
RDF-3X: a RISC-style Engine for RDF,RDF-3X: a RISC-style Engine for RDF,
TThomas Neumann and Gerhard Weikum,PVLDB 2008homas Neumann and Gerhard Weikum,PVLDB 2008

CS 632 : Course Seminar PresentationCS 632 : Course Seminar Presentation

On the paperOn the paper

Presented by: Jiji
Angel
Guided by: Prof S
Sudarshan

2/47

Seminar OutlineSeminar Outline

● Introduction
– RDF

– SPARQL

● Implementation details of RDF-3X
– Storage & Indexing

– Query Processing & Optimization

– Selectivity Estimates

● Experimental Setup & Evaluation Results

● Conclusion

3/47

IntroductionIntroduction

● RDF – Resource Description Framework

● Originally was used to model data for semantic web

● Primarily used for knowledge representation and data
interchange

● Usages:
– Ontology representation for semantic web

– Knowledge base representation; Examples: Freebase, DBpedia, YAGO

– Import/export data format

– Non-proprietary data exchange format

4/47

RDF TriplesRDF Triples

● In RDF every data item is represented using a triple

 (subject, predicate, object) aka (subject, property, value)

For example, information about the movie “Sweeney Todd” may be 'triplified' as:

Introduction :(2/11)

(id1, hasTitle, 'Sweeney Todd'),

(id1, producedYear, '2007'),

(id1, directedBy, 'Tim Burton'),

(id1, hasCasting, id2),

(id1, hasCasting, id3),

(id2, roleName, 'Sweeney'),

(id3, roleName, 'Lovett'),

(id2, actor, id11),

(id3, actor, id12),

(id11, hasName, 'Johny Depp'),

(id12, hasName, 'Helena Carter')

5/47

RDF – Graph based data modelRDF – Graph based data model

● Each set of triples is called an RDF graph.

● Each triple is represented as a node-arc-node link; nodes
denote subject or object; links denote the predicate

Introduction :(3/11)

subject objectpredicateid1 “Sweeney Todd'hasTitle

id1

'Sweeney Todd'

2007

'Tim Burton'

id2

id3

'Sweeney'

id11
'Johny Depp'

id12 'Helena Carter'

'Lovet'

h
a
s
T
i
t
l
e

d
i
r
e
c
t
e
d
B
y

ro
le
N
am
e

h
a
s
C
a
s
t
i
n
g

hasName

h
a
s
C
a
s
t
i
n
g

Produced
Year

r
o
l
e
N
a
m
e

a
c
t
o
r

a
c
t
o
r

hasName

6/47

RDFRDF

● Extends the linking structure of the Web by using
URIs(Uniform Resource Identifiers) for relationship

● Subjects and predicates are identified by URI values

● Schema language is RDFS (RDF Schema)

Introduction :(4/11)

Sample Schema

Triples are:
(<http://www.w3.org/People/EM/contact#me>,
 <http://www.w3.org/2000/10/swap/pim/contact#fullName>,
 “Eric Miller”),

(<http://www.w3.org/People/EM/contact#me>,
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
 <http://www.w3.org/2000/10/swap/pim/contact#Person>)

7/47

Freebase – a knowledge base Freebase – a knowledge base

● Open knowledge base; Collaboratively edited

● Creative Commons Attribution License

● Repository size: 47+million topics, 2+billion facts, (as of
15/03/2015)

● Initially seeded by pulling data from sources such as
Wikipedia, MusicBrainz etc.

● Uses RDF graph model for data storage

● Freebase triplestore is named as graphd

● Developed by Metaweb and later aquired by Google

Introduction :(5/11)

8/47

Introduction - SPARQLIntroduction - SPARQL

● SPARQL – SPARQL Protocol and RDF Query Language

– Official standard query language for querying RDF repositories

● SPARQL queries are basically pattern matching queries on

triples from the RDF data graph

Introduction :(6/11)

9/47

SPARQL Query ExamplesSPARQL Query Examples

● Select all the movie titles (assume that predicate <hasTitle> implies movie titles)

● Select the director of the movie 'Sweeney Todd'

● Select all the roles and the actors who have acted those roles

Introduction :(7/11)

SELECT ?title

 WHERE{ ?x <hasTitle> ?title }

SELECT ?directorName

WHERE{ ?movieId <hasTitle> “Sweeney Todd”.

