
Scalability for Virtual Worlds
Nitin Gupta#, Alan Demers#, Johannes Gehrke#, Philipp Unterbrunner∗, Walker White#

#Computer Science, Cornell University ∗Computer Science, ETH Zurich
Ithaca, NY Zurich, Switzerland

{niting,ademers,johannes,wmwhite}@cs.cornell.edu, philppu@inf.ethz.ch

Abstract— Networked virtual environments (net-VEs) are the
next wave of digital entertainment, with Massively Multiplayer
Online Games (MMOs) a very popular instance. Current MMO
architectures are server-centric in that all game logic is executed
at the servers of the company hosting the game. This architecture
has lead to severe scalability problems, in particular since MMOs
require realistic graphics and game physics – computationally
expensive tasks that are currently computed centrally.

We propose a distributed action based protocol for net-VEs
that pushes most computation to the computers of the players
and thereby achieves massive scalability. The key feature of our
proposal is a novel distributed consistency model that allows us
to explore the tradeoff between scalability, computational com-
plexity at the server, and consistency. We investigate our model
both theoretically and through a comprehensive experimental
evaluation.

I. I NTRODUCTION

Networked virtual environments (net-VE) are software sys-
tems in which users interact with each other in real-time within
some shared virtual environment.Massively Multiplayer On-
line Games(MMOs), and more specifically,virtual worlds
such asSecond Lifeare a popular example; these games
allow large number of users to play together in fictional digi-
tal worlds. Other examples include simulation environments
like Microsoft’s ESP platform [1]. Other application areas
include teaching, distributed design, and military simulations
for training and tactical purposes. Virtual environments have
become big business, as the MMOWorld of Warcraftby itself
generated up to $1.1 billion dollars of revenue in 2007 [2].

Virtual worlds are typically designed to create a very high
degree of immersion. Many feature 3D graphics and stereo
sound, and have extremely interactive environments. But the
primary selling point of many virtual worlds is the large
number of players that they can support. In MMOs likeWorld
of Warcraftit is already popular for groups of up to 80 players
to work cooperatively in a “raid”. Other online virtual worlds
like Habbo Hotel market themselves as social-networking
environments, and must support large parties or other social
events online. While high-bandwidth, low-latency internet is
now becoming ubiquitous, this is not enough to solve the
scalability issues that net-VEs are beginning to encounter.

These scalability problems arise in part because of the need
to maintain consistency between all the players. In the best
case, inconsistency may just lead to transient visible artifacts
with no long-term consequences. However, in practice, it can
easily cause much more serious problems, like objects being
lost or duplicated during a financial transaction. In addition
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Fig. 1. Scalability versus Complexity

to degrading the realism of the virtual world, consistency
violations are a major source of security problems in net-
VEs [3]. To maintain consistency, all net-VEs have a transac-
tion management layer that employs a commercial database.

However, the transaction layer also introduces severe scala-
bility problems. First, as users move about the virtual environ-
ment, they send transactions to the net-VE at an extremely high
rate. Even the fastest MMOs cannot handle more than about 10
frames per second [4] through their database transaction layer.
Second, the transaction layer architecture of most currentnet-
VEs requires that significant parts of their application logic be
executed on the server side. As a result, the scalability of an
application is strongly related to the computational footprint of
a single user. Figure 1 illustrates this observation for a sample
of todays net-VEs. Collaborative software such as Wikipedia
is highly scalable because user actions involve only simple
computations. MMO Games with a static environment such
as World of Warcraft require comparatively more computa-
tional resources, leading to a drop in scalability. Simulators,
particularly military simulators such as SIMNET, are even
more “real” than virtual worlds, in that users can interact with
the virtual environment (e.g., destroy buildings); the result
is even less scalability. Finally, user-designed virtual worlds
such asSecond Lifeallow objects to be created, modeled,
and scripted by the users at run-time. This flexibility comes
with high computational complexity; for example, the resulting
scalability of Second Lifeis on the order of at most 25-30
users per server. If the player-to-server ratio of collaborative
software were possible in a net-VE with the flexibility and
degree of immersion of virtual worlds, this would allow for a
user experience beyond the reach of current systems.

The desire to support more players in complex environments
has spawned some research on distributed system architectures
for net-VEs [5], [6], [7], [8]. Unfortunately, as we discussin
Section II, these systems do not scale. They are often limited



to narrow classes of transactions, such as those that depend
on character visibility. The problem with this approach is that
transactions in real net-VEs often interact in complex and
subtle ways beyond visibility. For example, suppose we havea
fantasy MMO designed to support a large number of players.
A classic feature for such a game is a “scrying spell” that
allows a healer to identify and heal the most wounded ally
in a crowd. During combat, the result of this spell transaction
interacts withall the other users, as the health of each player
is continually changing. The range and nature of such a spell
makes character-visibility partitioning useless.

Fortunately, virtual worlds have a lot of semantic informa-
tion that can be leveraged to ensure scalable consistency. Vir-
tual worlds and simulations are essentially high-dimensional
databases where the attributes can change only in predictable
ways [9]. For example, in a fantasy MMO game, health is
itself an attribute that changes as a player is damaged. By
examining semantic information such as the maximum damage
that an attack transaction can cause, we can predict the waysin
which the health attribute can change, and exploit this semantic
information to reduce the number of messages needed to
maintain a consistent state among the many distributed clients.

In this paper, we propose a distributed model for networked
virtual environments that achieves massive scalability. Our
model inherits concepts from distributed databases, wherethe
application logic and transaction processing take place atthe
client machine, thereby relieving the server from much com-
putation. The key feature of our model is its novel transaction
model, which exploits application semantics to reduce the
number of messages needed to maintain consistency among
the clients. Our proposed model imposes no major restrictions
on the interaction between participants located in different
parts of the world. As a result, we show how computationally
expensive net-VEs can easily be accommodated in our model
and can be scaled to a massive number of participants.

Outline of the Paper

In Section II, we overview existing architectures of net-VEs
and virtual worlds. We also connect net-VEs and databases,
and discuss scalability limitations of today’s net-VEs. Our
paper then continues with the following contributions.

