Column-Stores vs. Row-Stores: How Different Are They

Really?

Daniel J. Abadi, Samuel Madden and Nabil Hachem
SIGMOD 2008

Presented by:

Souvik Pal
Subhro Bhattacharyya

Department of Computer Science
Indian Institute of Technology, Bombay

SIGMOD (2008) Column-Stores vs. Row-Stores 1/36

Outline

@ Introduction

SIGMOD (2008) Column-Stores vs. Row-Stores 2 /36

Column Stores

row-store column-store

s b Jr ol ool storelf product llcustomer | price

= ||““‘

Figure 1: Column Stores [1].

@ Row store: Data are stored in the disk tuple by tuple

@ Column store: Data are stored in the disk column by column

SIGMOD (2008) Column-Stores vs. Row-Stores 3/36

Column Stores

@ A relational DB shows its data as 2D tables of columns and rows

4

| Empld | Lastname | Firstname | Salary |

1 Smith Joe 40000
2 Jones Mary 50000
3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

SIGMOD (2008) Column-Stores vs. Row-Stores 4 /36

Column Stores

@ A relational DB shows its data as 2D tables of columns and rows

@ Row Store: serializes all values of a row together

4

| Empld | Lastname | Firstname | Salary |

1 Smith Joe 40000
2 Jones Mary 50000
3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

Row Store

1,Smith,Joe,40000;
2,Jones,Mary,50000;
3,Johnson, Cathy,44000;

SIGMOD (2008) Column-Stores vs. Row-Stores 4 /36

Column Stores

@ A relational DB shows its data as 2D tables of columns and rows
@ Row Store: serializes all values of a row together

@ Column Store: serializes all values of a column together

| Empld | Lastname | Firstname | Salary |

1 Smith Joe 40000
2 Jones Mary 50000
3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

Row Store

1,Smith,Joe,40000; 1,2,3;
2,Jones,Mary,50000; Smith,Jones,Johnson;
3,Johnson,Cathy,44000; Joe,Mary,Cathy;

40000,50000,44000;

SIGMOD (2008) Column-Stores vs. Row-Stores 4 /36

Column Stores

| Row Store | Column Store |

(+) Easy to add/modify a record | (4) Only need to read in relevant data
(-) Might read in unnecessary data | (-) Tuple writes require multiple accesses

Table 2: Column store vs Row Store [1]

SIGMOD (2008) Column-Stores vs. Row-Stores 5/ 36

Column Stores

| Row Store | Column Store |

(+) Easy to add/modify a record | (4) Only need to read in relevant data
(-) Might read in unnecessary data | (-) Tuple writes require multiple accesses

Table 2: Column store vs Row Store [1]

Column stores are suitable for read-mostly, read-intensive, large data
repositories

@ data warehouses
@ decision support applications
@ business intelligent applications

For performance comparison, the star schema bench mark is used(SSBM)

SIGMOD (2008) Column-Stores vs. Row-Stores 5/ 36

Outline

© Column-Stores vs. Row-Stores
@ Row-oriented execution
@ Column-oriented execution

SIGMOD (2008) Column-Stores vs. Row-Stores 6 /36

Outline

© Column-Stores vs. Row-Stores
@ Row-oriented execution

SIGMOD (2008) Column-Stores vs. Row-Stores 7/ 36

Simulating a Column-Store in a Row-Store

Column-store performance from a row-store?

@ Vertical Partitioning
@ Index-only plans

@ Materialized Views

SIGMOD (2008) Column-Stores vs. Row-Stores 8/ 36

Vertical Partitioning

Date Store Cust Product Price

| Date | Store | Cust

Productl Price |
POS| VALUE | |POS| VALUE | |POS| VALUE | |POS| VALUE | |[POS| VALUE

01/01 | BOS | Mesa | Table | $20 _) 1] o01/01 1| BOS 1 [Mesa 1| Table || 1| $20
01/01 | NYC Lutz | Chair $15 2 | 01/01 2 | NYC 2| Lutz 2 | Chair 2| $15
01/01 [BOS | Mudd | Bed | $90 3 | o101 3| BOS 3 | Mudd 3| Bed 3] $90

Figure 2: Vertical Partitioning [1].

o Full vertical partitioning of each relation.

@ 1 physical table for each column.

