
 1

 Automated Selection of Automated Selection of

 Materialized Views and Indexes Materialized Views and Indexes

 for SQL Databases for SQL Databases

Sanjay AgrawalSanjay Agrawal Surajit ChaudhuriSurajit Chaudhuri Vivek NarasayyaVivek Narasayya

Presentation By:
Tarun Jain

Department of Computer Science & EngineeringDepartment of Computer Science & Engineering
Indian Institute of Technology BombayIndian Institute of Technology Bombay

 2

Outline

● Motivation
● Introduction
● Key Contributions
● Architecture
● Candidate Materialized View Selection

 1) Finding Interesting Table-Subsets
 2) Syntactically Relevant Materialized Views
 3) View Merging

● Comparison with other approaches
● Experimental Results
● References

 3

Review : Materialized Views
● A materialized view is a view whose contents are computed and

stored.

Example : Consider the view
create view branch_total_loan(branch_name, total_loan) as
select branch_name, sum(amount)
from loan
group by branch_name

● Materializing the above view would be very useful if the total loan
amount is required frequently

● Materialized views may also be indexed.

● The join results are computed once (or as often as you refresh your
materialized view), rather than each time you select from the
materialized view.

 4

Motivation
● Selecting appropriate set of Indexes and Materialized views influenced by

workload of the system.

● A workload consists of a set of SQL data manipulation statements.

● DBA have to administer manually – create indexes, materialized
views, indexes on materialized views for performance tuning

Such an approach is
 1) Time Consuming
 2) Error Prone
 3) Might not be able to handle continuosly changing or growing workloads

 5

Motivation Example

Consider an Online game which store the records of players in a table
LeaderBoard(player_id,region,score,timestamp) LeaderBoard(player_id,region,score,timestamp)

Mv_1 : Select max(score) from LeaderBoard; Mv_1 : Select max(score) from LeaderBoard;

Mv_2 : Select region , max(score) from LeaderBoard Group By region; Mv_2 : Select region , max(score) from LeaderBoard Group By region;

Mv_3 : Select region, sum(score) , max(score) from LeaderBoard Group BY Mv_3 : Select region, sum(score) , max(score) from LeaderBoard Group BY
region;region;

Mv_4 : Select Top 10 players on the leaderboardMv_4 : Select Top 10 players on the leaderboard

To answer the following queries :

1) Current maximum score - Mv_1 , Mv_2 ,Mv_3
2) maximum score of region 'A' - Mv_2 , Mv_3
3) region with overall best total score - Mv_3

 6

Introduction
● Both indexes and materialized views are fundamentally similar – both

are redundant structures that speed up query execution.

● Index can logically be considered as single-table, projection only
materialized view.

● Though they are similar but a materialized view may be defined over
multiple tables, and can have selections and GROUP BY over multiple
columns.

● Need for efficient ways for dealing with the large space of potentially
interesting materialized views for a given set of SQL queries

 7

Key Contributions
● The paper present an architecture and novel algorithms for

addressing automated materialized view selection.

● Takes into account the significant enhancement that can be
achieved by interaction between indexes and materialized views

● Introduce a principled way to identify a much smaller set of
candidate materialized views .

● Database design tool that can determine an appropriate set of
indexes, materialized views for a given database and workload
consisting of SQL queries and updates.

● This tool became part of Microsoft SQL Server 2000 and onward
releases.

 8

Architecture for
Index and Materialized View Selection

Key Components of this Architecture:Key Components of this Architecture:

● Syntactic structure selection

● Candidate selection
 -> Index Selection
 -> Materialized View Selection

● Configuration enumeration

● Configuration simulation and Cost estimation

 9

 10

Architecture for Index and Materialized View Selection

Step – 1 : Syntactic Structure selection

To identify syntactically relevant indexes , materialized views and indexes
on materialized views that can potentially be used to answer the query.

For example:For example:

Query Q: SELECT Sum(Sales) FROM Sales_Data
 WHERE City = 'Delhi’

The syntactically relevant materialized views:

 v1: SELECT Sum(Sales) FROM Sales_Data
 WHERE City =‘Delhi’

 v2: SELECT City, Sum(Sales) FROM Sales_Data
 GROUP BY City

 v3: SELECT City, Product, Sum(Sales)
 FROM Sales_Data GROUP BY City, Product

 11

Architecture for Index and Materialized View Selection

Step – 2 : Candidate Selection

● Eliminate spurious candidates and focus on smaller search space.

