
Scalability for Virtual Worlds

By Nitin Gupta, Alan Demers, Johannes 
Gehrke, Philipp Unterbrunner, Walker 
White
at ICDE 2009

Presented By,
Mayuri Khardikar

1



Net-VEs
 Networked Virtual Environments
 A virtual environment shared by many users 

connected over a network
 Users can interact with each other in real time
 e.g MMOs like WoW, virtual world like second life

2



Motivation

So Net-VEs are very popular due to 3D immersive 
graphics,stereo sound, realistic, and highly multiplayer 
nature

But current architecture is server centric, all game logic is 
executed on server

Leads to severe scalability problem due to high 
computational intensive tasks.

Clients generally have enough computing power, so need to 
leverage it to increase scalability



Contribution of the paper
Proposes distributed action based protocol for Net-VEs

Pushes most of the computation on player's 
machine(client's side)

So no game logic on server side, thus, can achieve massive 
scalability

Novel distributed consistency model: uses application 
semantics to reduce number of messages needed between 
clients and server

Investigate the solution theoretically and experimentally



Virtual World – A Database Perspective

 The entire virtual world and all its components (World 
State) are stored in a high dimensional database 
where attributes can change in only predicted ways
● Tuples - Each object/player information
● Attributes - Characteristics like Health, position, 

speed, weapons of each object/player

 Any interaction in the world is a database transaction
● Observations - Database Queries
● Change in state - Database Updates

5



A Gaming Example

 A Shared Virtual Gotham City
 Avatars -  Batman and Joker
 Event - Batman kicks Joker which reduces Joker’s 

health
 A look from Database perspective

● Batman, Joker and their attributes including current 
health stored as tuples in the database in objects 
table

● The game engine reads from the database, attacking 
power of Batman and health of Joker

● The game engine determines the effect of the action 
on Joker's health and other parameters

● The game engine updates the values of the new 
parameters in the database

6



What restricts Massive Scalability?

 Computational Complexity
● Realistic graphics and physics based interaction

 Consistency
● Consistent view of virtual world for all users 

called as world state. Required for realism.

 Response Time
● Guaranteeing bounded response time to users 

thereby increasing action throughput. Required 
for real-time interaction.

8



 Computational Complexity

• Similarly we expect scalability to decrease with 
increasing consistency requirement and decreasing 
response time requirement

9



Tackling Massive Scalability Problem

 Computational Complexity
● Pushing complex computation to client machines

 Consistency
● Using application semantics to reduce 

consistency requirements, such as visibility

 Response Time
● Reducing messages communicated for an action

 Exploring the Trade-Offs in above requirements

10



Net-VE Architectures

 Centralized VEs
 Distributed VEs

● P2P architecture
● Client Server

Consistency protocols:
-Lock based
-Time stamp based
-Object ownership based
-Action based



Net-VE Architectures

 Centralized VEs
● All computations are done at a centralized server
● World state updated only by server
● The clients only read this world state and show it to 

the users
● Scalability issues- as computational complexity 

increases, number of users handled by each server 
reduces. 

● e.g. In Second-life, max 25-30 users/server

12



Scaling Centralized VEs
 Zoning

● Geographically partitioning virtual environments small 
enough for a server to handle

● But user cannot move from one zone to other, if allowed, 
complexity is very high, will collapse if too many player 
gather in one zone

 Sharding
● Different instances of virtual environments for 

geographically distant users, e.g. separate for Asian 
countries and separate for Europe

 Instancing
● Private zones meant a personal experiences to some 

players, e.g in WoW
 Focus on partitioning user base
 Limits user interaction with each other
 Some virtual worlds require users to pay for playing with 

real friends

13



Net-VE Architectures
15



Client Server Net-VEs

 Clients connected to server(s)
 Imposes central control by server
 Reduced load on server, so increases scalability
 Client

● All clients contain virtual world logic(client program)
● Clients initiate and process action

● A sequence of atomic operations
● At first, observation of world state
● Followed by update of the state

 Server
● Shoulders the responsibility of consistency of world 

state across clients 
● Can log actions for security and prevent cheating

16



Ensuring consistency in Client Server 
Net-VEs

 Distributed Lock Based Protocol
● Global Locks on objects 
● Lock granted by server
● Client Requests locks
● Server multicasts request to other clients
● Lock status reported to client
● Client preforms transaction and sends result to 

server
● Server again multicasts result to other clients
● All clients update their local copy
● Move to next conflicting transaction
● Disadvantages

