU table. This is due to the SC variables. Note

14 Nilesh Dalvi, Dan Suciu

that for 1 ≤ i < k, Attr0(Ri) ∩ Attr0(Ri+1) must con-
tain at least one attribute from the set SC because of
the property (d). Thus, SC attributes connect a tuple
xi in R0 with yj in Rk+1 if and only if (xi ∧ yj) is a
clause in ϕ. The join results in precisely l tuples, with
complex events corresponding to the clauses in ϕ. When
we project this table on Head(q), since Head(q) ⊆ S0,
we get just one tuple whose complex event is the formula
ϕ. Since all truth assignments have the same probability,
the probability of ϕ is #ϕ/2m+n.

Corollary 1 Consider the special case of Thm. 8 where
all relations are probabilistic, i.e. there are no determin-
istic relations. Then, condition (3) of the theorem can be
replaced by the following simpler condition:

3’. There exists three relations R0, R1 and R2, and at-
tributes A1 and A2, s.t. Attr0(R0) ∩ Attr0(R1) con-
tains A1 but not A2, and Attr0(R1)∩Attr0(R2) con-
tains A2 but not A1.

Proof It is easy to check that (3′) above implies (3) in
Thm. 8. To prove in the other direction, consider the
sequence R0, R1, . . . , Rk, Rk+1 in (3). We will show that
R0, R1 and R2 satisfy the properties above. If k = 1,
this holds trivially. If k > 1, let A′

2 be any attribute
in Attr0(R1) ∩ Attr0(R2) − Attr0(R0), which exists by
property (d). Thus, Attr0(R0) ∩ Attr0(R1) contains A1

but not A′
2, and Attr0(R1) ∩Attr0(R2) contains A′

2 but
not A1.

When Γ p is empty, i.e. there are no functional depen-
dencies expect for the trivial dependencies, Cor. 1 gives
us a very elegant characterization of the queries with
#P -complete complexity. A query is #P -complete, if it
contains the following pattern (shown in datalog nota-
tion), with x, y 6∈ Head(q)

q(. . .) :− R0(x, . . .), R1(x, y, . . .), R2(y, . . .), · · ·

If such a pattern can not be found in the query, the data
complexity of the query is PTIME.

6 Query Optimization

We have shown in Sec 4 that the relational algebra oper-
ators can be modified to compute the probabilities, and
we introduced three new operators: σe, Πe and 1e. Fur-
ther, we saw that different relational algebra plans for the
same query can give different answers under extensional
semantics, and only a subset of plans are safe, i.e. give
correct answers. In this section, we consider the problem
of finding an efficient safe plan using a cost-based opti-
mizer. Recall that the Safe-Plan algorithm in Sec 4.3
only gives us one safe plan. Traditional query optimiz-
ers start from one query plan and use relational algebra
equivalences to search for alternate plans. However, σe,

Πe and 1e do not satisfy the traditional equivalences 9.
For instance, Πe and 1e do not commute. Therefore, we
give a set of transformation rules for these operators that
can be used to search for alternate safe plans.

A transformation rule takes a relational algebra plan
consisting of these extensional operators and produces a
new plan. We say that a transformation rule is sound if,
when applied to a safe plan, it results in a safe plan10.
Below are some transformation rules:

Rule 1: [Join Commutativity] Extensional joins are com-
mutative

R 1e S ⇔ S 1e R

Rule 2: [Join Associativity] Extensional joins are asso-
ciative

R 1e (S 1e T) ⇔ (R 1e S) 1e T

Rule 3: [Cascading Projections] Successively eliminating
attributes from a relation is equivalent to simply elim-
inating all but the attributes retained by the last pro-
jection

Πe
A(Πe

A∪B(R)) ⇔ Πe
A(R)

Rule 4: [Pushing Projections Below a Join] A projection
can be pushed below a join if it retains all the at-
tributes used in the join.

Πe
A(R 1e S) ⇒ (Πe

A1
(R)) 1e (Πe

A2
(S))

where A1 and A2 are the attributes in R and S re-
tained by the projection.

Rule 5: [Lifting Projections Up a Join] A Projection can
not always be lifted up a join. The following trans-
formation rule can be applied only when the top Πe

operator in the resulting plan satisfies the Eq. 1 of
Thm. 3.

(Πe
A(R)) 1e S ⇒ Πe

A∪Attrs(S)(R 1e S)

Theorem 9 The transformation rules described above
are sound.

The soundness of rules 1 and 2 can be verified easily,
rules 3 and 4 follow from Lemma 1 and Lemma 3 respec-
tively, while Rule 5 is sound by definition. We haven’t
shown the rules involving σe operator, but it behaves ex-
actly like the traditional select operator and commutes
with project, join and other select operators.

Next, we study the completeness of the rules. Ideally,
we would like to traverse the space of all safe plans using
the above transformation rules. Given two plans P1 and

9 Contrast this with the intensional operators σi, Πi and
1i defined in Sec 4.1. It is shown in [12] that these operators
satisfy all the equivalences that traditional operators satisfy
10 A sound transformation rule applied to an unsafe plan
may result in a plan that is not equivalent to it. We only
require that the rule produce equivalent plans when applied
to safe plans

Efficient Query Evaluation on Probabilistic Databases 15

P2, let P1 ⇒∗ P2 denote the statement that P2 can be
obtained from P1 by a sequence of the above transfor-
mation rules. Note that rules 1, 2 and 3 can be applied in
either direction. Also, if P2 can be obtained from P1 by
applying rule 4, then P1 can be obtained back from P2

by applying rule 5. The rule will be applicable because
P1, being a safe plan, will satisfy the conditions of rule
5. Hence, we have the following result.