 ?movieId <directedBy> ?directorName}

SELECT (?role AS ?RoleName) (?name AS ?ActorName)

WHERE{ ?roleId <roleName> ?role.

?roleId <actor> ?actorId.

?actorId <hasName> ?name }

id1

'Sweeney Todd'

2007

'Tim Burton'

id2

id3

'Sweeney'

id11
'Johny Depp'

id12 'Helena Carter'

'Lovet'

h
a
s
T
i

t
l
e

d
i
r
e
c
t
e

d
B
y

rol
eN

ame

h
a
s
C
a
s
t

i
n
g

hasNa
me

h
a
s
C
a
s
t

i
n
g

Produ
ced
Year

r
o
l
e
N

a
m
e

a
c
t

o
r

a
c
t

o
r

hasNa
me

10/47

SPARQL Query ExamplesSPARQL Query Examples

● Select all the movie titles along with the year in which it was produced.

Make sure to get the movie titles even if the production year details are not

available.

● Select all the movies released after all movies titled 'Sweeney Todd'

Introduction :(8/11)

SELECT (?title AS ?MovieTitle) (?pYear AS ?ProductionYear)

WHERE{ ?movieId <hasTitle> ?title

 OPTIONAL {?movieId <producedYear> ?pYear}}

SELECT (?title AS ?MoviesAfterSweeney)

WHERE{ ?movieId <hasTitle> ?title.

?movieId <producedYear> ?pYear.

 FILTER (?pYear <= ALL{SELECT ?pYearSweeney

 WHERE{?movieId <hasTitle> 'Sweeney Todd'.

 ?movieId <producedYear> ?

pYearSweeney})}

id1

'Sweeney Todd'

2007

'Tim Burton'

id2

id3

'Sweeney'

id11
'Johny Depp'

id12 'Helena Carter'

'Lovet'

h
a
s
T
i

t
l
e

d
i
r
e
c
t
e

d
B
y

roleN

ame

h
a
s
C
a
s
t

i
n
g

hasNa
me

h
a
s
C
a
s
t

i
n
g

Produ
ced
Year

r
o
l
e
N

a
m
e

a
c
t

o
r

a
c
t

o
r

hasNa
me

11/47

SPARQL Query ExamplesSPARQL Query Examples

● To retrieve the titles of all the movies with Johny Depp by the SPARQL
query:

● To retrieve movie titles and the list them if the number of actors is
more than 10, SPAQRL query can be written as:

Introduction :(9/11)

SELECT ?title

WHERE {

?m <hasTitle> ?title. ?m <hasCasting> ?c. ?c <actor> ?a. ?a

<hasName> “Johny Depp” }

SELECT (?title AS ?movieTitle) (COUNT(?actors) AS ?numberOfActors))

WHERE {

?x <hasTitle> ?title. ?x <hasCasting> ?y. ?y <actor> ?actors }

GROUP BY ?x

HAVING (COUNT(?actors) > 10)

ORDER BY ?numberOfActors
id1

'Sweeney Todd'

2007

'Tim Burton'

id2

id3

'Sweeney'

id11
'Johny Depp'

id12 'Helena Carter'

'Lovet'

h
a
s
T
i

t
l
e

d
i
r
e
c
t
e

d
B
y

roleN

ame

h
a
s
C
a
s
t

i
n
g

hasNa
me

h
a
s
C
a
s
t

i
n
g

Produ
ced
Year

r
o
l
e
N

a
m
e

a
c
t

o
r

a
c
t

o
r

hasNa
me

12/47

Introduction – SPARQL SyntaxIntroduction – SPARQL Syntax

– Each pattern consists of S, P, O and each of these may be either a
variable or a literal