● Min time required is 2 x RTT
● All consistency issues should be mapped to object 

access 

17



Ensuring consistency in Client Server 
Net-VEs

 Time-stamp based Protocols
Optimistic concurrency control :

● Servers associates versions with objects and 
timestamps with transactions

● Clients execute actions optimistically on local copy
● Server integrates the local copies into a global multi- 

version history ensuring consistency in the world
● Disadvantages

● Server should understand game logic
● If server broadcasts global history then time 

required 2 x RTT

18



Ensuring consistency in Client Server 
Net-VEs

 Object Ownership based protocols:

● Each object owned and managed by single client
● Other clients use cached copy but cannot modify it, 

only owner can modify
● Scalable but doesn't allow object contention
● If allowed then need to compromise on consistency 

or use time-stamp-based serialization
● Time-stamp-based serialization will increase response 

time

19



Back to the work in the paper…

 Action based Protocols

● Consistency checked at action level
● Actions are functions which update the world state
● Virtual World is a progression of world states updated 

by client actions

 Assumptions
● Standard  model of simulation engine
● World changes only at simulation ticks, so discrete
● Inter tick interval ‘T’

20



Basic Algorithms

 Client sends actions to the server not objects.
 Whole application logic is executed at client.
 Server only timestamps and serializes actions for 

consistency and durability

 First, some notations and definitions
● World State (WS):  state of database of objects in 

virtual world
● Client maintains two versions of world state

● Optimistic version ZCO  
● Stable version ZCS  

● Actions performed by clients ai   
● Effect of applying ai to ZCO  is vi

21



Basic Algorithms : A Bird’s eye view

 Clients (when sending actions)
● Preform action on optimistic copy and sent result to server

 Server
● Gets actions from all clients, timestamps and orders them 

and relays these actions to the clients

 Clients (when receiving actions)
● Applies received actions on ZCS and compares the result 

with those of ZCO
● Reconciliation protocol is called in case of conflicts

● Resolves conflict considering the ordering imposed by 
the server

● Changes the action & its result and again sends it to the 
server

22



Basic Algorithms : Client
23



Basic Algorithm : Client
24



Basic Algorithms : Server
25



Basic Algorithms : Reconciliation
26



Is the proposed solution enough?
 Response Time= RTT for most actions, so good enough.
 Allows any interaction including object contention
 Server can handle large number of clients

  - server is free from game logic
  - only timestamps actions. Queues them, manage n/w traffic

 Consistency
● The server ensures consistency using time-stamp ordering
● Each client execute all actions on its stable copy in same order 

imposed by server
● So it is broadcast based protocol e.g. used by SIMNET

BUT......

 Computational Load on clients
● Clients need to process actions of all the clients in the world
● Incurs high computation load on clients
● Server sends each message to all clients so high BW requirement



Leveraging Application Specific Information

 Current optimizations focus on area-of-interest 
paradigm in 
● Restrict set of update messages by syntactic 

constraints like visibility
(fig on next slide)

 Problems with the approach
● Does not generalize to arbitrary actions like scrying 

spell
● Different obstruction layers for actions based on 

different senses
● Transitive propagation of effects of actions need to be 

taken into account

28





 Transitive propagation of actions by users
30

Thus, actual area of influence of an Avatar is much larger than 
its visibility area. This is mainly because of transitive effect of actions.
These are based on application semantics



An action ai affects action aj if,
Read Set (aj) ∩Write Set (ai) ≠ ø

Transitively affecting actions



Incomplete World Model
32

 Semantic-based, action based protocol
 Resolve previous inconsistency in earlier model

 Clients maintain incomplete world state in their databases
● World State variables which concern them are only 

updated
 Now server has the responsibility to maintain a complete 

world state
● Also since we don’t want the server to evaluate game 

logic, the actions would still be evaluated by the clients
● Their result and a completion message is sent to the 

server
● The server then updates the authoritative state

 Client sees an incomplete world while server sees a 
complete world



Incomplete World Model : Client

 Every client does not need to execute every action,
executes only relevant ones

 Now after application of each of its own action 
successfully, it sends a completion message to the 
server in both cases
● If Zco and Zcs match
● If not, then reconciled and new action added

 Completion message indicates the successful 
application of an action

33



Incomplete World Model :  Server

 The server maintains 
● Authoritative state Zs
● Global queue of ordered actions
● And for each action in the queue, the clients it was 

sent
 Time stamping of actions is similar as in previous 

protocol
 For every action, it computes the set previous actions 

that must be sent to each client (See Next Slide)
 Upon receipt of an completion message of an action 

from a client, the action is removed from the global 
queue

 Only completed actions are applied to the 
authoritative state

34



Which updates should be sent?