● Candidate selection is responsible for Identifying a sets of structure
 for the given workload which are worthy of further exploration

Note:Note:

● This paper focuses only on efficient selection of candidate materialized views.

● The candidate index selection is assumed to be already done.

● The issues related to selection of indexes on materialized views is not discussed
in this paper.

 12

Architecture for Index and Materialized View Selection

Step – 3 : Configuration Enumeration

● Search among structures selected in Step-2 , inorder to
determine ideal physical design- called configurationconfiguration.

● Configuration consists of set of traditional indexes ,
materialized views and indexes on materialized views.

● Search using the naive approach is infeasible

● Thus we adopt the GREEDY algorithm for configuration
enumeration.

 13

Architecture for Index and Materialized View Selection

Step – 3 : Configuration Enumeration

The Naive Approach(Index Selection):

● There are n candidate indexes, and we are asked to find
optimal configuration of size at most k structures

● Enumerate all subsets of the candidate structures of size
k or less

● Pick the one with lowest total cost.

● This gurantees an optimal solution , but complexity of search
is exponentially large.

● For Example :
n = 40 , K = 10

 14

Architecture for Index and Materialized View Selection

Step – 3 : Configuration Enumeration(continued)

The Greedy(m,k) Algorithm :

● Returns a configuration consisting of a total of k indexes and
materialized views

● It first picks an optimal configuration of size up to m (≤ k) by
exhaustively enumerating all configurations of size up to m. (seed)

● Each greedy step considers all possible choices for adding

one more index and adds the one resulting in the highest cost reduction

● The alogorithm continues until all k indexes and materialized views
 have been chosen, or no further reduction in cost is possible by adding
a structure.

 15

Architecture for Index and Materialized View Selection

Step – 3 : Configuration Enumeration(continued)

The Greedy(m,k) Algorithm for Index Selection :

 16

Architecture for Index and Materialized View Selection

Step – 3 : Configuration Enumeration(continued)

The Greedy(m,k) Algorithm :

 Note that :

● If the parameter m = 0 , then the algorithm takes a pure greedy
approach.

● On the other hand, if m = k , the algorithm is identical to the naive
enumeration algorithm.

● Therefore, the use of the algorithm is computationally efficient only
if m is small relative to k. In such a case, the enumeration exhibits
near greedy behavior.

 17

Architecture for Index and Materialized View Selection

Step – 4 : Configuration simulation and Cost estimation

● Responsible for evaluating the cost of configurations.

Naive Approach (Index Selection):Naive Approach (Index Selection):

● The cost-evaluator asks the optimizer for a cost estimate for
each query in the workload.

● For M configurations and Q queries in the workload, such
estimation requires asking the optimizer to optimize M*Q queries.

● Invoking the optimizer many times can be expensive

 18

Architecture for Index and Materialized View Selection

Step – 4 : Configuration simulation and Cost estimation

Notion of Atomic Configurations:Notion of Atomic Configurations:

● Configuration C is atomic for a workload if for some query in the
workload there is a possible execution of the query that uses all
indexes in C.

To find Cost(Q,C):To find Cost(Q,C):

● C is a configuration that is not atomic and Q is a Select/Update query in
the workload.

● Consider all atomic configurations Ci of Q that are subsets of C.

● Optimizer will choose the atomic configuration from the
above set of Ci that has the minimal cost

 19

Architecture for Index and Materialized View Selection

Step – 4 : Configuration simulation and Cost estimation

● Therefore, we can deriveTherefore, we can derive
 Cost (Q, C) = Min {(Cost(Q, Ci)}

● Intuitively in a Select query, it will suffice to take the minimum cost
over the largest atomic configurations of Q that are subsets of C.

Example :Example :

Consider following Indexes in C :
 I1 reduces cost by 50 units , I2 reduces cost by 20 units
 I3 reduces cost by 30 units , I4 reduces cost by 40 units

Possible Ci's = {I1,I2} , {I1,I4} , {I3,I4}
 {I1,I4,I2} , {I1,I3,I4}

 20

Architecture for Index and Materialized View Selection

Step – 4 : Configuration simulation and Cost estimation

The cost of an Insert/Delete query for a non-atomic configuration CThe cost of an Insert/Delete query for a non-atomic configuration C
● Divided in three components:

 (a) Cost of selection
 (b) Cost of updating the table and the indexes used for selection
 (c) Cost for updating indexes that do not affect the selection cost.