• In Section III, we introduce a new protocol to increase
the scalability of net-VEs. We use application semantics
to provide theoretical bounds that show the scalability of
our approach.

• In Section IV, we present several techniques that leverage
spatial properties of net-VEs to optimize our protocols.

• In Section V, we present an experimental evaluation using
both simulation and real experiments demonstrating the
effectiveness of our new protocol.

We discuss related work in Section VI and conclude in
Section VII.

II. N ETWORKED V IRTUAL ENVIRONMENTS

As discussed in the previous section, consistency is im-
portant to net-VEs. In order to be realistic, everyone needs
to share a single view of the virtual environment, theworld
state. Persistent net-VEs typically store the world state in a
database [10]. Any interaction in the world can be thought of
as a database transaction: making an observation is a database
query about the state of the world, and a change in state is a
database update. However, because of throughput problems
with commercial databases, most net-VEs use commercial
databases only to commit and read at periodic checkpoints. For
real-time interactions, they generally implement their own in-
memory transaction layer in front of the database. This design
decision is not because database transactions are unsuitedto
the task; rather, it is because existing commercial databases
are not optimized for the type of in-memory processing that
net-VEs need for real-time performance [4].

A. Net-VE Architectures

1) Centralized VEs:MMO companies typically use an
architecture with multiple central servers to achieve scalability.
The most widely used techniques to achieve scalability beyond
a single server are the following:

Zoning. Zoning refers to the technique of geographically
partitioning (“tiling”) the virtual environment into areas small
enough for a single server to handle. Typically, players within
a zone form an event broadcast group and are assigned to the
same server. A single server machine may host multiple zones
to improve resource utilization. Some MMOs allow players
to move between zones–this requires a model that allows
overlapping of zones. However, great complications arise from
attempts to overlap zones [11].

Sharding. Zoning works well to about a few dozen servers,
which translates into a few thousand players for most virtual
worlds. At this point, scaling effects force MMO companies to
instantiate completely separate world instances calledshards.
Sharding is also used because players are potentially spread
across the globe; a player from India may not be willing to
accept a noticeable 300ms delay in server interactions for the
purpose of playing with people from the US. So rather than
hosting a single virtual environment for the whole user base,
companies serve dozens of wholly disjoint instances of the
same world at strategic locations across the globe.

Instancing. Unlike sharding,instancingis confined to small
partitions of the virtual environment. An instance is essentially
a private zone into which no players may enter except those
that originally spun off the instance. InWorld of Warcraft,
instancing is used heavily for dungeons that are intended to
be personal experiences [12]. In general, instancing is often
employed for game design reasons; it is not intended to be a
true scalability solution, as it severely limits player interaction.

All these solutions split the user base in some way, degrad-
ing the “massive” multiplayer experience [13]. For example,
sharding and instancing prevent large groups of users from
working together by design, while zones collapse if too
many users crowd into a zone all at once [14]. Users often



have difficulty finding their real life friends in such MMOs.
Some virtual worlds even require the users to pay if they
want to play with someone of their choice [15]. Therefore,
MMO companies are still struggling to meet the scalability
requirements demanded by their user base.

2) Distributed VEs: An alternative to multiple central
servers is thedistributed model[10], in which computation
is distributed among clients in order to achieve scalability.
Distributing computation between clients has the potential not
only to reduce load on the central server, but also to leverage
capabilities of the client machines.

While P2P architectures seem to be the natural choice for
distributed models, there are both technical and non-technical
reasons to choose a client-server architecture. First,strongly
consistentP2P architectures do not scale because they use
protocols such as Paxos [16] or Virtual Synchrony [17] to
enforce a consistent total order of events across all participants.
Much complication and inefficiency in these protocols arises
from the attempt to consider all hosts in the P2P system as
first-class, but unreliable, citizens [18].

However, there is an even stronger, non-technical reason
to rely on a client-server architecture. Net-VEs are developed
and operated by companies that have a vital interest in exerting
total control over the virtual world, even if that means investing
in server hardware. In many virtual worlds, players pay real
money both to participate and for game content; hence the
MMO company has an obligation to provide uninterrupted
service. Additionally, cheating is a major concern for action-
oriented MMOs, and it is much easier to prevent in a client-
server architecture [19]. For these and other reasons, compa-
nies desire to have all content stored securely and persistently
by a trusted authority.

Overall, the client-server distributed model strikes a balance
between preserving the interests of the MMO companies in
exerting control, scalability of the system, and alleviating
the problems of no centralized control compared to a P2P
architecture. Thus, we will adopt it in the remainder of the
paper. Extensions to a hybrid architecture that strives a balance
between P2P and client-server are an interesting directionfor
future work (see Section VII).

B. Client-Server Net-VEs

A client-server net-VE architecture consists of a server
cluster to which all clients connect. Without loss of generality,
the clients run identical net-VE software, which we refer to
as client programs. The client program contains the actual
virtual world logic. Clients initiate and processactionsin the
environment. An action is a sequence of atomic operations that
updates the world state. Typically, each action involves first
an observation of the world state followed by an update of
the state. In this paper, we assume that each action consistsof
exactly one atomic operation. Though processing actions inthe
client program may raise security issues, a lot of prior research
already exists for developing non-hackable clients [20], [21].
As an added security measure, the servers can also log MMO
statistics to detect any cheating or security threat [19].

The key component of a client-server net-VE is its con-
sistency protocol. Since the computation is performed by the
clients, a protocol needs to be established between the clients
and the server that ensures consistency and durability of data.
The following are three popular classes of protocols:

Lock Based Protocols.An well-known family of protocols
is based on distributed locking. In order to process a transac-
tion, a client must acquire global locks on the objects read and
written by the transaction. This can be implemented by having
all clients in the system agree on granting a lock request, orby
managing locks at the server-side. Typically, a client contacts
the server for a lock. The server multicasts this request to all
clients, which then respond with an acknowledgement granting
the lock request. Any other conflicting transaction requesting
the same lock is blocked. The server then communicates to
the client the status of its lock requests. If it obtained all
the necessary locks, the client executes the transaction onits
local state and transmits the effect of the transaction to the
server. The server then transmits this effect to all other clients
who update their own local states and proceed to the next
transaction. Sun’s Project Darkstar is an example of a net-VE
architecture using a lock based protocol [22].