– A dot(.) corresponds to join/conjunction; UNION keyword is used
for disjunctions

– ORDER BY keyword :orders the result

– DISTINCT keyword : removes duplicates from the result

– REDUCED keyword : may but need not remove duplicates

Result Query
Modifiers

Introduction :(10/11)

PREFIX foo: <...>
PREFIX rdf: <...>
SELECT [DISCTINCT | REDUCED] ?variable1 ?variable2 ...
WHERE {

pattern1. pattern2. ...}
ORDER BY
LIMIT
OFFSET

13/47

Motivation and ProblemMotivation and Problem

● Managing large-scale RDF data involves technical
challenges:
– Physical database design is difficult because of the absence of a

global schema

– RDF data is fine-grained and meant for on-the-fly applications; this
calls for appropriate choice of query processing and optimization
algorithms

– Statistics gathering for join-order and execution-plan optimization
is not very obvious

– RDF stores data as graph rather than tree structure used by XML

Introduction :(11/11)

14/47

ContributionContribution & & OutlineOutline

● RDF-3X (RDF Triple eXpress)
– RDF-3X engine is an implementation of SPARQL that achieves

excellent performance through RISC-style architecture, puristic
data structures and operations

– Key Features:
● Physical design is workload independent. With exhaustive

compressed indexes, it eliminates need for physical-
design tuning

● Query processor rely mostly on merge joins over sorted
index lists

● Query optimizer focuses on join order in generating the
execution plan; dynamic programming for plan
enumeration

– Cost model is based on RDF-specific statistics synopsis

15/47

Storage and IndexingStorage and Indexing

16/47

RDF Data StorageRDF Data Storage

● There are three approaches followed by various
implementations:
– Giant Triple Table method

– Property Table method

– Cluster Property Table method

17/47

Giant Triple Table methodGiant Triple Table method

Subject Predicate Object

id1 hasTitle “Sweeney Todd”

id1 producedYear 2007

id1 directedBy “Tim Burton”

id1 hasCasting id2

id1 hasCasting id3

id2 roleName “Sweeney Todd”

id3 roleName “Lovet”

id2 actor id11

id3 actor id12

id11 hasName “Johny Depp”

id12 hasName “Helena Carter”

Triple Table

Storage and Indexing:(2/13)

● All triples are stored in a single, giant triple table with generic
attributes subject, predicate, object

● RDF-3X follows this approach

18/47

Property Table methodProperty Table method

S O

id1 “Sweeney Todd”

Subject Predicate Object

id1 hasTitle “Sweeney Todd”

id1 producedYear 2007

id1 directedBy “Tim Burton”

id1 hasCasting id2

id1 hasCasting id3

id2 roleName “Sweeney Todd”

id3 roleName “Lovet”

id2 actor id11

id3 actor id12

id11 hasName “Johny Depp”

id12 hasName “Helena Carter”

S O

id1 2007

producedYear

S O

id1 “Tim Burton”

S O

id1 id2

id1 id3

S O

id2 “Sweeney Todd”

id3 “Lovet”

S O

id2 id11

id3 id12

S O

id11 “Johny Depp”

id12 “Helena Carter”

directedBy

roleName

actor

hasName

hasCasting

S O

id1 “Sweeney Todd”

S O

id1 “Sweeney Todd”

S O

id1 “Sweeney Todd”

hasTitleTriple Table

Storage and Indexing:(3/13)

● Separate tables for each predicate

19/47

Cluster-property Table methodCluster-property Table method

Subject hasCasting roleName actor hasName

id1 id2 “Sweeney Todd” id11 “Johny Depp”

id1 id3 “Lovet” id12 “Helena Carter”

Property Table

Subject Predicate Object

id1 hasTitle “Sweeney Todd”

id1 producedYear 2007

id1 directedBy “Tim Burton”

Left Over Triple Table

Subject Predicate Object

id1 hasTitle “Sweeney Todd”

id1 producedYear 2007

id1 directedBy “Tim Burton”

id1 hasCasting id2

id1 hasCasting id3

id2 rollName “Sweeney Todd”

id3 rollName “Lovet”

id2 actor id11

id3 actor id12

id11 hasName “Johny Depp”

id12 hasName “Helena Carter”

