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Introduction

Introduction

This paper is a survey on recent theoretical advances in algorithm
design for relational joins, one of the best studied problems in
database systems

In spite of this, the textbook (as well as a large component of the
research literature) description of join processing is suboptimal - In
the worst case sense

This survey describes recent results on join algorithms that have
provable worst case optimality runtime guarantees
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Motivation The Triangle Query

The Triangle Query

The Triangle Query helps us understand much of the progress in this
direction - a query which has gained popularity off late

Suppose that one is given a graph with N edges, how many distinct
triangles can there be in the graph?

O(N3)?
O(N2)? As a Triangle is indexed uniquely by any two of its sides
Lesser?

The correct non trivial bound is O(N3/2)
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Motivation The Triangle Query and the Relational Join

The Triangle Query and the Relational Join

The triangle query can be viewed as a relational join problem. For a
given query and a graph, construct three relations R(A,B), S(B,C ),
T (C ,A), and every pair of vertices (i , j) such that there is an edge
connecting them exists in each of the three relations.

The resulting number of triangles in the graph is given by the natural
join of R, S and T

Each triangle in the original graph will show up six times in the
relational join due to symmetricity

We now consider the following natural join query -
Q∆ = R(A,B) ./ S(B,C ) ./ T (C ,A)
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Motivation Why traditional join plans are suboptimal

Why traditional join plans are suboptimal

Assumption: We have very nice indices on the relations that we are
joining, and all of them are in memory. This assumption is to ease
understanding, and may be relaxed in reality.

The traditional method to evaluate this join query would be one of
the three following pairwise joins.

Figure : The three pairwise joins

(Ayush Kanodia, IIT B) Join Algorithms Developments April 12, 2015 7 / 41



Motivation Why traditional join plans are suboptimal

Why traditional join plans are suboptimal

Now consider the following database instance

Figure : The database instance which is a counter example for the optimality
of pair wise joins, and an illustration for m = 4. The pairs connected by
red/blue/green edges from the tuples in R/S/T respectively. Note that in
case each relation has N = 2m + 1 = 9 tuples and there are 3m + 1 = 13
output tuples in Q∆. Any pair-wise join however has size m2 + m = 20
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Alternative Join Algorithms Algorithm 1: The power of two choices

Algorithm 1: The power of two choices

The root cause for the large amount of time taken for the above
computation is that a0 has high degree, and is an instance of skew.

To cope with this, we introduce a new idea - that of dealing with
nodes of high and low skew using different join techniques.

The first goal is to understand when some value has high skew. For
each ai define

Q∆[ai ] := ΠB,C (σA=ai (Q∆)) (1)

and we call ai heavy if

|σA=ai (R ./ T )| ≥ |Q∆[ai ]| (2)
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Alternative Join Algorithms Algorithm 1: The power of two choices

Algorithm 1: The power of two choices

Since
|σA=ai (R ./ S)| = |σA=ai (R)||σA=ai (S)| (3)

We can easily compute the LHS of the previous equation. For the
RHS however, we need Q∆, but since Q∆[ai ] ⊆ S , we can use |S | as a
proxy for Q∆[ai ]

We now describe the two choices themselves
1 Compute σA=ai (R) ./ σA=ai (T ) and filter the results by probing against

S , or
2 Consider each tuple (b, c) ∈ S and check if (ai , b) ∈ R and (ai , c) ∈ T

The algorithm is : We choose (i) when ai is light and (ii) if ai is heavy
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Alternative Join Algorithms Algorithm 1: The power of two choices

Algorithm 1: The power of two choices

Figure : Computing Q∆ with the power of two choices
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Alternative Join Algorithms Algorithm 1: The power of two choices

Algorithm 1: The power of two choices

Figure : The database instance which is a counter example for the optimality of
pair wise joins

Example : Let us work through the motivating example that was
given.
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Alternative Join Algorithms Algorithm 1: The power of two choices

Algorithm 1: The power of two choices

When we compute Q∆[a0], we realise that a0 is heavy and hence, we
use option (ii) as described. Since here we need to scan tuples in S,
this takes O(m) time.