Lemma 5 For two safe plans P1 and P2, if P1 ⇒∗ P2,
then P2 ⇒∗ P1.

This makes ⇒∗ an equivalence relation. To empha-
size this, we will use the notation P1 ⇔∗ P2 to denote
that either plan be transformed into the other. We next
prove our main result for query optimization which says
that the transformation rules are complete, i.e. any safe
plan can be reached from any other safe plan using these
transformations.

Theorem 10 Let P1 and P2 be two safe plans for a
query q. Then, P1 ⇔∗ P2.

Proof First, using rule 3 in the reverse direction in both
P1 and P2, we ensure that every Πe operator removes
exactly one attribute. Now, we use induction on the size
of the plans.

Suppose the topmost operator in P1 is a Πe operator
that removes the attribute A. Let qA be the query ob-
tained from q by adding A to the head variables. Then,
P1 = Πe

Heads(q)(P
′
1), where P ′

1 is a safe plan for query
qA. Consider the operator in P2 that removes the at-
tribute A (it need not be the top operator in P2). Let P ′

2

be the plan obtained by removing this operator from P2.
As shown in the proof of Lemma 2, P ′

2 is a safe plan for
the query qA. By induction hypothesis, P ′

1 ⇔∗ P ′
2 and

hence,

P1 = Πe
Heads(q)(P

′
1) ⇔∗ Πe

Heads(q)(P
′
2)

Note that Πe
Heads(q)(P

′
2) is a plan that looks exactly

like P2 except that it removes the attribute A as a fi-
nal operation. Using successive applications of rule 4,
we can push this operation down to its original place in
P2 (its always safe to push a projection down). Thus,
Πe

Heads(q)(P
′
2) ⇔∗ P2, which proves that P1 ⇔∗ P2.

If the topmost operator in P2 is a Πe, we can again
apply the same argument. So lets assume that both of
them have a 1e as the top operator. Let the top join in
P1 split the relations into sets S and T , and let the corre-
sponding subplans be PS and PT . Thus, P1 = PS 1e PT .
S and T must form a separation for q since there are no
projections after the join. Similarly, let the top join in
P2 split the relations into S1 ∪ T1 and S2 ∪ T2, where
S1, S2 ⊆ S and T1, T2 ⊆ T . Again, S1 ∪ T1 and S2 ∪ T2

form a separation. Let P2 = PS1T1 1e PS2T2 . Denote
qS1T1 the query represented by the plan PS1T1 . S1 and
T1 form a separation for qS1T1 , since S and T form a sep-
aration. By Thm. 5, qS1T1 has an equivalent safe plan of

the form PS1 1 PT1 , where PS1 only refers to relations in
S1 and PT1 only refers to relations in T1. By induction
hypothesis, PS1T1 ⇔∗ PS1 1 PT1 . Using similar argu-
ment, we get PS2T2 ⇔∗ PS2 1 PT2 for some plans PS2

and PT2 . We have

P2 = PS1T1 1e PS2T2

⇔∗ (PS1 1e PT1) 1e (PS2 1e PT2)
⇔∗ (PS1 1e PS2) 1e (PT1 1e PT2)

The last equivalence uses the rules 1 and 2 to reorder the
joins. We again use induction hypothesis on these sub-
plans to get (PS1 1e PS2)⇔∗ PS and (PT1 1e PT2)⇔∗ PT .
This proves that P1 ⇔∗ P2.

7 Unsafe Plans

When a query’s data complexity is #P -complete, then
Safe-Plan fails to return a plan. Since this can indeed
happen in practice, we address it and propose two solu-
tions.

7.1 Least Unsafe Plans

Here we attempt to pick a plan that is less unsafe than
others, i.e. minimizes the error in computing the prob-
abilities. Recall from Eq.(1) that Πe

A1,...,Ak
is safe in

Πe
A1,...,Ak

(q) iff A1, . . . , Ak, Rp.E → Head(q) for every
Rp. Let B̄ = {A1, . . . , Ak, Rp.E}∩Attr(Rp) (hence Rp.E ∈
B̄) and C̄ = Head(q) ∩ Attr(Rp). Define Rp

fanout to be
the expected number of distinct values of C̄ for a fixed
value of the attributes B̄. In a relational database sys-
tem, it is possible to estimate this value using statis-
tics on the table Rp. Define the degree of unsafety of
Πe

A1,...,Ak
to be maxRp∈PREL(Q)(R

p
fanout − 1). Thus, a

safe project has degree of unsafety 0. Also, the higher
the degree of unsafety, the higher is the expected error
that would result from using the extensional semantics
for that project operator.

We modify Algorithm 1 to cope with unsafe queries.
Recall that the algorithm tries to split a query q into
two subqueries q1, q2 s.t. all their join attributes are in
Head(q). Now we relax this: we allow joins between q1

and q2 on attributes not in Head(q), then project out
these attributes. These projections will be unsafe, hence
we want to minimize their degree of unsafety. To do that,
we pick q1, q2 to be a minimum cut of the graph, where
each edge representing a join condition is labeled with
the degree of unsafety of the corresponding project op-
eration11. The problem of finding minimum cut is poly-
nomial time solvable as a series of network flow problems
or using the algorithm of Stoer and Wagner [33].

11 The estimator of Rp
fanout should make sure that the esti-

mated value is 0 only when the FD holds, otherwise the algo-
rithm may favor ‘expected’ safe plans over truly safe plans.