SIGMOD (2008) Column-Stores vs. Row-Stores 9 /36

Vertical Partitioning

Date Store Cust Product Price

| Date | store | cust |Pr°dUCt| Price | POS| VALUE | [Pos| VALUE | [Pos| vALUE | [PoS| VALUE | |PoS| VALUE
01/01 | BOS | Mesa | Table | $20 _) 1] o01/01 1| BOS 1 [Mesa 1| Table || 1| $20
01/01 | NYC Lutz | Chair $15 2 | 01/01 2 | NYC 2| Lutz 2 | Chair 2| $15
01/01 [BOS | Mudd | Bed | $90 3 | o101 3| BOS 3 | Mudd 3| Bed 3] $90

Figure 2: Vertical Partitioning [1].

@ Primary key of relation may be long and composite

@ Integer valued “position” column for each table.
@ Thus each table has 2 columns.
@ Joins required on “position” attribute for multi-column fetch.

SIGMOD (2008) Column-Stores vs. Row-Stores 9 /36

Vertical Partitioning

Date Store Cust Product Price
| Date |Store | Cust |Product| Price |
POS| VALUE | |POS| VALUE | |POS| VALUE | |POS| VALUE | |[POS| VALUE
01/01 | BOS | Mesa | Table $20 _) 1]o01/01 1] BOS 1| Mesa 1| Table 1| $20
01/01 | NYC Lutz | Chair $15 2 | 01/01 2| NYC 2 | Lutz 2 | Chair 2 | $15
01/01 | BOS Mudd | Bed $90 3| 01/01 3| BOS 3 | Mudd 3 Bed 3| $90

Figure 2: Vertical Partitioning [1].

@ “Position” attribute: stored for every column
o wastes disk space and bandwidth

@ large header per tuple
@ more space is wasted

@ Joining tables for multi-column fetch

@ Hash Join slow
o Index Join slower

SIGMOD (2008)

Column-Stores vs. Row-Stores

9/ 36

Index-only plans

Date Index Store Index

[oe [sore | cont [l 7o |
01/01 | BOS | Mesa | Table $20 _)
01/01 | NYC Lutz | Chair $15
01/01 | BOS | Mudd | Bed $90

Figure 3: Index-only plans [1].

@ Unclustered B+ tree index on each table column

@ Plans never access actual tuples on the disk

@ Tuple headers not stored, so overhead is less

SIGMOD (2008) Column-Stores vs. Row-Stores 10 / 36

Index-only plans

Date Index Store Index

[ooe [sore | cont Jpoamcl] 7o |
01/01 | BOS | Mesa | Table $20 _)
01/01 | NYC Lutz | Chair $15
01/01 | BOS | Mudd | Bed $90

Figure 3: Index-only plans [1].

@ Indices stored as (record-id, value) pairs.

@ All rids stored

@ No duplicate values stored

SIGMOD (2008) Column-Stores vs. Row-Stores 10 / 36

Index-only plans

Date Index Store Index

| Date |Store | Cust |Pruduct| Price

01/01

Mesa

Table

$20

01/01

Lutz

Chair

$15

01/01

Mudd

Bed

$90

Problems

B B

Figure 3: Index-only plans [1].

@ Separate indices may require full index scan which is slow

@ Solution: Composite indices required to answer queries directly

SELECT AVG(SALARY) FROM exMP WHERE AGE>40

SIGMOD (2008)

Column-Stores vs. Row-Stores 10 / 36

Materialized views

@ Optimal set of MVs created for given query

@ Contains only those columns required to answer the query.
@ Tuple headers are stored just once per tuple

@ Provides just the required amount of data

Problems
@ Query should be known in advance

SIGMOD (2008) Column-Stores vs. Row-Stores 11 /36

Outline

© Column-Stores vs. Row-Stores

@ Column-oriented execution

SIGMOD (2008) Column-Stores vs. Row-Stores 12 /36

Optimizations in Column-Oriented DBs

o Compression
@ Late Materialization
@ Block lteration

@ Invisible Join

SIGMOD (2008) Column-Stores vs. Row-Stores

13/ 36

Compression

Quarter Price

Features e

® Low information entropy in columns than rows a1 [a00
Q1 65
@ Decompression performance more valuable than a1 | s
. . Ql |100
compression achievable TRED
Q1 |120
Advantages
Q2 56
@ Low disk space o || &
Q2 | 109
o Lesser I/O @2 |9
@ Performance increases if queries executed directly on *
Quarter
Compressed data (value, start_pos, run_length)
(Q1, 1, 300)
(Q2, 1, 200)
Figure 4:

Compression [1].