Subject Predicate Object

id1 hasTitle “Sweeney Todd”

id1 producedYear 2007

id1 directedBy “Tim Burton”

id1 hasCasting id2

id1 hasCasting id3

id2 roleName “Sweeney Todd”

id3 roleName “Lovet”

id2 actor id11

id3 actor id12

id11 hasName “Johny Depp”

id12 hasName “Helena Carter”

Triple Table

Storage and Indexing:(4/13)

● Correlated predicates are kept together in a single table

20/47

Triple Store and Mapping DictionaryTriple Store and Mapping Dictionary

● RDF-3X uses giant triple table approach

– Drawback – literals can be very large and may contain lot of
redundancy

● Solution used by RDF-3X:

– Use dictionary compression: Mapping Dictionary
● Compresses the triple store
● Fast query processing

– Store all the triples in a clustered B+-tree
● Triples are sorted lexicographically
● Eases SPARQL range queries

Storage and Indexing:(5/13)

21/47

Mapping DictionaryMapping Dictionary

● Used to map literals to a corresponding id
– This compresses the triple store

– Simplifies query processing

● Incurs a minor cost of additional dictionary indices

Storage and Indexing:(6/13)

ID Value

00 id1

01 hasTitle

02 “Sweeney
Todd”

03 producedYear

04 2007

05 directedBy

06 “Tim Burton”

07 hasCasting

08 id2

09 id3

Subject Predicate Object

id1 hasTitle “Sweeney Todd”

id1 producedYear 2007

id1 directedBy “Tim Burton”

id1 hasCasting id2

id1 hasCasting id3

.

.

.

.

.

.

.

.

.

Subject Predicate Object

00 01 02

00 03 04

00 05 06

00 07 08

00 07 09

.

.

.

.

.

.

.

.

.

Triple Table Mapping Dictionary

22/47

Compressed IndexesCompressed Indexes
Storage and Indexing:(7/13)

● When literals are prefixes and variables are suffixes in the
pattern, the query acts like a range query; suffices to have
single index-range-scan

– For example: (literal1, literal2, ?x)

● To guarantee that queries with all possible patterns are
answered in a single index scan, RDF-3X maintain all six
possible permutations of subject(S), predicate(P) and
object(O), in six seperate indices
– SPO, SOP, OSP, OPS, PSO, POS

– Triples in the index are sorted lexicographically

– Are directly stored in the leaf pages of the clustered B+-tree

– This ordering causes neighboring triples to be very similar

– Hence compression of triples is possible: instead of storing full
triples RDF-3X stores only the changes between the triples

23/47

Sort OrdersSort Orders

● Which sort order to choose?

– 6 possible orderings, store all of them (SPO, SOP, OSP, OPS,
PSO, POS)

– Will make merge joins very convenient

● Each SPARQL triple pattern can be answered by a single
range scan

● Eg: If we need to know all actors of a film, the subject
(“Film object”) and predicate (<hasActor>) remain the
same. So, we use the index on sort order “SPO”

● On the other hand, if we need to find all movies in which
an actor has acted, the object (“Actor”) and predicate
(<hasActor>) remain the same. So, the index on sort order
“OPS” would be more suitable

RDF-3X Storage and Indexing:(8/13)

24/47

Compressed Triple StructureCompressed Triple Structure

● Comparion of triples is the difference in their id values

– Triples are sorted lexicographically which allows SPARQL
pattern matching into range scans

– Can be compressed well (delta encoding)

– Efficient scan, fast lookup if prefix is known

– Structure of byte-level compressed triple is

RDF-3X Storage and Indexing:(9/13)

Gap Payload

1 Bit 7 Bits

Delta

0-4 Bytes

Delta

0-4 Bytes

Delta

0-4 Bytes

Header value1 value2 value3

● Header byte denotes number of bytes used by the three values
(5*5*5=125 size combinations)