● Note : cost for updating each index in (c) is independent of each
other and can be assumed to be independent of the plan chosen for
(a) and (b).

 Total cost = T + ∑j (Cost(Q, {Ij}) – Cost(Q, {}))

(As in a Select/Update query, we can derive T)

 21

l

Candidate Index Selection

 22

Candidate Materialized View Selection

Goal Goal ::
To eliminate materialized views that are syntactically relevant
to one or two queries but are never used in answering any
query.

Naive Approach Naive Approach ::
Selecting one candidate materialized view per query that
exactly matches each query in the workload.

 23

Candidate Materialized View Selection
Scenario 1: Storage Constrained EnvironmentsScenario 1: Storage Constrained Environments

Consider a workload consisting of 1000 queries of the form:Consider a workload consisting of 1000 queries of the form:
 SELECT attr_A, SUM(attr_B)
 FROM table_T
 WHERE attr_C BETWEEN <val1> and <val2>
 GROUP BY attr_A

Assume different constants for <val1> and <val2>Assume different constants for <val1> and <val2>

Naive Approach Naive Approach ::
1000 Materialized Views for each query.

Better Alternative Better Alternative ::
 SELECT attr_C,attr_A, SUM(attr_B)
 FROM table_T
 GROUP BY attr_C, attr_A

Observation Observation ::
Ignoring the
commonality across
queries in the workload
can result in sub-optimal
quality. The problem is
more severe in case of
larger workloads.

 24

Candidate Materialized View Selection
Scenario 2: Scenario 2:
Consider a workload consisting of 100 queries:Consider a workload consisting of 100 queries:
 Total Cost of all queries : 10,000 units
Let 'T' be a table-subset that occurs in 25 queries:Let 'T' be a table-subset that occurs in 25 queries:
 Total Cost these 25 queries : 50 units

Then even if we considered all syntactically relevant materialized
views on T, the maximum possible benefit of those materialized views
for the workload is 0.5%.

Observation Observation ::

● There are certain table-subsets such that, even if we were to
propose materialized views on those subsets it would only
lead to a small reduction in cost for the entire workload.

 25

Candidate Materialized View Selection

Scenario 3: Scenario 3:
Consider a large set of queries in which some tables table_P, table_Q, table_R, Consider a large set of queries in which some tables table_P, table_Q, table_R,
table_S co-occur.table_S co-occur.

Assume that : table_P has 5 million tuples & table_Q has 4 million tuplesAssume that : table_P has 5 million tuples & table_Q has 4 million tuples
 table_R has 100 tuples & table_S has 50 tuplestable_R has 100 tuples & table_S has 50 tuples

Hence from above statistics , it is likely that the materialized view on table-
subset {table_P,table_Q} is more useful than that on {table_R,table_S}..

Observation Observation ::

The benefit of pre-computing the portion of the queries involving
{table_R,table_S} is insignificant compared to the benefit of pre-computing
the portion of the query involving {table_P,table_Q}.

 26

Candidate Materialized View Selection

Based on the previous observations Candidate Materialized
View selection can be done in three steps:

Finding Interesting
Table-Subsets

View Merging

Cost-Based Analysis to select the
best configurationbest configuration for a query Configuration

Enumeration
Selected

Configurations

Merged
Materialized views

 27

Candidate Materialized View Selection

1) Finding Interesting Table-Subsets1) Finding Interesting Table-Subsets

● The a table-subset T is interesting if materializing one or more views on T
has the potential to reduce the cost of the workload significantly, i.e., above
a given threshold.

● Define a metric that captures the relative importance of a table-subset.

● Two table-subset metric we define here:

 a) TS-Cost(T)

 b) TS-Weight(T)

 28

Candidate Materialized View Selection

TS-Cost(T) TS-Cost(T) = = total cost of all queries in the workload (for the current
database) where table-subset T occurs.

