
Column-Stores vs. Row-Stores: How Different Are They

Really?

Daniel J. Abadi, Samuel Madden and Nabil Hachem
SIGMOD 2008

Presented by:

Souvik Pal

Subhro Bhattacharyya

Department of Computer Science
Indian Institute of Technology, Bombay

SIGMOD (2008) Column-Stores vs. Row-Stores 1 / 36



Outline

1 Introduction

2 Column-Stores vs. Row-Stores
Row-oriented execution
Column-oriented execution

3 Experiments

4 Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 2 / 36



Column Stores

Figure 1: Column Stores [1].

Row store: Data are stored in the disk tuple by tuple

Column store: Data are stored in the disk column by column

SIGMOD (2008) Column-Stores vs. Row-Stores 3 / 36



Column Stores

A relational DB shows its data as 2D tables of columns and rows

Example

EmpId Lastname Firstname Salary

1 Smith Joe 40000

2 Jones Mary 50000

3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

SIGMOD (2008) Column-Stores vs. Row-Stores 4 / 36



Column Stores

A relational DB shows its data as 2D tables of columns and rows

Row Store: serializes all values of a row together

Example

EmpId Lastname Firstname Salary

1 Smith Joe 40000

2 Jones Mary 50000

3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

Row Store

1,Smith,Joe,40000;
2,Jones,Mary,50000;
3,Johnson,Cathy,44000;

SIGMOD (2008) Column-Stores vs. Row-Stores 4 / 36



Column Stores

A relational DB shows its data as 2D tables of columns and rows

Row Store: serializes all values of a row together

Column Store: serializes all values of a column together

Example

EmpId Lastname Firstname Salary

1 Smith Joe 40000

2 Jones Mary 50000

3 Johnson Cathy 44000

Table 1: Column store vs Row Store [2]

Row Store

1,Smith,Joe,40000;
2,Jones,Mary,50000;
3,Johnson,Cathy,44000;

Column Store

1,2,3;
Smith,Jones,Johnson;
Joe,Mary,Cathy;
40000,50000,44000;

SIGMOD (2008) Column-Stores vs. Row-Stores 4 / 36



Column Stores

Row Store Column Store

(+) Easy to add/modify a record (+) Only need to read in relevant data
(-) Might read in unnecessary data (-) Tuple writes require multiple accesses

Table 2: Column store vs Row Store [1]

SIGMOD (2008) Column-Stores vs. Row-Stores 5 / 36



Column Stores

Row Store Column Store

(+) Easy to add/modify a record (+) Only need to read in relevant data
(-) Might read in unnecessary data (-) Tuple writes require multiple accesses

Table 2: Column store vs Row Store [1]

Column stores are suitable for read-mostly, read-intensive, large data
repositories

data warehouses

decision support applications

business intelligent applications

For performance comparison, the star schema bench mark is used(SSBM)

SIGMOD (2008) Column-Stores vs. Row-Stores 5 / 36



Outline

1 Introduction

2 Column-Stores vs. Row-Stores
Row-oriented execution
Column-oriented execution

3 Experiments

4 Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 6 / 36



Outline

1 Introduction

2 Column-Stores vs. Row-Stores
Row-oriented execution
Column-oriented execution

3 Experiments

4 Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 7 / 36



Simulating a Column-Store in a Row-Store

Column-store performance from a row-store?

Vertical Partitioning

Index-only plans

Materialized Views

SIGMOD (2008) Column-Stores vs. Row-Stores 8 / 36



Vertical Partitioning

Figure 2: Vertical Partitioning [1].

Features

Full vertical partitioning of each relation.

1 physical table for each column.

SIGMOD (2008) Column-Stores vs. Row-Stores 9 / 36



Vertical Partitioning

Figure 2: Vertical Partitioning [1].

Features

Primary key of relation may be long and composite

Integer valued “position” column for each table.

Thus each table has 2 columns.

Joins required on “position” attribute for multi-column fetch.

SIGMOD (2008) Column-Stores vs. Row-Stores 9 / 36



Vertical Partitioning

Figure 2: Vertical Partitioning [1].

Problems

“Position” attribute: stored for every column

wastes disk space and bandwidth

large header per tuple

more space is wasted

Joining tables for multi-column fetch

Hash Join slow
Index Join slower

SIGMOD (2008) Column-Stores vs. Row-Stores 9 / 36



Index-only plans

Figure 3: Index-only plans [1].