On the other hand, when we want to compute Q∆[ai ] for i ≥ 1, we
realise these ai s are light, and so we take option (i). In these cases,
the time taken is O(1) since |σA=aiR| = |σA=aiR| = 1.

As there are m such light ai ’s, the algorithm overall takes O(m) each
on the heavy and light vertices and thus O(m) = O(N) overall which
is best possible since the output size is Θ(N).
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Alternative Join Algorithms Algorithm 1: The power of two choices

Algorithm 1: The power of two choices

For the analysis of the algorithm, we refer to the paper itself. The time
taken is proven to be O(N3/2), which is the intended result.

(Ayush Kanodia, IIT B) Join Algorithms Developments April 12, 2015 14 / 41



Alternative Join Algorithms Algorithm 2: Delaying the computation

Algorithm 2: Delaying the computation

We now present a different algorithm which differentiates between
heavy and light values ai ∈ A in a different way.

Instead of estimating the heaviness of ai directly, this algorithm
”looks deeper” into what pair (b, c) can go along with the ai in the
output by computing c for each candidate b

We compute the intersection πB(σA=aiR) ∩ πBS , thus looking at only
the candidates b that can possibly participate with ai

Then, the candidate set (for each b) for c is
πC (σB=bS) ∩ πC (σA=aiT )

When ai is really skewed toward the heavy side, the candidates b and
c reduce the skew toward building up the final solution Q∆
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Alternative Join Algorithms Algorithm 2: Delaying the computation

Algorithm 2: Delaying the Computation

Figure : Computing Q∆ by delaying the computation
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Alternative Join Algorithms Algorithm 2: Delaying the computation

Algorithm 2: Delaying the Computation

Figure : The database instance which is a counter example for the optimality of
pair wise joins

Example : Let us work through the motivating example that was
given.
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Alternative Join Algorithms Algorithm 2: Delaying the computation

Algorithm 2: Delaying the Computation

As observed earlier in using the The power of two choices, computing
the intersection of two sorted sets takes time which is at most the
minimum of the two sizes

For a0, we consider all b ∈ {b0, b1, ..., bm}. When b = b0, we have
πC (σB=b0S) = πC (σA=a0T ) = {c0, ..., cm}, so we output m + 1
triangles in total time O(m).

For the pairs (a0, bi ), when i ≥ 1, we have |σB=biS | = 1, and hence
we spend O(1) time on each such pair, for a total of O(m) overall.
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Alternative Join Algorithms Algorithm 2: Delaying the computation

Algorithm 2: Delaying the Computation

Now consider ai for i ≥ 1. In this case, b = b0 is the only candidate.
Further, for (ai , b0), we have |σA=aiT | = 1, so we can handle each
such ai in O(1) time leading to an overall runtime of O(m).

Thus on this example, this algorithm works in O(N) time.

For the full analysis of this algorithm, we will refer to the paper. It’s
worst case running time is exactly the same as that of Algorithm 1.

What is remarkable is that both these algorithms follow exactly the
same recursive structure and they are special cases of a generic
worst-case optimal join algorithm
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Alternative Join Algorithms Approaches to Join Processing

Traditional Approach 1

One of the traditional approaches to join processing uses structural
properties of the query

The idea is to measure if the query being issued is ’acyclic’ with
respect to the database schema.

When the query is acyclic, intuitively, we have fast algorithms for join
processing

(Ayush Kanodia, IIT B) Join Algorithms Developments April 12, 2015 20 / 41



Alternative Join Algorithms Approaches to Join Processing

Traditional Approach 1

Extensions of this idea expand the class of queries which can be
evaluated in polynomial time.

There are progressively more general notions of ’width’ for a query,
which intuitively measure how far a query is from being ’acyclic’.

Roughly, these results state that if the corresponding notion of ’width’
is bounded by a constant, then the query is ’tractable’ (polynomial
time solution algorithms exist).
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Alternative Join Algorithms Approaches to Join Processing

Traditional Approach 2

The algorithms which use the structural property of the query
completely ignore the cardinality estimates of the relations involved in
the join

Structural approaches ignore the individual relation sizes, and
summarizes them in a single number N, and as a result the runtime
of these algorithms is O(N(w+1)logN), where w is the corresponding
width measure.
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Alternative Join Algorithms Approaches to Join Processing

Traditional Approach 2

On the other hand, commercial RDBMSs seem to place little
importance on the structure of the query and care only about the
cardinality estimates

Joins are processed by breaking them down into a series of two way
joins - an approach described first in the seminal ”System R”.