There are two major problems with using distributed locking
in net-VEs. The first problem is that that the minimum
time required by a client to proceed to the next conflicting
transaction is twice the round trip time between the client
and the server; this is often unacceptable performance for net-
VEs. The second problem is that the consistence resolution is
object based, while many consistency problems in net-VEs are
semantic. The virtual world designer is forced to map every
single consistency issue in the world to an object access, which
is not always easy to do.

Timestamp Based Protocols.The well-known alternative
to locking in a distributed database is optimistic concurrency
control based on timestamps. Here, we associate a version
with every object, and a timestamp with every transaction; the
timestamp can be assigned by the server. Clients optimistically
execute tentative actions against their local, possibly stale
versions of objects. The server integrates the local, transac-
tional histories submitted by clients into a global multiversion
history. It can then choose to make decisions on the success of
transactions based on multiversion serializability, or broadcast
the global history, in which case clients can use certification al-
gorithms to reach consistent commit and abort decisions [23].

If the server makes commit and abort decisions, then it
must either be pessimistic, or it must understand game-specific
logic and perform possibly expensive operations in order
to resolve conflicts. For example, any change in the read
set of a transaction, such as some player moving, would
potentially cause the transaction to abort. In order to neglect
irrelevant changes, the server must implement a significant
part of the application logic that specifies what combination
of movements are valid.

If the server broadcasts the global history to clients it uses
at least two phases, and therefore at least twice the round trip
time between the client and the server [23]. There has been



very little research on optimizations of such a protocol to make
them suitable for MMOs. Instead, designers prefer protocols
based on object ownership that we will discuss next.

Object Ownership. Object ownership differs from lock-
based protocols in that each object is owned and managed by
exactly one client, known as the object owner. Other clientsare
allowed to cache a version of the object, but are not allowed to
make modifications to its state. RING [6], Cyberwalk [24], and
WAVES [25] are three popular systems using such a protocol.
Although this protocol is highly scalable, it does not allow
for any kind of object contention in the environment. If two
clients want to change the state of the same object, only the
client owning the object is permitted do so. The server is
responsible for ensuring a fairness in ownership, which is
often based on semantics of the virtual world. In order to
allow object contention in such a protocol, applications are
either degraded to a lower level of consistency, or are forced
to employ timestamp-based serializability [26], resulting in
unacceptable response time for net-VEs.

III. A CTION BASED PROTOCOLS

All the techniques discussed in the previous section handle
consistency at the object level. In this section, we describe a
novel class of protocols that we callaction based protocols
because they check consistency at the level of actions (i.e.
functions to update the game state) rather than at the level
of objects. We then propose models based on such protocols
that are practical and highly scalable. We use application
semantics to provide theoretical bounds that formally prove
the scalability of our approach.

To make the discussion more succinct and relevant to
current MMOs, we assume that the virtual world follows
the standard model of a discrete simulation engine, where
the world state changes only at regular time intervals, the
simulation ticks[9]. We denote the non-zero time interval
between two consecutive ticks byτ .

A. The Basic Algorithms

In our action based protocols, the messages passed between
the clients and the server primarily consist ofactions, as
opposed to objects. The state of the virtual world is a database
of objects, theworld state. Each client program maintains
two versions of the world state: an optimistic versionζCO

and a stable versionζCS . To perform an actiona, a client
first appliesa to ζCO, and also sendsa to the server to be
serialized. Concurrently, the client is receiving from theserver
a serialized stream of the actions originating atall clients,
and applying them in order toζCS . The results of applying
locally originated actions toζCO and ζCS are compared,
and disagreements are reconciled if necessary. Pseudocodeis
presented as Algorithms 1, 2 and 2.

Note that the only function the server provides is to
timestamp and serialize the actions of the clients. This virtual
timestamp, together with the positions of actions on the queue
at the server, establishes virtual synchrony between the server
and the clients [17].

Algorithm 1 : Client-Side Protocol

The client maintains a queue1

Q = [〈a1, v1〉, . . . , 〈ak, vk〉]

where eachai is a locally generated action that has not
yet been received back from the server, andvi is the
result of applyingai to ζCO as described below.
Whenever the client creates an actiona, the action is first2

executed onζCO producing a resultv. We call this the
optimistic evaluation ofa. The pair〈a, v〉 is then added
to Q, and the actiona is sent to the server.
Assume that the client receives an actionb from the3

server. There are two possible cases:
(Action b originated at some other client): Actionb is4

applied toζCS . Each writex← v performed byb is also
performed onζCO if (and only if) x 6∈ WS(Q). (This
has the effect of updating items in the state that are not
awaiting permanent values from the server).
(Action b = a1): Action a1 is applied toζCS producing5

resultu. If u = v1, indicating the new evaluation ofa1

agrees with its optimistic evaluation, the entry〈a1, v1〉 is
removed from the head ofQ. Otherwise,ζCO is
reconciled withζCS using Algorithm 3.

Algorithm 2 : Server-Side Protocol

The server maintains a global queue of actions. For each1

client C, the server maintains the indexposC of the
action in the queue that was last sent toC. At the start
of the protocol,posC = 0 for all clientsC.
When the server receives an actiona from client C (Step2

2 in the client-side protocol), it performs two steps:
(a) It timestampsa and puts it into the queue, assigning3

a a unique order numberpos(a) that isa’s position in
the queue.
(b) The server returns toC all actions between positions4

posC andpos(a), and it setsposC = pos(a).

The reconciliation procedure in our protocol, Algorithm 3,
is designed to prevent the optimistic state from diverging too
far from the stable state, by rolling back and re-applying
optimistic actions when an actual conflict is discovered. This
approach is similar to that used in Bayou [27], and like Bayou
we assume that actions contain code to check for conflicts:
when it is re-applied, an action either computes appropriate
new result values or else it detects a fatal conflict and behaves
as a no-op to simulate aborting.