Features

Unclustered B+ tree index on each table column

Plans never access actual tuples on the disk

Tuple headers not stored, so overhead is less

SIGMOD (2008) Column-Stores vs. Row-Stores 10 / 36



Index-only plans

Figure 3: Index-only plans [1].

Features

Indices stored as (record-id, value) pairs.

All rids stored

No duplicate values stored

SIGMOD (2008) Column-Stores vs. Row-Stores 10 / 36



Index-only plans

Figure 3: Index-only plans [1].

Problems

Separate indices may require full index scan which is slow

Solution: Composite indices required to answer queries directly

Example

SELECT AVG(SALARY) FROM emp WHERE AGE>40

SIGMOD (2008) Column-Stores vs. Row-Stores 10 / 36



Materialized views

Features

Optimal set of MVs created for given query

Contains only those columns required to answer the query.

Tuple headers are stored just once per tuple

Provides just the required amount of data

Problems

Query should be known in advance

SIGMOD (2008) Column-Stores vs. Row-Stores 11 / 36



Outline

1 Introduction

2 Column-Stores vs. Row-Stores
Row-oriented execution
Column-oriented execution

3 Experiments

4 Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 12 / 36



Optimizations in Column-Oriented DBs

Compression

Late Materialization

Block Iteration

Invisible Join

SIGMOD (2008) Column-Stores vs. Row-Stores 13 / 36



Compression

Features

Low information entropy in columns than rows

Decompression performance more valuable than
compression achievable

Advantages

Low disk space

Lesser I/O

Performance increases if queries executed directly on
compressed data

Figure 4:
Compression [1].

SIGMOD (2008) Column-Stores vs. Row-Stores 14 / 36



Late Materialization

Information about entities stored in different tables.

Most queries access multiple attributes of an entity.

Naive column-store approach-Early Materialization

Read necessary columns from disk

Construct tuples from component attributes

Perform normal row-store operations of these tuples

Much of performance potential unused

SIGMOD (2008) Column-Stores vs. Row-Stores 15 / 36



Late Materialization

Features

Keep data in columns and operate on column data until late into the
query plan

Intermediate “position” lists need to be created.

Required for matching up operations performed on different columns.

Example

SELECT R.a FROM R WHERE R.c = 5 AND R.b = 10

Output of each predicate is a bit string

Perform Bitwise AND

Use final position list to extract R.a

SIGMOD (2008) Column-Stores vs. Row-Stores 16 / 36



Late Materialization

Advantages

Selection and Aggregation limits the number of tuples generated

Compressed data need not be decompressed for creating tuples

Better cache performance – PAX

Block iteration works better on columns than on rows

SIGMOD (2008) Column-Stores vs. Row-Stores 17 / 36



Partition Attributes Across (PAX)

Features

column interleaving

minimal row reconstruction cost

only relevant data in cache

minimizes cache misses

effective when applying querying
on a particular attribute

Figure 5: PAX [3].

SIGMOD (2008) Column-Stores vs. Row-Stores 18 / 36



Block Iteration

Features

Operators operate on blocks of tuples at once

Iterate over blocks of tuples rather than a single tuple
Avoids multiple function calls on each tuple to extract data
Data is extracted from a batch of tuples

Fixed length columns can be operated as arrays

Minimizes per-tuple overhead
Exploits potential for parallelism

SIGMOD (2008) Column-Stores vs. Row-Stores 19 / 36



Star Schema Benchmark

Figure 6: Star Schema Benchmark [4].

SIGMOD (2008) Column-Stores vs. Row-Stores 20 / 36



Invisible Join

Example

SELECT c.nation, s.nation, d.year,
sum(lo.revenue) as revenue
FROM customer AS c, lineorder AS lo,
supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND s.region = ’ASIA’
AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

Find total revenue from customers who live in ASIA

and who purchase from an Asian supplier between 1992 and 1997

grouped by nation of customer, nation of supplier and year of
transaction

SIGMOD (2008) Column-Stores vs. Row-Stores 21 / 36



Invisible Join

Traditional Plan

Pipelines join in order of predicate
selectivity.
Disadvantage: misses out on late
materialization

Late materialized join:
Disadvantage

After join the list of positions for
dimension tables are unordered

Group by columns in dimension tables
need to be extracted in out-of-position
order.