16 Nilesh Dalvi, Dan Suciu

7.2 Monte-Carlo Approximations

As an alternative, we present now an algorithm based
on a Monte-Carlo simulation, which runs in polynomial
time and approximates the probabilities to arbitrary pre-
cision.

Given a conjunctive query q over probabilistic rela-
tions Rp

1, R
p
2 · · ·R

p
k, let q′ be the query obtained from

q by making it return all the variables in its body, i.e.
Head(q′) = Attr(q′) = Attr(q) and q = ΠHead(q)(q′).
Also, let q′ return all event attributes Ē = Rp

1.E, . . .,
Rp

k.E. Evaluate q′ over the database (without any prob-
ability calculations) and group the tuples in the answer
based on the values of their attributes Head(q). Consider
one such group, and assume it has n tuples t1, . . . , tn.
The group defines the following complex event expres-
sion:

∨n
i=1 Ci, where each Ci has the form e1 ∧ . . . ∧ ek.

We need to compute its probability, since this will be
the probability of one tuple in qrank(Dp). We are back
to the problem of evaluating the probabilities of complex
events, but now these events Ci are in disjunctive nor-
mal form (DNF). Before we describe the techniques to
evaluate the probabilities of DNF formulas, let us look
at an example.

Consider the probabilistic database given in Fig. 2
and the query in Fig. 3 (b). We have

q(u) : Sp(x, y), T p(z, u), y = z

We create a new query q′ that returns all the variables
in its body, which is as follows:

q(u, x, y, z) : Sp(x, y), T p(z, u), y = z

When we evaluate it over the probabilistic database, we
get the following result:

x y z u E
‘m’ 1 1 ’p’ s1 ∧ t1
‘n’ 1 1 ’p’ s2 ∧ t1

Observe that since the new query returns all the variables
in its body, there are no projections and every event is
a conjunction of atomic events. We do a final projection
at the end, giving us a single tuple {′p′} whose event is
the DNF expression (s1 ∧ t1) ∨ (s2 ∧ t1).

The problem of evaluating the probability of a boolean
expression, even when restricted to DNF formulas, is
#P -complete [36]. However, it can be approximated ef-
ficiently using the Monte Carlo algorithm described by
Karp [18]: given a DNF formula with N clauses and any
ε and δ, the algorithm runs in time O(N/ε2 ln 1/δ), and
guarantees that the probability of the error being greater
that ε is less than δ.

In our case, N for a given output tuple is the num-
ber of tuples that got merged during the final projection
to produce the output tuple. The simulation algorithm
runs in time linear in N and hence, linear in the size of
the intermediate result before the final projection. As a

final note, if N is very small, an exact algorithm may
be applied in place of the simulation. This choice can be
made independently for each output tuple.

8 Extensions

8.1 Relations with Repeated Events

The various results and the query evaluation technique
we have described so far assume that all the events in
probabilistic relations are distinct. However, there are
several scenarios that require multiple tuples sharing a
common event. Consider a relation Casts(actorname,
filmname) and a query with an approximate predicate
Casts.actorname ≈ · · · . Given two tuples with the same
actor name, the user either wants both of them or none of
them. Thus, a common event should be associated with
both the tuples, rather than each one of them indepen-
dently satisfying the predicate. This choice also affects
the probabilities of the resulting tuples. Suppose the user
simply wants to return a list of actors (with the predicate
Casts.actorname ≈ · · ·). If an actor that approximately
matches the predicate appears 100 times in the relation
with independent events, its final probability in the an-
swer would be very high. On the other hand, if the same
event is given to all these tuples, the final probability
will not depend on how many times the actor appears in
the database.

Fortunately, handling repeated events is easy in our
framework. A user can specify them by using functional
dependencies involving the event attributes. In the above
example, the query predicate induces the following de-
pendency: Casts.actorname→ Casts.E. For the query
evaluation algorithms to work, we can use the following
four-step procedure:

1. Normalize the schema: we create a virtual schema
that represents the same data in normalized form,
such that no probabilistic table has repeated events.
This is achieved as follows: for each probabilistic table
TP where the events in TP .E are not unique, we
decompose it into two tables, a deterministic table
T1 and a probabilistic table TP

2 . TP
2 stores all the

distinct events of TP . It also has an attribute EID
that stores a unique identifier for each distinct event.
T1 is the deterministic part of TP along with an extra
attribute EID that refers to the corresponding events
in T2. Thus, joining T1 and TP

2 gives us back the
original table TP . This decomposition achieves our
objective: the new schema represents the same data
and further, every probabilistic table in it has unique
events. Note that this is only a virtual schema: we do
not transform the data into the new schema.

2. Translate original query into new schema: this
is easy, every occurrences of TP in the query is re-
placed by the join T1 1EID TP

2 (this is done for each
TP that is decomposed in step 1)

Efficient Query Evaluation on Probabilistic Databases 17

3. Find a safe plan: using our query evaluation algo-
rithm, we find a safe plan P ′ for the translated query
over the new schema.

4. Translate back to original schema: we translate
the safe plan P ′ into a plan P over original schema.
We replace each occurrence of T1 and TP

2 with a plan
that compute them from TP using projections. These
projections will not be probabilistic projections but
normal projections without any probability calcula-
tions.