 Which part of the world is client concerned with?
Application semantic information can be used to 
determine if an action affects another action

 A bomb explosion in a area affects the health of an 
avatar if the avatar is within the maximum radius of 
explosion

 So calculate transitive closure of action using RS and 
WS of the actions

35



Determining update set

 An action has
● Read Set – The world state variables it reads
● Write Set – The world state variables it updates

 An action ai affects action aj if,
● Read Set (aj) ∩Write Set (ai) ≠ ø
● Now compute which actions ak affect ai
● Continue transitively for all actions in the ready queue of actions

 The determination of actions would go on but terminates when
● The action queue is finished since these actions have completed 

message sent
● The values for the remaining read set are read from the 

authoritative database. As all completed actions have been 
applied to authoritative database

● Thus, transitivity has bound

36



A Theorem

 If clients follow algorithm 4, and server follow 5 and 6 
then in a distributed snapshot of the system, Zcs at all 
clients are consistent with Zs at the server
● Observe that all clients and server apply the updates 

relevant to them in the same order

40



Analysis of the Protocol

 Depends on the bound on the number of actions to be 
included in the update set which affects the computational 
complexity at the clients

 Transitive closure
● Determines which previously unsent actions can affect the 

evaluation of current action
 First Bound Model

● Maximum number of actions that need to be sent to a 
client due to direct conflicts with client's current action

 Information Bound Model
● Maximum number of actions that can be a part of any 

action's transitive closure. It is represented as a function 
of distance

41



Which actions to consider?

 Use application semantics to bound 
actions 

 Spatial attributes can change at most by 
maximum velocity

 A player can damage other player at 
most by the maximum attacking power

42



First Bound Model : Intuition
43



First Bound Model

 Computing Complexity
● Time for server to receive response for an action from 

client is RTT + Y (initial processing)
● Server needs to send all actions that it has seen in the 

previous (RTT + Y) / T ticks
● Later as actions increase Y increases proportionally 

increasing the bound geometrically
 A little change in the protocol

● The server now proactively pushes action sets to clients at 
regular intervals of w RTT ( 0<w<1)

● The server receives a response for any action from the 
client in time (1+w) RTT after sending the action to the 
client

44



First Bound Model : The condition

• Pa and Pc are positions of the users
• S is the maximum velocity of the object
• rc and ra are radii of areas of influence

(in above fig, consider Pa and ra instead of Pm and rm)

45



Information Bound Model

 Transitive effects of actions can sometimes affect 
other actions through very long sequence of actions

 Bound on the number of action to be considered for 
transitive effect

 The bound is decided arbitrarily and actions are 
dropped and not considered

 Raises some other issues like fairness but performance 
is good enough

46



Considering relevant actions
47



Computing Update set
48



The complete bound
 Using both the first bound and 
information bound

49



Experimental Evaluation

 Paper’s algorithm – SEVE (Scalable Engine 
for Virtual Environment)

 The game - Manhattan People

51



Response Time vs Scalability
53



Response Time vs Complexity
54



Data Transfer vs Number of Clients
56



Conclusion

At the core of networked Virtual Environments, lie 
data-management problems.

Identified a novel solution to an interesting 
concurrency problem, using DBMS paradigms.
Using the proposed solutions, VEs can be made 
massively scalable with achieving high 
consistency

Applications ranging from collaborative problem 
solving to online games can benefit from the 
database community

58



References

[1] Scalability for Virtual Worlds 
Nitin Gupta, Alan J. Demers, Johannes Gehrke, Philipp 
Unterbrunner, Walker M. White 
 ICDE 2009
 [2] 

SEMMO: A Scalable Engine for Massively Multiplayer Online
 Games (Demonstration Paper) 
Nitin Gupta, Alan Demers, and Johannes Gehrke, SIGMOD 
2008

 [3] Database Research Opportunities in Computer Games 
Walker White, Christoph Koch, Nitin Gupta, Johannes 
Gehrke, and Alan Demers, In SIGMOD Record, September 
2007

59



Thank you :)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 53
	Slide 54
	Slide 56
	Slide 58
	Slide 59
	Slide 60