Correctness of our protocol is easy to establish since each
client executes every action that originates anywhere in the
system,in the same orderon its stable version of the world
ζCS as enforced by the timestamping and ordering of actions
on the server.

Our action-based protocol has two advantages. First, it
guarantees response in one round trip while allowing any
kind of interaction, including object contention, in the virtual
environment. A second advantage is that the central server



Algorithm 3 : Reconciliation Protocol

Require: Q = [〈a1, v1〉, . . . , 〈ak, vk〉] is the results of
optimistic evaluation of locally generated actions.
ζCO(WS(Q)) ← ζCS(WS(Q))
Q ← []
for (j = 1; j <= k; j + +) do

apply ai to ζCO producing resultv
insert 〈ai, v〉 into Q

does not execute any actions, and therefore is free of the game
logic. The server merely timestamps actions, queues them for
delivery for clients, and manages the network traffic. This
allows the server to handle a very large number of clients.
Popular systems such as SIMNET [28], [29] and WAVES [30]
use similar protocols at the object level — they broadcast
updated data objects to all clients.

However, a major drawback of our first action based pro-
tocol is that every client sees and executes all actions for
the entire world, resulting in high computational load at the
clients as well as substantial bandwidth requirements both
at the clients and the server. Thus this first protocol, while
ensuring a response time of one round trip and achieving
consistency between the clients, has very limited scalability.
To achieve better scalability we exploit application semantics,
as described next.

B. Using Application Semantics

In the realm of object based protocols, numerous optimiza-
tions have been proposed to reduce the number of messages
that are sent to each client [6], [7]. Most of these optimizations
are variants ofarea-of-interest paradigmdescribed in prior
work [31], [32]. In such models, the server restricts the set
of update messages (and object data) sent to a client by some
syntactic constraint, for example, the visibility of an avatar
in the virtual world, a well-known approach. Anyone would
therefore naturally consider generalizations of the scalability
solutions proposed in these systems to action-based protocols.
However, we argue that this approach has a couple of issues
that prevent it from being a general solution to the scalability
problem.

The first problem is that restricted visibility applies only
to movement-like actions and does not generalize well to
arbitrary actions. For example, the RING architecture requires
that the designer create an obstruction layer representingthe
objects blocking visibility. This obstruction layer is what is
used to partition the database replicas [6]. If the game designer
wants to base actions on other senses such as sound or scent,
she must create a separate obstruction layer for each new
sense. Furthermore, in cases like our example of a scrying
spell from Section I, there may be no obstruction information
at all.

However, using of syntactic constraints such as restricted
visibility has a deeper, subtle problem: They are not sufficient
for maintaining consistency. For example, none of the current
proposals cover transitivity of actions—characters can easily

A  Only B is 
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Fig. 2. The RING system limits itself to the visibility of avatars, resulting
in an inconsistent state across clients. The actually area that can causally
influenceA is much larger than its visibility.
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Fig. 3. Inconsistency in area of interest paradigm

interact with one another even if they cannot see one another.
We illustrate this problem in Figure 2. Although entities A,
B, C, and D (filled circles) all inhabit the same virtual envi-
ronment, very little interaction (filled and hatched polygons)
is possible due to the occlusion of walls (solid lines). In fact,
in this example, only two direct interactions are possible —
between entity A and entity B; and between entity B and entity
C. The restricted vision paradigm suggests that each action
submitted by entityB should be sent to clients with entityA
and entityC, whereas an action submitted by entityC should
be sent only to the client with entityB (because entityC is
not visible to entityA). However, this observation leads to an
inconsistent state in the system.

Consider the case when entityC shoots an arrow at entity
B at time t = 0, and entityB shoots at entityA at time
t = ∆ where0 < ∆ < RTT (Figure 3). Assuming that the
time for the arrow to travel isδ where 0 < δ < ∆, entity
B should die before it actually shot the arrow. However, the
client with entityB receives entityC ’s shoot request only at
time t = RTT , by when it has already sent entityB’s shoot
request to the workstation with entityA. This client with entity
A receives entityB’s shoot request at timet = ∆+RTT , and
subsequently announces entityA to be dead. It is interesting
to note that the client with entityA could have determined
entity B’s death only if it also knew that entityC had shot
entity B.

We therefore conclude that although there is a bound on
the visibility of an avatar, the actual area that can influence
an avatar is much larger than the visible region (Figure 2).
The main reason is that all prior work assumed asyntactic
restriction on causal influence, however causal influence is
really determined by the semantics of the actions in the virtual
world. In the next section, we propose exactly such a model



Algorithm 4 : Incomplete World Client-Side Protocol

The client maintains a queue1

Q = [〈a1, v1〉, . . . , 〈ak, vk〉]

where eachai is a locally generated action that has not
yet been received back from the server, andvi is the
result of applyingai to ζCO as described below.
Whenever the client executes an actiona, it is executed2

on ζCO producing a resultv. We call this the optimistic
evaluation ofa. The pair〈a, v〉 is then added toQ, and
the actiona is sent to the server.
Assume that the client receives an actionb from the3

server. There are three possible cases:
(Action b originated at some other client, or is a blind4

write created by the server): Actionb is applied toζCS .
Each writex← v performed byb is also performed on
ζCO if (and only if) x 6∈WS(Q). (This has the effect of
updating items in the state that are not awaiting
permanent values from the server).
(Action b = a1): Action a1 is applied toζCS producing5

resultu. If u = v1, indicating the new evaluation ofa1

agrees with its optimistic evaluation, the entry〈a1, v1〉 is
removed from the head ofQ. Otherwise,ζCO is
reconciled withζCS using Algorithm 3. In either case, a
completion message〈ai, u〉 is sent to the server.

and we show that it can be used to achieve scalability without
giving up consistency.

C. The Incomplete World Model

In this section we introduce a novelsemantic-basedaction
protocol that resolves the consistency problems that we dis-
covered in the previous section. What we learned from the
previous section is for a client to determine the effect of an
action a, the client needs to have enough information about
the virtual world to determine all actions that could potentially
influencea. This causal dependence of actions depends on
their semantics and frequently cannot be captured by syntactic
constraints.