We illustrate this procedure with an example. Con-
sider two probabilistic relations RP (A,B) and SP (C,D).
RP has all distinct events while SP has a distinct event
for each value of D. Thus, we have {SP .E → S.C} and
{SP .C → S.E}. Now, consider the query

q(x) : −RP (x, y), SP (y, z)

To find a safe plan, first we create a new schema.
We decompose SP into two relations, S1(C,D,EID) and
SP

2 (EID). Thus, the following holds in the new schema:
{S1.EID → S1.C} and S1.C → S1.EID}. Next we
translate q into a query q′ over the new schema. We have

q′(x) : −RP (x, y), S1(y, z, eid), SP
2 (eid)

Using the Safe-Plan algorithm given in Sec 4.3, we
get the following plan for q′

P ′ = ΠA(RP 1P
B=C (ΠB,EID(S1) 1EID SP

2))

Finally, we substitute SP
2 with a plan that projects

SP on E and substitute SP
1 with a plan that projects SP

on A,B and E.
Note that repeated events provide, in a limited way,

support for specifying dependencies between tuples. Sup-
porting arbitrary dependencies between tuples in an ef-
ficient manner is beyond the scope of this paper.

8.2 Additional operators

So far, we have limited our discussion to conjunctive
queries, or, equivalently to the algebra consisting of σ,
Π and ×. We show now how to extend these techniques
to ∪,−, γ (union, difference, groupby-aggregate). A large
fragment of SQL queries, including queries with nested
sub-queries, aggregates, group-by and existential/univer-
sal quantifiers can be expressed in this logical algebra [35].
(We omit δ (duplicate elimination) since we only con-
sider queries with set semantics, i.e. δ is implicit after
every projection and union.) Fig. 9 describe the exten-
sional semantics for these operators, using the functional
notation.

The treatment of union and set difference operators
with intensional semantics is given in [12]. Similarly, ag-
gregate queries have been considered by Sadri [30] and
Ross et al. [28] using possible worlds approach. Our aim,

Prp∪ep′(t) = 1− (1− Prp(t))(1− Prp′(t))
Prp−ep′(t) = Prp(t)× (1− Prp′(t))
Prγe

Ā,min(B)
(p)(t, v) = PrΠe

Ā
(σe

B=v
(p))(t)×

(1− PrΠe
Ā

(σe
B<v

(p))(t))

Prγe
Ā,max(B)

(p)(t, v) = PrΠe
Ā

(σe
B=v

(p))(t)×
(1− PrΠe

Ā
(σe

B>v
(p))(t))

Fig. 9 Extensional Semantics for Union, Set difference, Min,
Max

as with conjunctive queries, it to study when the cheap
extensional evaluation can be used in place of the ex-
pensive possible worlds approach. The following theorem
gives sufficient conditions under which it is safe to use
the extensional semantics for these operators.

Theorem 11 Let q, q′ be conjunctive queries.

1. ∪e is safe in q ∪e q′ if PRels(q) ∩ PRels(q′) = φ.
2. −e is safe in q ∩e q′ if PRels(q) ∩ PRels(q′) = φ.
3. γĀ,agg(B) is safe in γĀ,agg(B)(q) if ΠĀ(q) is safe, where

agg is min or max, i.e. they have the same condition
for safety as the projection operator.

The conditions are intuitive. For instance, in q ∪e q′,
if PRels(q) and PRels(q′) do not contain a common re-
lation, then the complex events in q and q′ will be inde-
pendent, and hence, the extensional semantics will work.
The conditions are not necessary: q and q′ may contain
a common relation, but with disjoint select clauses on
that relation, so that the common relation does not con-
tribute the same events to q and q′. While a more detailed
condition can be worked out, there is a much bigger and
challenging open problem: is there a dichotomy result,
analogous to Thm. 8, for queries with these operators?
In other words, if there is no extensional plan for a query,
does it mean that the query has high complexity?

In the case of sum, the aggregated attribute may take
values that are not in the input table. For instance, con-
sider a simple sum query over a single probabilistic table
with 50 tuples. There are 250 possible worlds defined by
this table and each world can potentially have a distinct
value of the sum. In the true spirit of the possible worlds
semantics, all of these 250 sums should be returned as the
answer along with their probabilities. Instead, it may be
more useful to the user if we simply compute the ex-
pected value of the sum. Both of these two semantics
has been considered in the literature. Computing the ex-
pected value of the sum is much easier, using the linear-
ity of expectations. According to the linearity of expec-
tations, if there are tuples t1, . . . , tk with probabilities
p1, . . . , pk and values v1, . . . , vk, then the expected value
of the sum is p1v1 + . . . + pkvk. This holds irrespective
of whether the tuples are independent or not, so it also
applies to tuples from an intermediate result. Thus, once
the input to the sum operator has been evaluated, using

18 Nilesh Dalvi, Dan Suciu

either a safe plan or simulation, the expected value of
sum can easily be computed. The count aggregate can
be treated in a similar fashion.

Having clause A having clause with min or max
aggregate does not pose additional difficulty, because
once the aggregate has been computed for each group,
the having clause gets translated into a simple select
condition. This does not work for sum and count, since
we only compute their expected values. Processing a
having clause with sum or count efficiently is a much
harder problem and beyond the scope of this work.