SIGMOD (2008) Column-Stores vs. Row-Stores 14 / 36

Late Materialization

@ Information about entities stored in different tables.

@ Most queries access multiple attributes of an entity.

v

Naive column-store approach-Early Materialization

@ Read necessary columns from disk

o Construct tuples from component attributes

@ Perform normal row-store operations of these tuples

@ Much of performance potential unused

SIGMOD (2008) Column-Stores vs. Row-Stores 15/ 36

Late Materialization

Features

@ Keep data in columns and operate on column data until late into the
query plan

@ Intermediate “position” lists need to be created.

@ Required for matching up operations performed on different columns.

v

Example

SELECT R.A FROM R WHERE R.c =5 AND R.B = 10
@ Output of each predicate is a bit string
@ Perform Bitwise AND

@ Use final position list to extract R.a

SIGMOD (2008) Column-Stores vs. Row-Stores 16 / 36

Late Materialization

@ Selection and Aggregation limits the number of tuples generated
@ Compressed data need not be decompressed for creating tuples
@ Better cache performance — PAX

@ Block iteration works better on columns than on rows

SIGMOD (2008) Column-Stores vs. Row-Stores

17 / 36

Partition Attributes Across (PAX)

PAX PAGE CACHE

PAGE HEADER | 0962/ 7658
@ column interleaving 3859 [5523 |30 52| 45 20'

@ minimal row reconstruction cost

Jane | Jolm‘ Jim | Susan |

@ only relevant data in cache

@ minimizes cache misses

@ effective when applying querying 30 | 52| 45 2()'
. . o
on a particular attribute
v [Tr]_

Figure 5: PAX [3].

SIGMOD (2008) Column-Stores vs. Row-Stores 18 / 36

Block lteration

Features

@ Operators operate on blocks of tuples at once
o lterate over blocks of tuples rather than a single tuple
@ Avoids multiple function calls on each tuple to extract data
o Data is extracted from a batch of tuples

@ Fixed length columns can be operated as arrays

@ Minimizes per-tuple overhead
@ Exploits potential for parallelism

SIGMOD (2008) Column-Stores vs. Row-Stores 19 / 36

Star Schema Benchmark

CUSTOMER LINEORDER PART
CUSTKEY ORDERKEY PARTKEY
NAME \ LINENUMBER NAME
IADDRESS CUSTKEY MFGR
ICITY PARTKEY CATEGOTY
NATION ASUPPKEY BRAND1
REGION ORDERDATE || COLOR
PHONE ORDPRIORITY TYPE
MKTSEGMENT SHIPPRIORITY SIZE
Size=scalefactor x QUANTITY CONTAINER
30,0000 EXTENDEDPRICE Size=200,000 x
Tieian ORDTOTALPRICE (1 + logz scalefactor
DISCOUNT
SUPPKEY DATE
NAME AEVENUE DATEKEY
SUPPLYCOST
ADDRESS Tax DATE
Iy COMMITDATE DAYOFWEEK
NATION SHIPMODE MONTH
REGION = YEAR
Size=scalefacior x
PHONE 6,000,000 YEARMONTHNUM
Size=scalefactor x T YEARMONTH
2,000 DAYNUMWEEK
(9 adad'l aftributes)
Size=365x 7
Figure 6: Star Schema Benchmark [4].

SIGMOD (2008) Column-Stores vs. Row-Stores

Invisible Join

Example

SELECT C.NATION, S.NATION, D.YEAR,
SUM(LO.REVENUE) AS REVENUE

FROM CUSTOMER AS C, LINEORDER AS LO,
SUPPLIER AS S, DWDATE AS D

WHERE LO.CUSTKEY = C.CUSTKEY

AND LO.SUPPKEY = S.SUPPKEY

AND S.REGION = ’ASIA’

AND D.YEAR >= 1992 AND D.YEAR <= 1997
GROUP BY C.NATION, S.NATION, D.YEAR
ORDER BY D.YEAR ASC, REVENUE DESC;

o Find total revenue from customers who live in ASIA
@ and who purchase from an Asian supplier between 1992 and 1997

@ grouped by nation of customer, nation of supplier and year of
transaction

SIGMOD (2008) Column-Stores vs. Row-Stores 21 /36

Invisible Join

Traditional Plan

Pipelines join in order of predicate
selectivity.