● Gap bit is used when only value3 changes and delta is less than
128 (that fits in header)

25/47

Triple Compression AlgorithmTriple Compression Algorithm
compress((v1, v2, v3), (prev1, prev2, prev3))

//Writes (v1, v2, v3) relative to (prev1, prev2, prev3)

if v1 = prev1 && v2 = prev2

if v3 – prev3 < 128

write v3 – prev3

else encode(0, 0, v3 – prev3 – 128)

else if v1 = prev1

encode(0, v2 – prev2, v3)

else

encode(v1 – prev1, v2, v3)

RDF-3X Storage and Indexing:(10/13)

encode(1δ , 2δ , 3δ)

//Writes the compressed tuple corresponding to the
deltas

write
 128+bytes(1δ)*25+bytes(2δ)*5+bytes(3δ)

write the nonzero tail bytes of 1δ

write the nonzero tail bytes of 2δ

write the nonzero tail bytes of 3δ

26/47

Compressing Triple ExampleCompressing Triple Example

● Example1: Suppose the first triple is (10,20,1123) and the next triple is
(10,20,1173).

v1 = prev1 and v2 = prev2

Also, v3 - prev3 < 128

Hence, the delta entry would be 1173-1123 = 50 in the header record

Hence, the size of this tuple is only 1 byte; gap bit set to 0

RDF-3X Storage and Indexing:(11/13)

Gap (1
bit)

Payload (7
bits)

0 50
Header Byte

Gap (1
bit)

Payload (7
bits)

1 2
Header Byte

● Example1: Suppose the first triple is (10,20,1123) and the next triple is
(10,20,1173).

v1 = prev1 and v2 = prev2

Also, v3 - prev3 < 128

Hence, the delta entry would be 1173-1123 = 50 in the header record

Hence, the size of this tuple is only 1 byte; gap bit set to 0

● Example2: Suppose the first triple is (10,20,1000), second triple is
(10,20,1500)

v1 = prev1 and v2 = prev2; but (1500-1000) = 500 !< 128

Function call: encode (0,0,372)

Header will contain 128 + 0 + 0 + 2 = 130

δ1 has 0 non-zero bytes, δ2 has 0 non-zero byte, δ3 has 2 non-zero
bytes

Hence, the overall size of the tuple will be 3 bytes

27/47

AggregatedAggregated Indices Indices

● For many SPARQL queries indexing partial triples rather
than full triples would be sufficient

SELECT ?a ?c

WHERE { ?a ?b ?c}

● Aggregated Indices:
– Two-value indices: Each of the possible pairs out of a triple (SP, PS,

SO, OS, PO, OP) and the number of occurences of each pair in in the
full set of triples

– One-value indices: Three one valued indices, (S/P/O, count) are
stored

RDF-3X Storage and Indexing:(12/13)

28/47

RDF-3X Indexing – Three Types RDF-3X Indexing – Three Types
IndicesIndices
● Six triple indexes: SPO, PSO, SOP, OSP, POS, OPS

● Six two valued aggregated indices and their count: SP, PS,
PO, OP, SO, OS

● Three one valued aggregate indices and the respective
counts

● Experimentally total size of all indexes is less than original
data

RDF-3X Storage and Indexing:(13/13)

29/47

Query Processing and OptimizationQuery Processing and Optimization

30/47

Translating SPARQL QueriesTranslating SPARQL Queries

● Step1: Convert the SPARQL query into a query graph
representation, interpreted as relational tuple calculus
expression

● Step2: Conjunctions are parsed and expanded into a set of triple
patterns

● Step3: Literals are mapped to ids through dictionary lookup

● Step4: Multiple query patterns are computed by joining
individual triple patterns

● Step5: If distinct results are to be obtained, duplicates are
removed from the result

● Step6: The result contains ids now; dictionary lookup is
performed to get back the actual string equivalents

31/47

SPARQL Query GraphSPARQL Query Graph

● Each triple pattern corresponds to one node in the query
graph

● An edge between two nodes is a common query variable

Query Processing and Optimization:(2/10)