However, throwing away the structural information also comes at a
cost, as we shall see later.
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Alternative Join Algorithms Bridging this Gap

Bridging this Gap

Atserias-Grohe-Marx (henceforth AGM) derived a tight bound on the
output size of a join query as a function of individual input relation
sizes and a general notion of query ’width’.

AGM’s bound takes into account both cardinality and structural
information, and the bounds thus derived can be better than both
cardinality and structural methods when the individual relation sizes
vary, and when there is considerable skew.
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Alternative Join Algorithms Bridging this Gap

Bridging this Gap

Algorithms which follow the AGM bound have been developed very
recently.

Such an algorithm was first implemented in a commercial RDBMS
system before its optimality properties were discovered.

A key idea to the solution is to handle skew in a theoretically optimal
fashion
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Alternative Join Algorithms Key Takeaways

Skew: The Devil’s Own

As we have seen, it is the old enemy of the database optimizer - skew,
which is behind this connection

There are two key messages to takeaway

The ideas that will henceforth be presented are an optimal way of
avoiding skew. A theoretical basis for one family of techniques to
tackle skew (by relating it to geometry) will be described.
We need to challenge the database dogma of doing ”one join at a
time”, as is done in traditional DBMSs.
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The AGM bound Description

The AGM bound

We now state the AGM bound

The natural join question is as follows - We are given a collection of
m relations. Each relation is over a collection of attributes.

We use V to denote the set of attributes; let n = |V|.
The join query is modeled as a hypergraph H = (V, E), where for
each hyperedge F ∈ E there is a relation RF on attribute set F .

Let x = (xF )F∈E be any point in the following polyhedron -
{
∑

F :v∈F xF ≥ 1,∀v ∈ V, x ≥ 0}
Such a point x is called a fractional edge cover of the hypergraph H
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The AGM bound Description

The AGM bound

Then, the AGM bound states that

|Q| = | ./F∈E RF | ≤ ΠF∈E |RF |xF (4)
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The AGM bound The tightest AGM bound

The tightest AGM bound

The AGM bound depends on the relation sizes. To minimize the right
hand side of the above equation, we can solve the following linear
program

min ΣF∈E(log2|RF |).xF
s.t. ΣF :v∈F xf ≥ 1, v ∈ V, x ≥ 0

From this formulation, we see that the objective function depends on
the database instance D on which the query is applied.

Further, we also note that the objective function depends on the
structural properties of the query with respect to the database
schema.
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The AGM bound Illustrations

Illustrations

Figure : Some join queries and their covers
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The AGM bound Conjunctive queries with simple functional dependencies

Conjuctive Queries

Projection : Consider the following conjunctive query:
C1 = R0(W )⇐ R(WX ) ∩ S(WY ) ∩ T (WZ )

The AGM bound for this query is O(N3)
However, since R0(W ) ⊆ πW (R) ./ πW (S) ./ πW (T ), we can adapt
the AGM bound to these relations, to get O(N) as the new bound
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The AGM bound Conjunctive queries with simple functional dependencies

Conjuctive Queries

Repeated Variables : Consider the query
C2 = R0(WY )⇐ R(WW ) ∩ S(WY ) ∩ T (YY )

In this case we can replace R(WW ) and T (YY ) by keeping all tuples
(t1, t2) ∈ R for which t1 = t2, and similarly for T . This is now turned
into the query
C ′

2 = R ′(W ) ./ S(WY ) ./ T ′(Y )
For this query, xR′ = xT ′ = 0 and xs = 1 is a fractional cover and the
AGM bound is hence O(N)
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The AGM bound Conjunctive queries with simple functional dependencies

Functional Dependencies

Introducing the Chase: Consider the following query
C3 = R0(WXY )⇐ R(WX ) ∩ R(WW ) ∩ S(XY )

We can replace R(WW ) with R ′(W ), and obtain a bound of O(N2)

Let R = {(i , i)|i ∈ [N/2]} ∪ (i , 0)|i ∈ [N/2] and S = {(0, j)|j ∈ [N]}
Every tuple (i , 0, j) for i ∈ [N/2], j ∈ [N] is in the output - O(N2)
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The AGM bound Conjunctive queries with simple functional dependencies

Functional Dependencies

However, if we have that the first attribute in R is its key, then we
can infer that (w , x , y) is an output tuple iff (w , x) and (w ,w) are in
R, and (x , y) are in S . We know that x = w .