Disadvantage: misses out on late
materialization

Late materialized join:

Disadvantage

Green

After join the list of positions for
dimension tables are unordered

White

Brown

custiD Price custiD lastName

Group by columns in dimension tables Figure 7: Late materialization [1].
need to be extracted in out-of-position
order.

SIGMOD (2008) Column-Stores vs. Row-Stores 22 /36

Invisible Join

Apply region = 'Asia' on Customer table
custkey region nation
1 Asia China o '1::::::':
2 Europe France 1and 3
3 Asia India
Apply region = 'Asia' on Supplier table
suppkey region nation
1 Asia Russia — :lvaitshhkteay?l‘la
2 Europe Spain
Apply year in [1992,1997] on Date table
dateid year
01011997 | 1997 s |y :::: ;;‘g‘;;‘g;t‘
01021997 | 1997 01021997, and
01031997 1997 01031997
Figure 8: Phase 1 [4].

SIGMOD (2008) Column-Stores vs. Row-Stores 23 /36

Invisible Join

Fact Table
orderkey | | custkey | | suppkey | | orderdate revenue
1 3 1 01011997 43256
3 2 01011997 33333
3 2 L 01021997 12121
4 1 1 01021997 23233
5 2 2 01021997 45456
6 1 2 01031997 43251
7 3 2 01031997 34235

Hash table
with keys | =
1and 3

matching fact

fable bitmap

for cust. dim.
Jjoin

Hash table | _
with key 1|~

probe

Hash table with

keys 01011997, _

01021997, and
01031997

o] fact table
= “ tuples that
satisfy all join
predicates

Figure 9: Phase 2 [4].

SIGMOD

tores vs. Row-Stores

24 / 36

Invisible Join

fact table dimension table
tuples that -
satisfy all join ilion
predicates China

France

India

N\

nation
Russia

Spain

=E;m

dateid | year
01011997 1997

. FadTableColumns

SUnSaY tiop

01021957 | 1997

01031997 1997
01011997 T
01021957 JE’I'LZP 01011997 m
(U027, = > -

< 01021997 | ~Vaes

01021357 extraction| L910%1997 |
01021997 -
01031957
01031957

Figure 10: Phase 3 [4].

SIGMOD (2008) Column-Stores vs. Row-Stores

Invisible Join

Between-Predicate Rewriting

Apply “region = *Asia’” On Customer Table

custkey | region | nation
1 ASIA | CHINA | ... > Mm
2 ASIA | INDIA | ... Contgi G and 3
5 ASIA | INDIA | ...
1

EUROPE |FRANCE| ... Range [1'3]

(between-predicate rewriting)

Apply “region = ‘Asia™ On Suppller Table
suppkey | region | nation
ASIA |RUSSIA| ... & Hash Table (or bit-map)

EUROPE| SPAIN Containing Keys 1, 3
3 ASIA | JAPAN [...

=

Apply “year in [1992, 1997]“ On Date Table

dateid | year -
01011997| 1997 > Hash Table Containing
01021997 1897 Keys 01011997, 01021997,
UL = and 01031997

Figure 11: Between-Predicate Rewriting [1].

SIGMOD (2008) Column-Stores vs. Row-Stores 26 / 36

Outline

© Experiments

SIGMOD (2008) Column-Stores vs. Row-Stores 27 / 36

@ Performance comparison of C-Store with R-Store

@ Performance comparison of C-Store with column-store simulation on
a R-Store

@ Finding the best optimization for a column-store

@ Comparison between invisible join and denormalized table

SIGMOD (2008) Column-Stores vs. Row-Stores 28 / 36

C-Store(CS) vs. System-X(RS)

