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Column Stores

Figure 1: Column Stores [1].

Row store: Data are stored in the disk tuple by tuple

Column store: Data are stored in the disk column by column
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Column Stores

A relational DB shows its data as 2D tables of columns and rows

Example

EmpId Lastname Firstname Salary

1 Smith Joe 40000

2 Jones Mary 50000

3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]
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Column Stores

A relational DB shows its data as 2D tables of columns and rows

Row Store: serializes all values of a row together

Example

EmpId Lastname Firstname Salary

1 Smith Joe 40000

2 Jones Mary 50000

3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

Row Store

1,Smith,Joe,40000;
2,Jones,Mary,50000;
3,Johnson,Cathy,44000;
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Column Stores

A relational DB shows its data as 2D tables of columns and rows

Row Store: serializes all values of a row together

Column Store: serializes all values of a column together

Example

EmpId Lastname Firstname Salary

1 Smith Joe 40000

2 Jones Mary 50000

3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

Row Store

1,Smith,Joe,40000;
2,Jones,Mary,50000;
3,Johnson,Cathy,44000;

Column Store

1,2,3;
Smith,Jones,Johnson;
Joe,Mary,Cathy;
40000,50000,44000;
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Column Stores

Row Store Column Store

(+) Easy to add/modify a record (+) Only need to read in relevant data
(-) Might read in unnecessary data (-) Tuple writes require multiple accesses

Table 2: Column store vs Row Store [1]
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Column Stores

Row Store Column Store

(+) Easy to add/modify a record (+) Only need to read in relevant data
(-) Might read in unnecessary data (-) Tuple writes require multiple accesses

Table 2: Column store vs Row Store [1]

Column stores are suitable for read-mostly, read-intensive, large data
repositories

data warehouses

decision support applications

business intelligent applications

For performance comparison, the star schema bench mark is used(SSBM)
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Simulating a Column-Store in a Row-Store

Column-store performance from a row-store?

Vertical Partitioning

Index-only plans

Materialized Views
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Vertical Partitioning

Figure 2: Vertical Partitioning [1].

Features

Full vertical partitioning of each relation.

1 physical table for each column.
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Vertical Partitioning

Figure 2: Vertical Partitioning [1].

Features

Primary key of relation may be long and composite

Integer valued “position” column for each table.

Thus each table has 2 columns.

Joins required on “position” attribute for multi-column fetch.
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Vertical Partitioning

Figure 2: Vertical Partitioning [1].

Problems

“Position” attribute: stored for every column

wastes disk space and bandwidth

large header per tuple

more space is wasted

Joining tables for multi-column fetch

Hash Join slow
Index Join slower
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Index-only plans

Figure 3: Index-only plans [1].

Features

Unclustered B+ tree index on each table column

Plans never access actual tuples on the disk

Tuple headers not stored, so overhead is less
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Index-only plans

Figure 3: Index-only plans [1].

Features

Indices stored as (record-id, value) pairs.

All rids stored

No duplicate values stored
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Index-only plans

Figure 3: Index-only plans [1].

Problems

Separate indices may require full index scan which is slow

Solution: Composite indices required to answer queries directly

Example

SELECT AVG(SALARY) FROM emp WHERE AGE>40
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Materialized views

Features

Optimal set of MVs created for given query

Contains only those columns required to answer the query.

Tuple headers are stored just once per tuple

Provides just the required amount of data

Problems

Query should be known in advance

SIGMOD (2008) Column-Stores vs. Row-Stores 11 / 36



Outline

1 Introduction

2 Column-Stores vs. Row-Stores
Row-oriented execution
Column-oriented execution

3 Experiments

4 Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 12 / 36



Optimizations in Column-Oriented DBs

Compression

Late Materialization

Block Iteration

Invisible Join
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Compression

Features

Low information entropy in columns than rows

Decompression performance more valuable than
compression achievable

Advantages

Low disk space

Lesser I/O

Performance increases if queries executed directly on
compressed data

Figure 4:
Compression [1].
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Late Materialization

Information about entities stored in different tables.

Most queries access multiple attributes of an entity.