Self-joins All of our techniques apply in the presence
of self-joins involving deterministic tables. However, they
do not work when there is a self-join involving a proba-
bilistic table. We argue that a query q≈ with uncertain
predicates rarely results in self-join, even if the same ta-
ble R occurs twice in q≈. For instance, consider the query

R(x, y, z), R(x′, y′, z′), x = x′, y ≈′ ABC ′, z′ ≈′ DEF ′

The query would have a self join between two occurrences
of R, each being probabilistic because of the uncertain
predicates. However, because of the different uncertain
predicates on the two occurrences, the system will make
two probabilistic “copies”: Rp

1 and Rp
2. Thus, there is no

self-join in the resulting query.
Nevertheless, self-joins are important from the per-

spective of probabilistic databases in general. A self-join
does not rule out a safe extensional plan. A self-join is
safe when tuples are guaranteed not to join with them-
selves. For instance, if a query contains a self-join be-
tween RP renamed as R1 and R2, conditions like (R1.id <
R2.id) or (R1.type = A and R2.type = B) makes sure
that no tuple in RP joins with itself. Even when tuples
join with themselves, queries can have a safe plan. For
instance, consider the query

q(x, y, z) : − RP (x, y), RP (x, z)
It can be written as the union of following two queries:

q1(x, y, y) : − RP (x, y)

q2(x, y, z) : − RP (x, y), RP (y, z), y 6= z

Now, both the queries can be evaluated using a safe plan
(q2 has safe plan because tuples do not join with them-
selves), and the results can be combined. Such a decom-
position is not always possible. A complete dichotomy
result for queries with self-joins seems challenging and
we leave it as an open problem.

Of course, the Monte-Carlo simulation algorithm works
fine even in the presence of self-joins.

Extending the optimization algorithm Safe-
Plan is extended to handle each block of conjunctive
queries separately. As an example, the query in Section
1, asking for an actor whose name is like ‘Kevin’ and
whose first ‘successful’ movie appeared in 1995, has a
safe plan as shown below:

Πname(A 1actorid

(σyear=1995(γactorid,min(year)(Πactorid,yearC)))

9 Atomic Predicates

Our main motivation is executing a query with uncertain
predicates q≈ on a deterministic database D. As we saw,
our approach is to apply the uncertain predicates first,
and generate a probabilistic database Dp, then evaluate
q (without the uncertain predicates). We discuss here
briefly some choices for the uncertain predicates pro-
posed in the literature. All proposals have a notion of
closeness between two data values. This is domain de-
pendent and can be classified into three categories:

Syntactic closeness This applies to domains with proper
nouns, like people’s names. Edit distances, q-grams
and phonetic similarity can be employed. The excel-
lent surveys on string matching techniques by Zo-
bel and Dart [39] and Navarro [22] describe more
than 40 techniques and compare them experimen-
tally. Navarro also has a discussion on the probability
of string matching. In our system, we used the 3-gram
distance, which is the number of triplets of consecu-
tive letters common to both words.

Semantic closeness This applies to domains that have a
semantic meaning, like film categories. A user query
for the category ‘musical’ should match films of cate-
gory ’opera’. Semantic distance can be calculated by
using TF/IDF or with ontologies like Wordnet [37].
We do not support them in our system currently.

Numeric closeness This applies to domains like price and
age. Distance can be just the difference of the values.

Depending on the semantics of the attributes, the
distance metric to use can be specified a priori for each
attribute. Once distances are defined between two values
of an attribute, they need to be meaningfully converted
into probabilities. One way of converting is to fit a distri-
bution curve on the distances. An example is a Gaussian
curve centered around the distance 0 where it takes value
1. The variance of the Gaussian curve, which reflects the
importance given to the match on that attribute, can be
set depending on the domain or user preferences. In our
experiments, we used fixed, query independent values,
for the variances. An ideal system should use metrices
based on user studies or learn from relevance feedbacks
but developing techniques for these is beyond the scope
of this work.

Finally, one issue is when to generate new proba-
bility events. For example consider the uncertain pred-
icate Product.category ≈ . . . and assume there are
two products with the same category. Should they result
in two independent probabilistic events with the same
probabilities, or in the same probabilistic events? Both
choices are possible in our system. In the first case the
functional dependency is Productp.key → Productp.E
while in the second the FD is Productp.category →
Productp.E. In the latter case, we will have a relation
with repeated events and will need to use the techniques
of Sec. 8.1 to generate safe plans.

Efficient Query Evaluation on Probabilistic Databases 19

10 Prototype

Based on the theory of probabilistic databases that we
have developed, we return to the problem of building
a system that can support complex SQL queries with
uncertain predicates.

Our query language is an extension of standard SQL
that has an ≈ operator. Figure 1 shows an example. Our
system for supporting these queries have several salient
features. First, it is implemented as a middleware. It
works on top of any off-the-shelf database engine contain-
ing relational data. Secondly, it does not require altering
either the schema of the data in the database. Finally,
given an uncertain query, it does not create a new in-
stance of probabilistic database. Rather, it rewrites the
query into a new standard SQL query that is (i) safe, (ii)
contains all the probability calculations embedded in the
query using various aggregates and (iii) can be directly
executed by any engine to return the tuples along with
probabilities.

We describe the above process with the help of an
example. Consider the following SQL query

SELECT Films.year
FROM Films, Casts
WHERE Films.filmid = Casts.filmid

and Films.name ≈ ‘FILM’
and Casts.actor ≈ ‘ACTOR’

Using the uncertain predicate Films.name ≈ ‘FILM’,
we need to convert the Films table into a probabilistic
table. Assume we have a function MATCH stored in the
database that given two film names outputs a probabil-
ity score of their match. Then, the following SQL query
represents the probabilistic Films relation

SELECT Films.year,
MATCH(Films.name, ‘FILM’) as prob

FROM Films

Similarly, we can create a SQL statement for a prob-
abilistic Casts relation. Now, the following plan is a safe
plan for the query:

πyear(
(πFilms.year,F ilms.filmid) 1filmid (πCasts.filmid))

We convert this plan back into a SQL query with
probability calculations as shown in Fig 10. Note that al-
though standard database engines do not have a PRODUCT
aggregate, it can be implemented using the following
transformation:

PRODUCT(A) ≡ POWER(10, SUM (LOG (A)))

This technique of SQL rewriting can be applied to any
query plan in general. Recursively, a SQL statement is
generated for each node where the last attribute refers
to the probability of the tuples and parent nodes nest
the SQL queries of their children.