● Monotonicity of TS-Cost(T)
 For table subsets T1, T2:
 If T1 is subset of T2 , then TS-Cost(T1) >= TS-Cost(T2)

TS-Weight(T) TS-Weight(T) = =

● Also for any threshold C , the following holds good :

 29

Candidate Materialized View Selection

TS-Cost(T) TS-Cost(T) v/s v/s TS-Weight(T) TS-Weight(T) : :

1) TS-Cost(T) is simple , but not good measure of relative
importance of a table-subset. While TS-Weight(T) can
discriminate between table-subsets even if ther occur in exactly
the same queries in the workload.

2) No efficient algorithm for finding all table subsets whose TS-
Weight(T) exceeds a given threshold , while it is possible for TS-
Cost(T) as it is monotonic.

 30

Candidate Materialized View Selection

 31

Candidate Materialized View Selection

2) Pruning Syntactically Relevant Materialized Views :2) Pruning Syntactically Relevant Materialized Views :

● The goal is to prevent syntactically relevant materialized
views that are not used in answering any query.

● Intuitively if a materialized view is not part of the best solution
for even a single query in the workload, then it is unlikely to
be part of the best solution for the entire workload.

 32

Candidate Materialized View Selection

 l

 33

Candidate Materialized View Selection
Step (3) of the Algorithm :Step (3) of the Algorithm :

Which syntactically relevant materialized views should be proposed
for a query Qi?

● It is not sufficient to propose materialized views only on the table-
subset that exactly matches the tables referenced in Qi

● Due to the pruning of table-subsets in previous step the table-
subset that exactly matches the tables referenced in the
query may not even be deemed interesting. In such cases,
it again becomes important to consider smaller interesting
table-subsets that occur in Qi.

 34

Candidate Materialized View Selection
Step (3) of the Algorithm :Step (3) of the Algorithm :

For each such interesting table-subset T, we propose :

(1) A “pure-join” materialized view on T containing join and
selection conditions in Qi on tables in T.

(2) If Qi has grouping columns, then a materialized
view similar to (1) but also containing GROUP BY
columns and aggregate expression from Qi on tables in T.

Note:Note:
For each materialized view proposed, also propose a set of
clustered and non-clustered indexes on the materialized view.

 35

Candidate Materialized View Selection

Step (4) of the Algorithm :Step (4) of the Algorithm :

● Find-Best-Configuration(Q, S) for query Q and a set S of
materialized views(with index on them) proposed for Q , returns the
best configuration for Q from S.

● The best configuration for a query is that which the optimizer
estimates as having the lowest cost for Q.

● Any suitable search method can be used in this function,
 e.g., the Greedy(m,k) algorithm described earlier.

 36

Candidate Materialized View Selection

3) View Merging3) View Merging

Example :Example :

Emp(ssn,name,sex,dno) & Works(ssn,pno,hours)

M_v1 : Select dno,count(ssn) from Emp,Works Where emp.ssn =
 Works.ssn And pno = 'p1' Group By dno

M_v1 : Select pno,count(ssn) from Emp,Works Where emp.ssn =
 Works.ssn And dno = 302 Group By pno

 Merged View :
 Select dno , pno , count(ssn) from Emp,Works Where
 emp.ssn = Works.ssn Group By dno,pno

 37

Candidate Materialized View Selection

SSN NAME SEX Dno

E101 James M 301

E102 Nick M 301

E103 Ted M 302

E104 Laura F 302

SSN Pno Hrs

E101 P1 30

E101 P2 40

E102 P2 56

E103 P1 76

E103 P2 78

E104 P1 34Dno Count

301 1

302 2

Pno Count

P1 2

P2 1

Dno Pno Count

301 P1 1

301 P2 2

302 P1 2

302 P2 1

M_v1 :

M_v2 :

Merged
View :

Emp table Works table

 38

Candidate Materialized View Selection

Important steps in View Merging: Important steps in View Merging:

View Merging

Pair-wise merges

MergeViewPair
algorithm

Enumerating the space
of possible merged views

for generating the
merged views

 39

Candidate Materialized View Selection

Properties of View Merging :Properties of View Merging :

While merging two parent views to generate the merged view , While merging two parent views to generate the merged view ,
following properties must hold true :following properties must hold true :

a) All queries that can be answered using either of the parent views should
be answerable using the merged view.

 b) The cost of answering these queries using the merged view should not be
 significantly higher than the cost of answering the queries using views in M.