Naive column-store approach-Early Materialization

Read necessary columns from disk

Construct tuples from component attributes

Perform normal row-store operations of these tuples

Much of performance potential unused
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Late Materialization

Features

Keep data in columns and operate on column data until late into the
query plan

Intermediate “position” lists need to be created.

Required for matching up operations performed on different columns.

Example

SELECT R.a FROM R WHERE R.c = 5 AND R.b = 10

Output of each predicate is a bit string

Perform Bitwise AND

Use final position list to extract R.a
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Late Materialization

Advantages

Selection and Aggregation limits the number of tuples generated

Compressed data need not be decompressed for creating tuples

Better cache performance – PAX

Block iteration works better on columns than on rows
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Partition Attributes Across (PAX)

Features

column interleaving

minimal row reconstruction cost

only relevant data in cache

minimizes cache misses

effective when applying querying
on a particular attribute

Figure 5: PAX [3].
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Block Iteration

Features

Operators operate on blocks of tuples at once

Iterate over blocks of tuples rather than a single tuple
Avoids multiple function calls on each tuple to extract data
Data is extracted from a batch of tuples

Fixed length columns can be operated as arrays

Minimizes per-tuple overhead
Exploits potential for parallelism
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Star Schema Benchmark

Figure 6: Star Schema Benchmark [4].
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Invisible Join

Example

SELECT c.nation, s.nation, d.year,
sum(lo.revenue) as revenue
FROM customer AS c, lineorder AS lo,
supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND s.region = ’ASIA’
AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

Find total revenue from customers who live in ASIA

and who purchase from an Asian supplier between 1992 and 1997

grouped by nation of customer, nation of supplier and year of
transaction
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Invisible Join

Traditional Plan

Pipelines join in order of predicate
selectivity.
Disadvantage: misses out on late
materialization

Late materialized join:
Disadvantage

After join the list of positions for
dimension tables are unordered

Group by columns in dimension tables
need to be extracted in out-of-position
order.

Figure 7: Late materialization [1].
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Invisible Join

Phase 1

Figure 8: Phase 1 [4].
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Invisible Join

Phase 2

Figure 9: Phase 2 [4].
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Invisible Join

Phase 3

Figure 10: Phase 3 [4].
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Invisible Join

Between-Predicate Rewriting

Figure 11: Between-Predicate Rewriting [1].
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Goal

Performance comparison of C-Store with R-Store

Performance comparison of C-Store with column-store simulation on
a R-Store

Finding the best optimization for a column-store

Comparison between invisible join and denormalized table
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C-Store(CS) vs. System-X(RS)

Figure 12: C-Store(CS) and System-X(RS) [4].
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C-Store(CS) vs. System-X(RS)

First three rows as per expectation.

For CS(Row-MV) materialized data is stored as strings in C-store.

Expected that both RS(MV) and CS(Row-MV) will perform similarly

However RS(MV) performs better

No support for multi-threading and partitioning in C-Store.
Disabling partitioning in RS(MV) halves performance
Difficult to compare across systems

C-Store(CS) 6 times faster than CS(Row-MV)

Both read minimal amount of data from disk to answer a query
I/O savings- not the only reason for performance advantage
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Column store simulation in Row store

Traditional

Vertical Partitioning: Each column is a relation

Index-only plans: B+Tree on each column

Materialized Views: Optimal set of views for every query
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Column store simulation in Row store

MV < T < VP < AI (time taken)

Without partitioning, T ≈ VP

Vertical partitioning: Tuple Overhead

1 Column Whole Table

T 4 GB
VP 1.1 GB
CS 240 MB 2.3 GB

Index-only plans: Column Joins

Hash Join: takes a long time
Index Join: high index access
overhead
Merge Join: unable to skip sort
step

Figure 13: Column store simulation
in Row store [4].
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Breakdown of Column-Store Advantages

Start with C-Store

Remove optimizations one by one

Finally emulate Row-Store

Late materialization improves 3 times

Compression improves 2 times

Invisible Join improves 50%

Block processing improves 5-50%
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Conclusion

C-Store emulation on R-Store is done by vertical partitioning, index
plans

Emulation does not yield good performance

Reasons for low performance by emulation

High tuple reconstruction costs
High tuple overhead

Reasons for high performance of C-Store

Late Materialization
Compression
Invisible Join
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