SELECT ?title WHERE {
?m <hasTitle> ?title.
?m <hasCasting> ?c.
?a <actor> ?c.
?a <hasName> “Johny Depp” }

SELECT ?title WHERE {
?m <hasTitle> ?title.
?m <hasCasting> ?c.
?a <actor> ?c.
?a <hasName> “Johny Depp” }

SPARQL query

P1 = ?m <hasTitle> ?title
P2 = ?m <hasCasting> ?c
P3 = ?a <actor> ?c
P4 = ?a <hasName> “Johny Depp”

P1 = ?m <hasTitle> ?title
P2 = ?m <hasCasting> ?c
P3 = ?a <actor> ?c
P4 = ?a <hasName> “Johny Depp”

Triple Form

 P2.c = P3.c

 P1.m = P2.m P3.a = P4.a

P1 P2 P3 P4

 P2.c = P3.c

 P1.m = P2.m P3.a = P4.a

P1 P2 P3 P4

Possible Join Tree

P2 P1

P3 P4

P2 P1

P3 P4

Query Graph

32/47

Optimizing Join OrderingOptimizing Join Ordering

● SPARQL query execution demands join queries which can
be really complex:
– SPARQL queries contain star-shaped subqueries and hence

strategies to handle bushy join trees are required

– Since large number of joins are common in SPARQL queries, fast
plan enumeration and cost optimization are required

● RDF-3X uses desicion cost based dynamic programming
approach for optimizing join orderings

Query Processing and Optimization:(3/10)

33/47

DP Based Join OptimizationDP Based Join Optimization

● RDF-3X uses bottom-up dynamic programming approach
– Takes a connected query graph as input and outputs an optimal

bushy join tree

– Enumerates DP table with the initial set of triples efficiently and
correctly

– Unused(unbound) variables are projected away by using
aggregated index

– The plans that are costlier and equivalent to other plans are
pruned

● Sometimes plans are retained even if they are costlier based on
order optimization

– The larger optimal plan is generated by joining optimal solutions to
smaller problems that are adjacent in the query graph

Query Processing and Optimization:(4/10)

34/47

Selectivity EstimatesSelectivity Estimates

● Identification of lowest-cost execution plan hugely relies on
the estimated cardinalities and selectivities

● A bit different from standard join ordering:
– One big "relation", no schema

– Selectivity estimates are hard

– Standard single attribute synopses are not very useful:

● Only three attributes and one big relation;
● But (?a, ?b, ”Mumbai”) and (?a, ?b, ”1974-05-30”) produces vastly

different values for ?a and ?b

● Two kinds of statistics are maintained by RDF-3X
– Selectivity Histograms

– Frequent Join Paths

Query Processing and Optimization:(5/10)

35/47

Selectivity HistogramsSelectivity Histograms

● Query optimizer uses aggregated indexes for calculations
based on triple cardinalities

● For estimating join selectivity, histogram buckets with
additional information are maintained, as follows

Query Processing and Optimization:(6/10)

Start
(s, p, o)

End
(s, p, o)

Number of triples

Number of distinct 2-prefixes

Number of distinct 1-prefixes

Join partners on subject

s=s s=p s=o

Join partners on predicate

p=s p=p p=o

Join partners on object

o=s o=p o=o

Bucket structure

Range Start
(10, 2, 30)

Range End
(10, 5, 12000)

Number of triples = 3000

Number of distinct 2-prefixes = 3

Number of distinct 1-prefixes = 1

Join partners on subject

4000 0 200

Join partners on predicate

50 400000 200

Join partners on object

6000 0 9000

Example Bucket
implementation

36/47

Selectivity HistogramsSelectivity Histograms

● Generic but assumes predicates are independent

● Aggregates indexes until they fit into one page

● Merge smallest buckets(equi-depth)

● For each bucket compute statistics

● 6 indexes, pick the best for each triple pattern

● Assumes uniformity and independence, but works quite well

Query Processing and Optimization:(7/10)