Let us examine an action from a database perspective. An
action a consists of a read setRS(a), a write setWS(a)
and the code that needs to be executed to compute values for
WS(a) given values forRS(a). We assumeRS(a) ⊇WS (a).
This allows us to drop the distinction between read sets and
write sets and focus on intersecting read sets in our discussion
and protocols. Our algorithms occasionally use specialblind
write actions: we denote bya = W (S, v) an action that
unconditionally stores the valuesv into the object setS
(assuming compatibility ofS and v). Clearly WS(a) = S,
and by conventionRS(a) = S as well. Armed with these
definitions, we can now change our protocols as shown in
Algorithms 4, 5 and 6.

The advantage of this model is that a client does not
(necessarily) evaluate every action, only those that affect it,
thus saving execution time at the clients as well as network

Algorithm 5 : Incomplete World Server-Side Protocol

The server maintains theauthoritative stateζS . It also1

maintains a global queue of ordered actions. For each
actiona in the queue it maintains the setsent(a) of
clients to which the action has been sent.
For anyi, let ζS(i) be the state of the virtual world at
the server after applying the effects of actionsa1 . . . ai.
Then at timet, the server holds: (i)ζS(j) for the leastj
such that no response foraj+1 has yet been received,
and (ii) aj+1 . . . an.
When the server receives an actiona from client C (Step2

2 in the client-side protocol), it performs two steps:
(a) It timestampsa and puts it into the queue, assigning3

a a unique order numberpos(a) that isa’s position in
the queue. It also setssent(a)← ∅
(b) It computes a reply toa using Algorithm 6.4

When a completion message arrives at the server forai5

(Step 5 in the client-side protocol), the server holds it
until ζS(i− 1) is available. It then installs the values into
ζS , resulting inζS(i), and discardsai from the action
queue.

Algorithm 6 : Transitive Closure(A)
Require: ai, . . . , an is the action queue
Require: an+1 has just arrived from clientC
Require: + denotes prepending an action to a sequence

A← {an+1}
S ← RS(an+1)
for (j = n; j > i; j = j − 1) do

if WS(aj) ∩ S 6= ∅ then
if C ∈ sent(aj) then

S ← S \WS(aj)
else

S ← S ∪RS(aj)
A← aj + A
sent(aj)← sent(aj) ∪ {C}

A←W (S, ζS(S)) + A
return A

bandwidth. To achieve this goal, we augment the client proto-
col to return acompletion messagewhen the stable result of an
action is produced. The server uses these messages to construct
ζS , an authoritative stable world state. The server performs
analysis of read and write sets (Algorithm 6) to determine
independently for each client which additional actions must
be sent for evaluation because they (transitively) affect the
client’s submitted actions.

An interesting aspect of the Incomplete World Model is that
it can be made tolerant of client failures at a reasonable cost
in network bandwidth, by letting each client send completion
messages foreveryaction it applies, not just its own. With this
change, the only case in which the server does not receive
a response to some action is when all clients that evaluate
that action have failed. In such cases, it is acceptable to
assume that the action was never submitted. The client can



also be optimized for memory. The server can inform the client
periodically of the last installed action, enabling the client to
garbage collect the results of actions received in the past that
it is no longer explicitly interested in. The correctness ofour
algorithm is stated as follows:

Theorem 1:If the server follows Algorithm 5 and all clients
follow Algorithm 4, then in a distributed snapshot of the
system the statesζCS at the clients and the stateζS at the
server will never be inconsistent.

D. The First Bound Model

Under the Incomplete World Model, each client evaluates
only a “necessary” subset of the actions—those actions that
actually affect the client. Let us now investigate whether the
Incomplete World Model provides any bound on the number
of actions each client evaluates.

Suppose a client could evaluate an action setAS in constant
time γ independent of the size ofAS. Then the time for
the server to receive a response for any action from a client
would at most beRTT +γ, whereRTT is the round-trip time
between the client and the server. This effectively means that
the server might need to send to the client all actions that ithas
seen in the previous(RTT + γ)/τ ticks, which provides our
first bound. This discussion assumes thatRTT is constant for
all clients—we can easily drop this assumption by substituting
RTTmax for RTT . Assuming that all clients have reasonable
latency, and the virtual environment is very large, we believe
that this is still a reasonable bound.

The bound is not valid in practice, however, because the
number of ticks required for the client program to execute an
action sequenceAS is, in the worst case, proportional to the
number of ticks thatAS represents. This worst case comes
about when there is at least one action for every distinct tick
in AS. Effectively, the time after which the server receives a
response for an action becomes2×RTT , which increases the
size of the subsequentAS. The final result of this iterative
process is a geometrically increasing size ofAS, thereby
invalidating the previously obtained bound.

Intuitively, the problem is that when a client submits a
new action after having been idle for a while, the server may
respond with an unboundedly largeAS set, resulting in unac-
ceptably high response time for that client. The solution tothis
problem is provided by our MMO semantics. Most existing
net-VEs have strict properties of locality that we can exploit.
Every participant in can be represented as a high-dimensional
tuple. Furthermore, this tuple has a finite maximum rate of
change in position. Certainly traditional spatial attributes like
x, y cannot change more than the maximum object velocity.
Similar restrictions apply to attributes like health if thevirtual
world has a maximum damage amount. As a result, many
of the actions are restricted to a ball of fixed radius about
a high dimensional point determined by the participant. For
example, when a combatant is looking a target to attack, this
is ball about the combatant’s attack power and spatial position.
Therefore, given the position of these balls at timet, and the
maximum rate of change, together with an actionA of some
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Fig. 4. The worst-case in First Bound Model

other participant, we can use simple geometrical calculations
to determine if any of the participant’s future actions might be
directly affected by the outcome ofA.

The server now works as follows. Instead of waiting for
a client to submit an actionA and then replying with a set
of previous actions that are known to affectA, the server
proactively pushes to each client a setAS of all actions that
might affect that client’s future actions, enabling the client to
execute the actions ofAS during what would otherwise be
idle time. More precisely, at regular intervals ofω RTT time,
where0 < ω < 1, the server sends to each clientC all actions
submitted in the previousω RTT that could possibly affect
any of C ’s future actions.