60
z
=
g
8
2
Y
E
)
111213 2.1 27 23 3.1 32 33 34 4] 42 43 AVG
HERS 27 20 1.5 438 44.1 /46,0 43.0 42.8 31.2 6.5 444 14.1 122 257
ERS (MV) 1.0 1.0 02 155 135/ 11.8 161 69 64 30 292 224 64 102
mcs 04 01 01 57 42 39 110 44 76 06 82 37 26 40
Row-MV) 16.0| 9.1 84 33.5/235|22.3 485 21.5/17.6 174 48.6 38.4 32.1 259
RS - Row Store RS(MV) - Row Store with optimal set of materialized views
CS - Column store CS (Row-MV) - Column store constructed from RS(MV)
Figure 12: C-Store(CS) and System-X(RS) [4].
y.
SIGMOD (2008) Column-Stores vs. Row-Stores 29 / 36

C-Store(CS) vs. System-X(RS)

First three rows as per expectation.
For CS(Row-MV) materialized data is stored as strings in C-store.

Expected that both RS(MV) and CS(Row-MV) will perform similarly
However RS(MV) performs better

@ No support for multi-threading and partitioning in C-Store.
o Disabling partitioning in RS(MV) halves performance
o Difficult to compare across systems

C-Store(CS) 6 times faster than CS(Row-MV)

@ Both read minimal amount of data from disk to answer a query
@ |/O savings- not the only reason for performance advantage

e © ¢ ¢

(]

SIGMOD (2008) Column-Stores vs. Row-Stores 30 /36

Column store simulation in Row store

@ Traditional
@ Vertical Partitioning: Each column is a relation
@ Index-only plans: B+Tree on each column

@ Materialized Views: Optimal set of views for every query

SIGMOD (2008) Column-Stores vs. Row-Stores 31 /36

Column store simulation in Row store

@ MV < T < VP < Al (time taken)

250.0

@ Without partitioning, T ~ VP

@ Vertical partitioning: Tuple Overhead

150.0

| | 1 Column | Whole Table]

Time (seconds)

T 4 GB 100.0
VP | 1.1 GB
CS | 240 MB 2.3 GB 500
@ Index-only plans: Column Joins _A“: 51 s ton | s | ma

@ Hash Join: takes a long time T - Traditional VP - vertical partitioning
T(B) - Traditional(bitmap)

@ Index Join: high index access MV - materialized views Al = All indexes
overhead

s Merge Join: unable to skip sort Figure 13: Column store simulation
step in Row store [4].

4

SIGMOD (2008) Column-Stores vs. Row-Stores 32 /36

Breakdown of Column-Store Advantages

@ Start with C-Store

45.0 Average
@ Remove optimizations one by one o
40.0
@ Finally emulate Row-Store -
T . . . 30.0
@ Late materialization improves 3 times
4
. . . £ 250
@ Compression improves 2 times g
.. .. 2200
@ Invisible Join improves 50% £
. . 15.0
@ Block processing improves 5-50%
10.0
5.0
0.0
tICL TICL tiCL TiCL wcL TicL Ticl
MAverage 40 64 75 93 147 160 410
T-tuple-at-a-time processing L-late materialization enabled
t-block processing I-late materialization disabled
I-invisible join enabled C-compres%ion gnabled
i-invisible join disabled T GlEEl e

SIGMOD (2008) Column-Stores vs. Row-Stores 33 /36

Outline

@ Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 34 /36

Conclusion

@ C-Store emulation on R-Store is done by vertical partitioning, index
plans

@ Emulation does not yield good performance

@ Reasons for low performance by emulation
@ High tuple reconstruction costs
@ High tuple overhead

@ Reasons for high performance of C-Store
o Late Materialization
o Compression
@ Invisible Join

SIGMOD (2008) Column-Stores vs. Row-Stores 35 /36

References

[1] S. Harizopoulos, D. Abadi, and P. Boncz, “Column-Oriented Database
Systems,” in VLDB, 2009.

[2] http://en.wikipedia.org/wiki/Column-oriented_DBMS.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
Relations for Cache Performance,” in VLDB, 2001.

[4] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-Stores vs.
Row-Stores: How Different Are They Really?” in SIGMOD, June 2008.

SIGMOD (2008) Column-Stores vs. Row-Stores 36 / 36

http://en.wikipedia.org/wiki/Column-oriented_DBMS

	Introduction
	Column-Stores vs. Row-Stores
	Row-oriented execution
	Column-oriented execution

	Experiments
	Conclusion