SELECT P1.year,
1 - PRODUCT(1 - P1.prob * P2.prob) as prob

FROM
(SELECT year, filmid,
1 - PRODUCT(1 - MATCH(name, ‘FILM’)) as prob
FROM Films
GROUP BY year, filmid
) as P1
(SELECT filmid,
1 - PRODUCT(1 - MATCH(actor, ‘ACTOR’)) as prob
FROM Casts
GROUP BY filmid
) as P2
WHERE P1.filmid = P2.filmid
GROUP BY P1.year

Fig. 10 The final SQL rewriting

11 Experiments

We performed some preliminary evaluation of our proba-
bilistic query evaluation framework, addressing four ques-
tions. How often does the Safe-Plan optimization al-
gorithm fail to find a plan? What is the performance of
safe plans, when they exists? Are naive approaches to
query evaluation perhaps almost as good as a safe plan?
And how effectively can we handle queries that do not
have safe plans?

We did not modify the relational engine, but instead
implemented a middleware. SQL queries with approx-
imate predicates were reformulated into “extensional”
SQL queries, using the techniques described in this pa-
per, and calls to a TSQL function computing 3-gram
distances. These queries were then executed by the rela-
tional engine and returned both tuples and probabilities.
We used Microsoft SQL Server.

We used the TPC-H benchmark, with a database of
0.1GB. We modified all queries by replacing all the predi-
cates in the WHERE clause with uncertain matches. The
constants in the queries were either misspelled or made
vague. For instance, a condition like part.container =
’PROMO PLATED GREEN’ was replace with part.container
≈ ’GREEN PLATE’. When executed exactly, all modified
queries returned empty answers.

All of the following experiments were carried on the
first 10 of the 22 TPC-H queries. We found other queries
to be not very interesting for applying uncertain predi-
cates, since most of them involve complex aggregates.

1. Frequency of unsafe queries In our first exper-
iment, we wanted to see how many queries do not have
safe plans. Out of the 10 TPC-H queries, 8 turned out
to have safe plans. Q7 and Q8 were the only query that
were unsafe. These also become safe if not all of their
predicates are uncertain.

2. Performance Next, we measured the running
times for the eight queries that have safe plans, shown
in Figure 11. All times are wall-clock. The first column
is the running time of the safe plan. The second column
represents an optimization where at each intermediate

20 Nilesh Dalvi, Dan Suciu

0

5000

10000

15000

20000

25000

30000

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10

R
un

ni
ng

 T
im

e(
m

s)

Queries

Running Times of Safe TPC-H Queries

Safe Plan
Optimized Query

Bare Query

Fig. 11 TPC-H Query Running Times

0
20
40
60
80

100
120
140
160

Q2 Q3 Q5 Q9 Q10

A
ve

ra
ge

 E
rr

or
(%

)

Queries

Errors on Safe Queries

Fig. 12 Errors on Safe TPC Queries

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Number of Answers

Clever Plan versus Naive Plan for Q3

Fig. 13 Recall Plot for Q3

stage, tuples with zero probability are discarded. This
optimization does not affect the final answer and as we
can see from the graph, it brings about considerable sav-
ings for some queries. This also suggests the use of other
optimizations like an early removal of tuples with low
probabilities if the user is only interested in tuples with
high probability. The third column in the graph shows
the time for running safe queries without taking into ac-
count the computation time for the uncertain predicate,
which, in our case, is the 3-gram distance. The graphs
show that most of the time is spent in computing the un-
certain predicate (for Q3, this accounts for almost all of
the running time). It suggests that significant improve-
ments can be achieved if the predicates are supported by
the engine itself.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Number of Answers

Clever Plan versus Naive Plan for Q10

Fig. 14 Recall Plot for Q10

3. Naive Approaches In the next experiment we
calculated the error produced by a naive extensional
plan. We considered the naive plan that leaves all project
operators (and the associated duplicate elimination) at
the end of the plan, which are typical plans produced
by database optimizers. The error was calculated as be-
low: for each tuple, we measured the percentage error
in its probability relative to the correct probability, and
we took the average over all tuples. Figure 12 shows the
percentage relative error of naive plans. We only consid-
ered the 8 queries that have safe plans. The naive plans
for Q1, Q4, Q6 were already safe, hence had no errors
(and Safe-Plan indeed returned the same plan): these
queries are not shown. Queries Q3, Q5 and Q10 had large
errors with Q5 showing an average error of 150% in the
tuple probabilities. Queries Q2 and Q9 had negligible er-
rors. Thus, while some naive plans were bad, others were
reasonable. But, in general, naive plans can be arbitrarily
bad. However, we argue that the low extra complexity of
searching for a safe plan is a price worth paying in order
to avoid the (admittedly rare) possibility of arbitrarily
large errors.

However, since we are only interested in ranking the
results, not in the actual probabilities, it is worth asking
whether high errors in the probabilities translate into
high ranking results. We plotted the recall graphs for
queries Q3 and Q10 (for which the naive plan produced
only medium errors). We defined recall as the fraction
of answers ranked among top N by the naive plan that
should actually have been in top N . We plotted this as a
function of N . Figures 13 and 14 show the recall graphs.
By definition, the recall approaches to 1 when N ap-
proaches the total number of possible tuples in the an-
swer. However, as the graphs show, the recall was bad
for small values of N . A user looking for top 50 or 100
answers to Q3 would miss half of the relevant tuples. For
smaller values of N (say, 10) the naive approach misses
80% of the relevant tuples.