Claim: The server receives a response for any actionA from
the client in time(1 + ω) RTT of sendingA to the client.

Proof: We assume that it takes ½RTT time for an action to
travel from the server to the client. Therefore, if an action
A (along with some other actions) is sent to the clientj
ticks after the closestω RTT cycle from the server, where
j ≤ ω RTT/τ , it reaches the clientj ticks after the client
has finished executing the previous action set. The client can
therefore executeA in at mostj ticks and respond back to
the server. The response takes an additional ½RTT. Sincej is
bounded byω RTT , the maximum time for this entire process
is (1 + ω) RTT .

As stated earlier, the decision whether an actionA is sent
from the server to a client is based on whether or not the
client’s future actions could possibly conflict withA. Let the
maximum area of influence ofA in the virtual world be given
by a sphere centered at the pointp̄A and radiusrA. Let the
position of the character representing clientC be given byp̄C ,
and let the maximum radius of influence of an action byC
berC , and let the maximum rate of change in position of any
object be given bys. Then A can affect any ofC ’s future
action in time(1 + ω) RTT if and only if

‖ p̄A − p̄C ‖≤ (2s× (1 + ω) RTT ) + rC + rA (1)

This equation reflects a worst-case in whichA affects an
object at distancerA from itself, that object andC ’s character
move towards one another, each traveling at maximum speed
s, and they approach to distancerC within the specified time
bound of(1+ω) RTT , as illustrated in Figure 4. The equation
gives us the first bound on the number of actions that can
directly conflict with the actions of the client, represented as
a sphere centered at the position of the client in the virtual



world.

E. The Information Bound Model

Though the First Bound Model gives a bound on the number
of actions that can directly conflict with a client’s actionsand
therefore have to be sent to the client, the actual set of actions
that are sent to a client is the transitive closure of actionsthat
conflict with the aforementioned set of actions.

We claim that the number of uncommitted actions than can
directly or indirectly cause a conflict with any given actionis
unbounded. We illustrate this using the following example.

Dining Philosophers Problem.Consider a scenario withn
participants, with each of them trying to grab two forks—
one to their left and one to their right. Let them be organized
in the form of a circular ring located on earth’s equator. If
each of them tries to pick up the two forks at the same tick,
then although the direct conflicts never involve more than two
participants, a transitive closure of conflicts encompasses the
entire world.

In order to counter this problem, we believe that the prevalent
uncertainty in the system can be used to break the long
chains. This can primary be employed to restrict the size of
the transitive closure of actions bydropping some actions,
i.e. declaring some actions as invalid and aborting them
immediately upon a submission at the server. An alternate to
dropping actions is delaying actions by some amount of time
so that the bulk of the actions in the conflicting action set are
committed.

The optimal way to drop actions is unclear. For example,
fairness becomes an issue when we consider action dropping—
what if the actions for a client are repeatedly dropped or
delayed? Another issue is to find the optimal set of actions
to drop in real-time, especially given the fact that most net-
VEs are online and demand immediate response. With more
and more people joining net-VEs, a fear in such a protocol
is that the cost of evaluating transitive closures of conflicting
actions might surpass the cost of processing actions at the
server. Evaluating all such techniques is beyond the scope of
this paper, and is interesting area for further research.

As a first step towards solving this problem, we propose
the Information Bound Model. This model greedily decides
whether or not an action should be dropped. Since all clients
do not submit actions exactly at the same time, we believe that
the random order of arrival of actions at the server will ensure
fairness, i.e. the probability of an action getting droppedis
the same for all clients. The greedy nature of the algorithm is
computationally inexpensive, and therefore we conjecturethat
the model can be used in real-time environments.

Algorithm 2 gives two important modules of the Information
Bound model. The functiononActionSubmission() is
called when any client submits an action. This action is added
to a global queue of actions (line 7). The function then
evaluates the set of clients (given byclientConflicts) that could
be interested in the action sometime in the near future (lines
9-14). The second functiononNextTick() is invoked at
every tick, i.e. at regular intervals of timeτ . The identifier

Algorithm 7 : Information Bound Model

global actionCount, previousCount, lastCommitted,1

numClients

function onActionSubmission(action)2

begin3

AactionCount ← action4

let i = actionCount5

for (j = 0; j < clientCount; j+ = 1) do6

if |pAi
− pCj

| ≤ (2s× (1 + ω) RTT ) + rC + rA7

then
clientConflictsi,clientConflictCounti

← j8

clientConflictCounti+ = 19

end10

end11

actionCount+ = 112

end13

function onNextTick()14

begin15

for (i = previousCount; i < actionCount; i+ = 1)16

do
let S = RS(Ai)17

let invalid = false18

for (j = i− 1; j > lastCommitted; j− = 1) do19

if isV alidj and S ∩WS(Aj) 6= ∅ then20

if |pAi
− pAj

| > threshold then21

invalid← true22

break23

end24

S ← (S −WS(Aj)) ∪RS(Aj)25

conflictsi,conflictCounti
← j26

conflictCounti+ = 127

end28

end29

isV alidi ← not invalid30

end31

previousCount← actionCount32

end33

range [previousCount, actionCount) gives the identifiers of
all actions submitted in the previous tick. For each submitted
actionA, onNextTick() evaluates intoconflictsa transitive
closure of all conflicting uncommitted actions. If any of the
conflicting actions is at a distance greater than somethreshold
distance fromA, thenA is dropped.

The First Bound Model and the Information Bound Model
together give two bounds. The first bound is on the maximum
number of actions that need to be sent to a client due to direct
conflicts, represented as a function of time and distance in the
attribute hyperspace. The second bound is on the maximum
number of actions that can be a part of any actions transitive
closure, represented as a function of distance. Combining these
two bounds, we get the following (loose) bound on the number
of actions sent to a client at each tick, represented as a function
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of time and distance:

‖ p̄A− p̄C ‖≤ (2s×(1+ω) RTT )+rC +rA + threshold (2)

An important aspect of the Information Bound Model is the
conflict detection algorithm. Although virtual worlds require
an unordered evaluation of actions with the same timestamp,
the decision to drop actions is sequential (lines 19-34). This
enables the model to accept a majority of the actions, while
dropping only those actions that invalidate the bound. To put
things in perspective, we again consider the Dining Philoso-
phers problem. If all participants try to pick up the two forks
at the same tick, we conjecture that the decision to drop all of
the requests is suboptimal. The primary reason for this is the
fact that the intention was to break long chains, and not make
a decision. By dropping a few actions at regular intervals,
the chain can be broken into numerous pieces, each of which
satisfies the requisite threshold.