Figure 7: Late materialization [1].

SIGMOD (2008) Column-Stores vs. Row-Stores 22 / 36



Invisible Join

Phase 1

Figure 8: Phase 1 [4].

SIGMOD (2008) Column-Stores vs. Row-Stores 23 / 36



Invisible Join

Phase 2

Figure 9: Phase 2 [4].

SIGMOD (2008) Column-Stores vs. Row-Stores 24 / 36



Invisible Join

Phase 3

Figure 10: Phase 3 [4].

SIGMOD (2008) Column-Stores vs. Row-Stores 25 / 36



Invisible Join

Between-Predicate Rewriting

Figure 11: Between-Predicate Rewriting [1].

SIGMOD (2008) Column-Stores vs. Row-Stores 26 / 36



Outline

1 Introduction

2 Column-Stores vs. Row-Stores
Row-oriented execution
Column-oriented execution

3 Experiments

4 Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 27 / 36



Goal

Performance comparison of C-Store with R-Store

Performance comparison of C-Store with column-store simulation on
a R-Store

Finding the best optimization for a column-store

Comparison between invisible join and denormalized table

SIGMOD (2008) Column-Stores vs. Row-Stores 28 / 36



C-Store(CS) vs. System-X(RS)

Figure 12: C-Store(CS) and System-X(RS) [4].

SIGMOD (2008) Column-Stores vs. Row-Stores 29 / 36



C-Store(CS) vs. System-X(RS)

First three rows as per expectation.

For CS(Row-MV) materialized data is stored as strings in C-store.

Expected that both RS(MV) and CS(Row-MV) will perform similarly

However RS(MV) performs better

No support for multi-threading and partitioning in C-Store.
Disabling partitioning in RS(MV) halves performance
Difficult to compare across systems

C-Store(CS) 6 times faster than CS(Row-MV)

Both read minimal amount of data from disk to answer a query
I/O savings- not the only reason for performance advantage

SIGMOD (2008) Column-Stores vs. Row-Stores 30 / 36



Column store simulation in Row store

Traditional

Vertical Partitioning: Each column is a relation

Index-only plans: B+Tree on each column

Materialized Views: Optimal set of views for every query

SIGMOD (2008) Column-Stores vs. Row-Stores 31 / 36



Column store simulation in Row store

MV < T < VP < AI (time taken)

Without partitioning, T ≈ VP

Vertical partitioning: Tuple Overhead

1 Column Whole Table

T 4 GB
VP 1.1 GB
CS 240 MB 2.3 GB

Index-only plans: Column Joins

Hash Join: takes a long time
Index Join: high index access
overhead
Merge Join: unable to skip sort
step

Figure 13: Column store simulation
in Row store [4].

SIGMOD (2008) Column-Stores vs. Row-Stores 32 / 36



Breakdown of Column-Store Advantages

Start with C-Store

Remove optimizations one by one

Finally emulate Row-Store

Late materialization improves 3 times

Compression improves 2 times

Invisible Join improves 50%

Block processing improves 5-50%

SIGMOD (2008) Column-Stores vs. Row-Stores 33 / 36



Outline

1 Introduction

2 Column-Stores vs. Row-Stores
Row-oriented execution
Column-oriented execution

3 Experiments

4 Conclusion

SIGMOD (2008) Column-Stores vs. Row-Stores 34 / 36



Conclusion

C-Store emulation on R-Store is done by vertical partitioning, index
plans

Emulation does not yield good performance

Reasons for low performance by emulation

High tuple reconstruction costs
High tuple overhead

Reasons for high performance of C-Store

Late Materialization
Compression
Invisible Join

SIGMOD (2008) Column-Stores vs. Row-Stores 35 / 36



References

[1] S. Harizopoulos, D. Abadi, and P. Boncz, “Column-Oriented Database
Systems,” in VLDB, 2009.

[2] http://en.wikipedia.org/wiki/Column-oriented DBMS.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
Relations for Cache Performance,” in VLDB, 2001.

[4] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-Stores vs.
Row-Stores: How Different Are They Really?” in SIGMOD, June 2008.

SIGMOD (2008) Column-Stores vs. Row-Stores 36 / 36

http://en.wikipedia.org/wiki/Column-oriented_DBMS

	Introduction
	Column-Stores vs. Row-Stores
	Row-oriented execution
	Column-oriented execution

	Experiments
	Conclusion