4. Unsafe Queries Finally, we tested our approach
to handle queries with no safe plans on Q7 and Q8. We
ran the Monte Carlo simulation to compute their answer
probabilities and used them as baseline. Figure 15 shows
the errors in evaluating them with a naive plan and the

Efficient Query Evaluation on Probabilistic Databases 21

0

5

10

15

20

25

30

Q7 Q8 QQ

A
ve

ra
ge

 E
rr

or
(%

)

Queries

Errors on Unsafe Queries

Naive Plan
Optimal Break

Fig. 15 Errors on Unsafe Queries

least unsafe plan (using min-cut, Sec. 7). The graphs
show that the plan chosen by the optimizer was better, or
significantly better than a naive one. Still, from two data
points it is hard to judge the improvement over a naive
plan. To see a third data point we wrote a new unsafe
query, QQ, where the relation lineitem is joined with
orders and suppliers. Here the fanout is larger, and
the difference between the naive plan and the optimal
break is more pronounced.

12 Related Work

There are various probabilistic systems for relation data-
bases that have been proposed in the literature and they
can primarily be classified into two classes: extensional
and intensional. The extensional systems [5,4,8,19] are
very efficient when they work, but they have to make
simplifying assumptions or impose some restrictions to
get around the problem of high complexity. For instance,
Cavallo and Pittarelli [5] start by assuming that tuples
in the same relations represent disjoint events. Barbara
et. al. [4] generalize Cavallo and Pittarelli’s model, where
tuples are independent and attributes may be inaccurate
(leading to disjoint events). However, their system has a
requirement that every relation must have a set of deter-
ministic attributes forming the key of that relation. Dey
and Sarkar [8] improve upon this model allowing arbi-
trary keys, but allow only those projections that contain
the key. Thus, none of these systems can correctly han-
dle arbitrary conjunctive queries. The Probview system
[19] takes a different approach: it does not assume in-
dependence while combining probabilities, but requires
strategies from users to combine them. Also, it works
with interval probabilities instead of point probabilities.

The intensional systems [29,31,32,30,12,38] manip-
ulate symbolic events rather than raw probabilities, and
are based on the possible worlds semantics. Originally
put forward by Kripke for modal logics, possible worlds
semantics is commonly used in AI for representing knowl-
edge with uncertainties. Detailed discussions on exten-
sional and intensional systems can be found in the book
by Pearl [26]. In context of relational databases, inten-

sional semantics have been used by Sadri [29–32] to com-
pute the reliability of answers to the queries, where the
information in the database comes from multiple infor-
mation sources of varying reliability. In this framework,
the system stores a vector with each tuple that iden-
tifies the sources contributing to the tuple, and these
vectors are manipulated as the query is evaluated. Fuhr
and Rolleke [12] define a probabilistic relational alge-
bra that generalizes the standard relational algebra for
tuples with probabilistic events. Zimanyi [38] formalize
probabilistic databases by means of logic theories based
on a probabilistic first-order language. In knowledge rep-
resentation, Halpern et al. [10,2] have shown the use of
possible worlds semantics to assign degrees of beliefs to
statements based of the probabilities in the knowledge
base. Note that intensional semantics are impractical to
use when the number of sources of uncertainties is very
large, which is the case with approximate queries where
every tuple can be viewed as an independent source of
uncertainty. Our work, on the other hand, gives a char-
acterization of queries where intensional semantics can
be replaced by the cheaper extensional semantics.

There is also work on supporting probabilities in other
models of databases. Ng and Subrahmaniam [23] extend
deductive databases with probabilities and give fixed poi-
nt semantics to logic programs annotated with probabil-
ities, but they use absolute ignorance to combine event
probabilities. An alternate model for uncertainty is con-
sidered by Cheng et al.[7] that is more suitable for sensor
databases. They consider attributes (which are typically
sensor readings) whose values is given by a probability
distribution function and show how simple queries can
be efficiently evaluated over such databases. Probabilis-
tic models have also been considered for XML data un-
der independence [24], under arbitrary distributions [17]
and with interval probabilities [16]. There is also work
on probabilistic object bases [9] and probabilistic logics
for schema mappings [25].

There are also several non-probabilistic approaches to
imprecise queries. Keyword searches in databases are dis-
cussed in [15,6,14]. Fagin [11] gives an algorithm to rank
objects based on its scores from multiple sources: this
applies only to a single table. The VAGUE system [20]
supports queries with vague predicates, but the query
semantics are ad hoc, and apply only to a limited SQL
fragments. Chaudhuri et al. [1] consider ranking query
results automatically: this also applies to a single table.
Theobald and Weikum [34] describe a query language for
XML that supports approximate matches with relevance
ranking based on ontologies and semantic similarity.

13 Conclusions and Future Work

In this paper, we considered the problem of evaluat-
ing queries over probabilistic databases according to the
possible worlds semantics.. We showed that by choosing

22 Nilesh Dalvi, Dan Suciu

suitable execution plans for queries, extensional seman-
tics can be used to evaluate a certain class of queries.
We further showed that this class is precisely the class of
queries that have polynomial time data complexity. Our
theoretical results capture the fundamental properties of
query complexity on probabilistic databases, and lead to
efficient evaluation techniques. We showed how this ap-
proach can be used to evaluate arbitrarily complex SQL
queries with uncertain predicates.