Hence, this is equivalent to
C ′

3 = R0(WY )⇐ R(WW ) ∩ S(WY )

The AGM bound for the output of this query is O(N), and this
transformation is a famous chase operation
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The AGM bound A worst-case optimal join algorithm

A worst-case optimal join algorithm

The proof of the AGM inequality leads to a natural formulation for a
worst-case optimal join algorithm, which is depicted in the following
figure

Figure : A worst-case optimal join algorithm based on the recursive proof of
the AGM inequality
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Using the AGM bound Proof Part 1 : Query Decomposition Lemma

Query Decomposition Lemma

We define EI := {F ∈ E|F ∩ I 6= ∅}
Query Decomposition Lemma: Let Q =./F∈E RF be a natural join
query represented by a hypergraph H = (V, E), and x be any
fractional edge cover for H. Let V = I ∪ J be an arbitrary partition of
V such that 1 ≤ |I | ≤ |V|; and, L =./F∈EI πI (RF ).

Then ∑
tI∈L

∏
F∈EJ

|RF n tI |xF ≤
∏
F∈E
|RF |xF (5)

For the complete proof as well as the inequality, we will refer to the
paper
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Using the AGM bound Proof Part 2 : An Inductive Proof of the AGM inequality

An Inductive Proof of the AGM inequality

We induct over the number of attributes

In the base case |V| = 1, and we are computing the join of |E| unary
relations. Let x be a fractional edge cover for this instance. Then,

| ./F∈E RF | ≤ minF∈E |RF |

≤ (minF∈E |RF |)ΣF∈ExF

=
∏
F∈E

(minF∈E |RF |)xF

≤
∏
F∈E
|RF |xF
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Using the AGM bound Proof Part 2 : An Inductive Proof of the AGM inequality

An Inductive Proof of the AGM inequality

Inductive Step: Now assume n = |V ≥ 2. Let V = I ∪ J be any
partition of V such that 1 ≤ |I | ≤ |V|. Define L =./F∈EI πI (RF ) as in
the query decomposition lemma. For each tuple tI ∈ L we define a
new join query

Q[tI ] :=./F∈EJ πJ(RF n tI )

Then, the original query Q is

Q = ∪tI∈L({tI}xQ[tI ])

The vector (xF )F∈EJ is a fractional edge cover for the hypergraph of
Q[tI ]. Hence, the induction hypothesis gives us

|Q[tI ]| ≤
∏
F∈EJ

|πJ(RF n tI )|xF =
∏
F∈EJ

|RF n tI |xF
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Using the AGM bound Proof Part 2 : An Inductive Proof of the AGM inequality

An Inductive Proof of the AGM inequality

Therefore, using the last two equations and the AGM inequality, we
obtain

|Q| =
∑
tI∈L
|Q[tI ]| ≤

∏
F∈E
|RF |xF
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Open Questions and Conclusion

Open Questions and Conclusion

This survey is concluded with two open questions.

Can the algorithmic ideas presented in this paper gain runtime
efficiency in database systems? On the one hand, this survey depicts
asymptotic improvements in join algorithms, but on the other there
are several decades of engineering refinements and research
contributions in the traditional domain

Worst-case results may only give information and efficiency gains for
pathological instances. This leads to a push towards more refined
measures of complexity of a natural join query. Current complexity
measures do not give much insight into the use of indices, as well as
the average case. Can one design an adaptive join algorithm whose
runtime depends on the ’difficulty’ of the input instance in some sense
(instead of the input size, as is now).
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Open Questions and Conclusion

Thank You
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