IV. OPTIMIZING THE PROTOCOL

We next give some basic optimizations for our model.
Though most of these techniques have been well-researched in
graphics and rendering space [33], they also generalize to the
domain of event propagation. In particular, as the virtual world
is representable by a high-dimensional database, all we have
to do is apply many of these techniques to higher dimensions.

A. Inconsequential Action Elimination

Throughout the discussion in this paper, we have assumed
that an action submitted by any participant can affect the future
actions of all other participants that satisfy a certain bound on
the distance between their positions. We claim that the number
of such conflicts can be sharply reduced by integrating non-
trivial MMO semantics into the system. For example, suppose
that a net-VE contains humans and insects. A participant who
is pretending to be an insect in the VE would probably need
to consistently know the location of other insects and of the
humans. However, a participant who is acting as a human in
the VE may not need to reliably know the locations of all
of the insects. We can therefore extend the system so as to
allow the clients to specify exactly what kind of actions and
information they are interested in, instead of assuming absolute
uniformity.

B. Area Culling

Another assumption that has been made is that the area of
influence of any action is a sphere centered at its point of
occurrence. However, most of the actions such as shooting

an arrow, or even walking, normally have a velocity vector
associated with them. Even health may have an associated
“velocity” vector to it, if the damage is occurring over time
(such the “corrupted blood” disease inWorld of Warcraft). We
can therefore integrate this velocity vector in the bound cal-
culation to predict any future conflicts. The conflict equation
(Equation 1) can be restructured as:

‖ p̄M +(v̄M × (tM − tC))− p̄C ‖≤ (2s× (1+ω)RTT )+ rC,

where v̄M is the velocity vector associated withM , tM is
the time of occurrence ofM , and tC is the time at which
the position of clientC was last updated tōpC . Note that the
term,rM , corresponding to the area of influence ofM is now
represented as a vector and moved to the left hand side of the
equation.

V. EXPERIMENTS

We built a system implementing the action based protocol
in Java 5.0 and conducted experimental studies to quantify and
evaluate its performance. We call our implementationSEVE,
for Scalable Engine for Virtual Environments. We also built
an optimized version of a centralized system that represents
current online virtual worlds such as Second Life or World
of Warcraft. Furthermore, we implemented the NPSNET and
the RING architectures, which represent the state of the artin
distributed simulations.

Our experimental evaluation is based on a synthetic work-
load that stresses the consistency issues in MMOs. The syn-
thetic workload is generated by a simple virtual world, similar
to the example in Section III-B. We call this virtual world
Manhattan People. It consists of avatars moving about in a
rectangular area and colliding with walls or other avatars.
Whenever an avatar bumps into something, it changes its
direction by 90◦. By adjusting the number of walls, we
can control the computational complexity per action, while
the number of participants controls the expected number of
conflicts between actions.

A. Experimental Setup

1) System Setup:All performance results were obtained by
running the virtual world on an EMULab [34] testbed consist-
ing of 65 machines—64 clients and 1 server. Each EMULab
machine was a Pentium III Processor with 2 GB of RAM,
running Linux 2.4.0. Timings were obtained using the Java
System.currentTimeMillis()method. Each machine,
except one designated as the central server, was running other
programs such as a desktop manager, a document editor and a
web browser in the background. We consider this a simple
way to emulate a typical client machine. Additionally, we
used EMULab to introduce latency at the network level in
order to simulate deployment on a wide-area network. The
average latency between machines was 238ms. The numbers
we present are repeatable, and were averaged over 10 runs of
the system, with each run lasting approximately 1 hour.



Virtual world size 1000 x 1000
Number of walls 0 – 100,000
Number of clients 0 – 64
Average latency 238ms
Maximum bandwidth 100Kbps
Moves per client 100
Move generation rate Every 300ms per client
Move effect range 10units
Avatar visibility 30units
Threshold 1.5× Avatar visibility

TABLE I

SIMULATION SETTINGS
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Fig. 6. Scalability of SEVE vs. Central architecture

2) Virtual World Setup:The size of the virtual environment
in Manhattan People was fixed at 1000 x 1000 points. Each
wall had length 10, and the number of walls was limited to
100,000. Each move evaluation checked for conflicts with a
varying number of walls closest to the client’s avatar, and all
other avatars within walk-able range. Checking for collisions
with walls, we made heavy use of trigonometric functions—a
complexity that was forced in to simulate the performance of
virtual worlds such as Second Life.

As our simulations have shown, the average time required
to calculate a single move is as expected linearly related to
the number of walls in the virtual world. We omit details on
this due to space constraints except that clients required an
average of 6.95ms per move, per 1,000 visible walls (1,000
is very close to the average number of walls a client sees for
100,000 walls in our virtual world). Table I gives an overview
of the simulation parameters. For our experiments, we varied
the number of walls and clients to measure scaling effects.

B. Performance Evaluation

We performed three batteries of experiments. First, we
evaluated the scalability-complexity tradeoff in (a) a central-
ized model (Central)—to represent Second Life and WoW,
the state of the art in online games; (b) a broadcast model
(Broadcast)—representing NPSNET and SIMNET, the state
of the art in distributed simulations; and (c) our action based
distributed model (SEVE). Second, we explored the bandwidth
requirements of the three models. Third and last, we evaluated
the consistency-performance tradeoff.
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1) Scalability vs. Complexity:For this first set of experi-
ments, every single client submitted a total of 100 moves at
intervals of 300ms per move. The number of walls was fixed
at 100,000, while we varied the number of clients between
0 and 64. In a single run of the simulation, the number of
other avatars that a client’s avatar could see was empirically
determined to be 6.87 on average.