There are several problems that emerge from this
work and remain open. Given any conjunctive query that
is allowed to have self joins, can we decide if its data com-
plexity is polynomial time? Is there still a dichotomy of
queries into PTIME and #P-complete classes when self
joins are allowed? What is the complexity of query eval-
uation with aggregates like sum, count, min and max
and with having clauses? Apart from these questions,
there are engineering issues that need to be resolved.
We need to examine the implications for a relational en-
gine: what functionality does a relational engine need to
provide for an efficient implementation of probabilistic
databases? Another interesting problem is to develop al-
gorithms for top-K answers to the probabilistic queries.

References

1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Au-
tomated ranking of database query results. In: CIDR
(2003)

2. Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From
statistical knowledge bases to degrees of belief. Artificial
Intelligence 87(1-2), 75–143 (1996)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information
Retrieval. Addison-Wesley (1999)

4. Barbará, D., Garcia-Molina, H., Porter, D.: The man-
agement of probabilistic data. IEEE Trans. Knowl. Data
Eng. 4(5), 487–502 (1992)

5. Cavallo, R., Pittarelli, M.: The theory of probabilistic
databases. In: VLDB, pp. 71–81 (1987)

6. Chaudhuri, S., Das, G., Narasayya, V.: Dbexplorer: A
system for keyword search over relational databases. In:
Proceedings of the 18th Int. Conf. on Data Engineering,
San Jose, USA (2002)

7. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating
probabilistic queries over imprecise data. In: SIGMOD,
pp. 551–562 (2003)

8. Dey, D., Sarkar, S.: A probabilistic relational model and
algebra. ACM Trans. Database Syst. 21(3), 339–369
(1996)

9. Eiter, T., Lu, J.J., Lukasiewicz, T., Subrahmanian, V.S.:
Probabilistic object bases. ACM Trans. Database Syst.
26(3), 264–312 (2001)

10. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and
probability. In: Theoretical Aspects of Reasoning about
Knowledge, pp. 277–293. San Francisco (1988)

11. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation al-
gorithms for middleware. In: PODS, pp. 102–113 (2001)

12. Fuhr, N., Rolleke, T.: A probabilistic relational algebra
for the integration of information retrieval and database
systems. ACM Trans. Inf. Syst. 15(1), 32–66 (1997)

13. Gradel, E., Gurevich, Y., Hirch, C.: The complexity of
query reliability. In: PODS, pp. 227–234 (1998)

14. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.:
Xrank: Ranked keyword search over xml documents. In:
SIGMOD, pp. 16–27 (2003)

15. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword
search in relational databases. In: Proc. 28th Int. Conf.
Very Large Data Bases, VLDB (2002)

16. Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic
interval xml. In: ICDE (2003)

17. Hung, E., Getoor, L., Subrahmanian, V.S.: Pxml: A prob-
abilistic semistructured data model and algebra. In:
ICDE (2003)

18. Karp, R., Luby, M.: Monte-carlo algorithms for enumer-
ation and reliability problems. In: STOC (1983)

19. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian,
V.S.: Probview: a flexible probabilistic database system.
ACM Trans. Database Syst. 22(3), 419–469 (1997)

20. Motro, A.: Vague: a user interface to relational databases
that permits vague queries. ACM Trans. Inf. Syst. 6(3),
187–214 (1988)

21. Movie database: http://kdd.ics.uci.edu/database-
s/movies/movies.html

22. Navarro, G.: A guided tour to approximate string match-
ing. ACM Computing Surveys 33(1), 31–88 (2001)

23. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic pro-
gramming. Information and Computation 101(2), 150–
201 (1992)

24. Nierman, A., Jagadish, H.V.: ProTDB: Probabilistic data
in XML. In: VLDB (2002)

25. Nottelmann, H., Fuhr, N.: Combining DAML+OIL,
XSLT and probabilistic logics for uncertain schema map-
pings in MIND. In: ECDL (2003)

26. Pearl, J.: Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (1988)

27. Provan, J.S., Ball, M.O.: The complexity of counting cuts
and of computing the probability that a graph is con-
nected. SIAM J. Comput. 12(4), 777–788 (1983)

28. Ross, R., Subrahmanian, V., Grant, J.: Aggregate op-
erators in probabilistic databases. Journal of the ACM
52(1), 54–101 (2005)

29. Sadri, F.: Reliability of answers to queries in relational
databases. TKDE 3(2), 245–251 (1991)

30. Sadri, F.: Aggregate operations in the information source
tracking method. Theor. Comput. Sci. 133(2), 421–442
(1994)

31. Sadri, F.: Information source tracking method: Efficiency
issues. TKDE 7(6), 947–954 (1995)

32. Sadri, F.: Integrity constraints in the information source
tracking method. IEEE Transactions on Knowledge and
Data Engineering 7(1), 106–119 (1995)

33. Stoer, M., Wagner, F.: A simple min cut algorithm.
Algorithms–ESA ’94 pp. 141–147 (1994)

34. Theobald, A., Weikum, G.: The xxl search engine: ranked
retrieval of xml data using indexes and ontologies. In:
SIGMOD, pp. 615–615 (2002)

35. Ullman, J.D., Widom, J.: First Course in Database Sys-
tems, 2nd ed. Prentice Hall (1997)

36. Valiant, L.: The complexity of enumeration and reliabil-
ity problems. SIAM J. Comput. 8, 410–421 (1979)

37. Wordnet 2.0: A lexical database for the english language:
http://www.cogsci.princeton.edu/ wn/ (2003)

38. Zimanyi, E.: Query evaluation in probabilistic databases.
Theoretical Computer Science 171(1-2), 179–219 (1997)

39. Zobel, J., Dart, P.W.: Phonetic string matching: Lessons
from information retrieval. In: Research and Develop-
ment in Information Retrieval, pp. 166–172 (1996)