 Parent-Closure(v) as the set of views in M from which v is derived.
 x = Size increase threshold (between 1-2)

 40

Candidate Materialized View Selection

 41

Candidate Materialized View Selection

 42

Candidate Materialized View Selection

Properties of previous algorithm:Properties of previous algorithm:

● The number of new merged views can exponential in the size of M in
the worst case.

● New merged views can be merged further(implies more than 2
views can also get merged)

● The set of merged views returned by the algorithm does not depend
on the exact sequence in which views are merged.

 43

Alternate approaches for
Index & Materialized View Selection

The approach we have used so far considers the joint enumeration of
the space of candidate indexes and materialized views.The following
are alternatives to this :

Approach 1 : MVFIRSTApproach 1 : MVFIRST

To pick materialized views first, and then select indexes for the
workload given the materialized views picked earlier.

Approach 2 : INDFIRSTApproach 2 : INDFIRST

To pick indexes views first, and then select materialized views for the
workload given the indexes picked earlier.

 44

Alternate approaches for
Index & Materialized View Selection

Drawback of alternate approaches against Join Enumeration :Drawback of alternate approaches against Join Enumeration :

1) Some interactions between candidate indexes and
candidate materialized views that are eliminated in these
approaches.

For example:For example:
Consider a query Q for which indexes Ind_1, Ind_2 and materialized
view M_v are candidates.
Assume that Ind_1 alone reduces the cost of Q by 25 units
 Ind_2 reduces the cost by 30 units
 Ind_1 and M_v together reduce the cost by 100 units.

Then, using INDFIRST, Ind_2 would eliminate Ind_1 when indexes are
picked, and we would not be able to get the optimal recommendation
{Ind_1,M_v}.

 45

Alternate approaches for
Index & Materialized View Selection

Drawback of alternate approaches against Join Enumeration :Drawback of alternate approaches against Join Enumeration :

2) A further drawback of MVFIRST is that selecting materialized views
first are likely to preclude selection of potentially useful
candidate indexes for the workload.

3) Another problem relevant to both INDFIRST and MVFIRST is
redundant recommendations if the feature selected second is
better for a query than the feature selected first.

 46

EXPERIMENTS

 Algorithms presented in this paper are implemented on
Microsoft SQL Server 2000 release and tested on TPC-H

1 GB database.

Hypotheses set:

 Selecting Candidate materialized viewsSelecting Candidate materialized views

 Identifying interesting table-subsets substantially reduces
materialized views without eliminating useful ones

 View-merging algorithms significantly improves performance
especially under storage constraints

 47

EXPERIMENTS

Architectural issues :Architectural issues :

1)Candidate selection module reduces runtime maintaining quality
recommendations

2)Configuration enumeration module Greedy(m,k) gives results
significantly faster than exhaustive one but still comparable.

3)JOINTSEL better than MVFIRST or INDFIRST

 48

Identifying interesting table-subsets

48

Threshold C = 10%

Significant Pruning of space

 49

View Merging
49

Add. Merged views:19%

Increase in runtime: 9%

● In low storage scenario the version with view merging significantly outperforms the
 version without view merging.

 50

Candidate Selection

 l

50

No. of mat views grows linearly with workload size – hence scalable

 51

Candidate Selection

5151

candidate selection not only reduces the running time by several orders
of magnitude, but the drop in quality resulting from this pruning is very
small

 52

Configuration Enumeration

52

m=
2

Greedy(m,k) gives a solution comparable in quality to
exhaustive enumeration. Yet, in time magnitudes faster

 53

JoinSel vs MVFirst vs INDFirst

● MVFIRST is significantly worse than the quality of JOINTSEL, particularly in the
presence of updates in the workload.

● This confirms our intuition that picking materialized views first adversely
affects the subsequent selection of indexes

 54

REFERENCES

[1] Automated Selection of Materialized Views and Indexes for SQL
Databases. Surajit Chaudhuri, Vivek Narasayya, and Sanjay Agrawal.,
VLDB 2000

[2] AutoAdmin “What-If” Index Analysis Utility. Chaudhuri S.,
Narasayya V., ACM SIGMOD 1998.

[3] An Efficient Cost-Driven Index Selection Tool for Microsoft SQL
Server. Chaudhuri S., Narasayya V., VLDB 1997.

 55

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