We empirically determined that the time it took for a
machine to evaluate a single move was 7.44ms. Figure 6
compares the response time observed by clients against the
number of clients. As apparent from the figure, the centralized
architecture and the broadcast model break down at about
30-32 clients. This is not too surprising for the centralized
architecture since for every action that a client submits, the
server has about 300ms to evaluate it. If 32 clients submit
actions simultaneously, each action consuming 7.44ms of a
server’s time, the total time required to evaluate a round of
actions is 240ms. The remaining 60ms can be attributed to syn-
chronization and networking overhead. As noted earlier, each
client in the broadcast model has computational requirements
comparable to the central server; and therefore we observe a
similar scalability for the broadcast model.

In contrast to that, SEVE’s response time remained perfectly
stable as the number of clients increased. We empirically deter-
mined the time for calculating the transitive closure of conflicts
over a single move to be 0.04ms on average. However, as the
number of clients goes up, so does the number of concurrent
moves and the time required to evaluate a transitive closure.
This factor is alleviated by the fact that the size of the transitive
closure is bounded as a result of the moves getting dropped.
We performed experiments on a single server and determined
the limit of our implementation to be about 3500 clients.

Figure 7 compares the response time observed by the clients
against the time it took to evaluate a single move. The number
of clients employed in this experiment was fixed at 25. The
centralized model and broadcast model performed well for
moves that took less than 10ms for processing. However, as the
complexity increased, the response time increased drastically,
effectively making the game unplayable. Again, the response
time for SEVE remained unaffected.

Finally, we evaluated the sensibility of SEVE with respect
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Move effect range 1 3 5 7 9 11
% Moves dropped 0 0 0.01 1.53 4.03 8.87

TABLE II

PERCENTAGE OF MOVES DROPPED(VISIBILITY = 20UNITS)

to the density of avatars. Recall that humans are social beings,
so avatars can be expected to form clusters in a real system.
For this test, the number of clients was fixed at 60. The size
of the virtual world was reduced to 250x250 units, and the
avatars were initially positioned 4 units apart from each other.
We varied the visibility of avatars from 10units to 100units.
Figure 8 gives the observed response time versus the average
number of other avatars visible to each avatar.

The naive implementation of SEVE bogged down as the
number of visible avatars exceeded 35, primarily because the
clients ran out of computational power. In comparison, the
improved implementation of SEVE started dropping moves
that were causing long chains, allowing it to keep response
time stable regardless of the density of avatars. The number
of dropped moves varied from 1.5%-7.5% for different runs
of the system.

At this point, it should be noted that the percentage of
moves dropped is in fact independent of avatar visibility. This
is because the length of chains depends on therange of move
effect, and not avatar visibility. Table II gives the percentage
of moves dropped as a function of move effect range. While
the numbers appear to be fairly high for a large move effect
range, the density of avatars in this particular experimentis
really an extreme case. We can safely consider this a worst
case scenario.

Varying the number of moves per client, or the rate of move
generation had no impact on the performance of SEVE. The
centralized model and the broadcast model, however, diverged
when the number of moves, or the rate of generation, was
increased. We omit the corresponding graphs due to space
constraints.

2) Bandwidth Requirements:A main concern of distributed
systems is in the amount of network traffic generated. Figure9
shows the comparison between Central, Broadcast and SEVE.
As expected, the broadcast model requires excessive network
traffic (quadratic in the number of clients). This was the
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original reason why systems such as RING were proposed. We
note that the total traffic for the server in SEVE does not differ
significantly from a centralized model, which obviously is
optimal in total traffic. We conclude that SEVE does not incur
higher costs on network infrastructure than current systems.

3) Performance vs. Consistency:We evaluated the per-
formance impact of calculating transitive closures in SEVE
with 64 clients and 100,000 walls compared to a RING-like
architecture which only evaluates actions within the visible
range of an avatar. The average number of avatars that an
avatar could see was increased to 14.01 as opposed to 6.87
earlier, leading to more conflicts processing at the clients.
Figure 10 shows the results we obtained.

Calculating the transitive closure in SEVE accounted for a
runtime overhead of 1% compared to the RING-like archi-
tecture. This shows that the runtime overhead of our strongly
consistent approach is negligible.

In summary, our experiments show that our architecture
is massively scalable while preserving strong consistency.
It gives an order of magnitude improvement over existing
strongly consistent architectures for networked virtual envi-
ronments.

VI. RELATED WORK

Recent work in commercial MMOs has introduced the
idea of dynamic zoning [4]. While dynamic zones are more
flexible than traditional zones, they still restrict playeractions



to a geographic area. Reality Build For Two [5] and MR
Toolkit [8] are two net-VEs that maintain consistent state
amongN workstations by sending a point-to-point message
to each of the workstations for every single state change.
This approach yieldsO(N2) update messages during every
simulation step, and this does not scale. NPSNET [35] follows
a basic object based broadcast model. It broadcasts messages
to all workstations at once, yieldingO(N) update requests for
N workstations. However, the computational requirement from
each client is the same in MR Toolkit. RING [6] and DIVE [7]
handle message filtering by sending all updates to the central
server. The server tracks the current location of each entity,
and it can determine which users would not be interested in
a particular update. This approach takes these frameworks
very close to our model. However, in both these systems,
the server forwards updates only to users who can “see” the
entity, leading to inconsistency (cf. Section III-B). Wiesmann
et al. [36], [37] evaluate replication techniques based on
broadcasting events in total order. Our algorithm can be
understood as a fast-paced instance of 2-tier replication [38],
which in turn builds on multi-version serializability theory
[39]. Content-based publish-subscribe [40] is a generalization
of our perceptions-as-continuous-queries model, howeverthe
focus is on data distribution and not consistency [41].

VII. C ONCLUSIONS

In this paper we motivate that at the core of networked vir-
tual environments lie data management problems. We identi-
fied an interesting concurrency problem to which we proposed
a novel practical solution based on taking semantics into ac-
count. We believe, however, that we just scratched the surface
of this (for the database community) new area, and that both
virtual worlds as well as other virtual networked environments
— from collaborative problem solving to online games — can
benefit from solutions from the database community for years
to come.
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