37/47

Frequent PathsFrequent Paths

● Correlated predicates appear in SPARQL queries in two
ways:
– Stars of triple patterns: a number of triple patterns with different

predicates sharing the same subject

SELECT r
1
, r

n

WHERE{ (r
1
 p

1
 r

2
). (r

1
 p

2
 r

3
). ... (r

1
 p

n
 r

n
)}

– Chains of triple patterns: a number of triple patterns where object
of the first pattern is subject of the second pattern

SELECT r
1
, r

n+1

WHERE{ (r
1
 p

1
 r

2
). (r

2
 p

2
 r

3
). ... (r

n
 p

n
 r

n+1
)}

● Most frequent paths(ie., the paths with the largest
cardinalities) are computed, the result cardinalities are
materialised along with the path description p

1
, p

2
, ... p

n

Query Processing and Optimization:(8/10)

38/47

Frequent Path Mining AlgorithmFrequent Path Mining Algorithm

FrequentPath(k)
// Computes the k most frequent paths
C

1
 = {P

p
|p is a predicate in the database}

sort C
1
, keep the k most frequent

C = C
1
, i = 1

do
 C

i+1
 = φ

 for each p' Є C
i
, p predicate in the database

 if top k of C U C
i+1

 U {P
p'p

} include all subpaths of p'p

 C
i+1

 = C
i+1

 U {P
p'p

}

 if top k of C U C
i+1

 U {P
pp'

} include all subpaths of pp'

 C
i+1

 = C
i+1

 U {P
pp'

}

 C = C U C
i+1

, sort C, keep k the most frequent

 C
i+1

 = C
i
 C, i = i + 1∩

while C
i
 ≠ φ

return C

Query Processing and Optimization:(9/10)

39/47

RDF-3X Storage and Indexing:(10/10)

● Combining histogram with frequent path statistics

● Long join chain decomposed to subchains of maximal length

– For exampleconsider a query like:

?x
1
 a

1
 v

1
. ?x

1
 p

1
 ?x

2
. ?x

2
 p

2
 ?x

3
. ?x

3
 p

3
 ?x

4
.

 ?x
4
 a

4
 v

4
. ?x

4
 p

4
 ?x

5
. ?x

5
 p

5
 ?x

6
. ?x

6
 a

6
 v

6

● For subchains p
1
-p

2
-p

3
 and p

4
-p

5 ,
selectivity estimation is done using

frequency path and for selections histograms are used

● In absence of any other statistics, assume the above two estimators
as probabilistically independent - use product formula with per-
chain and per-selection statistics as factors

Estimates for CEstimates for Compositeomposite Queries Queries

40/47

EvaluationEvaluation

● RDF-3X is compared with:
– MonetDB (column store approach)

– PostgreSQL (triple store approach)

● Three different data sets:
– Yago, Wikipedia-based ontology: 1.8GB

– LibraryThing : 3.1

– Barton library data : 4.1GB

41/47

EvaluationEvaluation

42/47

Evaluation - Yogo Evaluation - Yogo

sample query(B2) : select ?n1 ?n2 where { ?p1
<isCalled> ?n1.
 ?p1 <bornInLocation> ?city. ?p1 <isMarriedTo> ?p2.
?p2 <isCalled> ?n2. ?p2 <bornInLocation> ?city }

43/47

Evaluation - LibraryThingEvaluation - LibraryThing

sample query(B3): select distinct ?u where { ?u [] ?b1.
?u [] ?b2.?u [] ?b3.?b1 [] <german> .?b2 [] <french> .
?b3 [] <english>}

44/47

Evaluation – Barton DatasetEvaluation – Barton Dataset

sample query (Q5) select ?a ?c where
{ ?a <origin> <marcorg/DLC>. ?a <records> ?b.
?b <type >?c. filter (?c != <Text>) }

45/47

ConclusionConclusion

● RDF-3X is a fast and flexible RDF/SPARQL engine
– Exhaustive but very space-efficient triple indexes

– Avoids physical design tuning, generic storage

– Fast runtime system, query optimization has a huge impact

46/47

Questions

47/47

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

