
CrowdDB: Answering Queries
using Crowdsourcing

Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, Reynold
Xin

Slides by Anil Shanbhag

1 / 40

Outline
Crowdsourcing

Motivation

Design Considerations

Overview of CrowdDB

CrowdSQL

User Interface Generation

Query Processing

Experimental Results

2 / 40

Introduction to Crowdsourcing

3 / 40

Crowdsourcing
Let us consider a few simple examples

Example 1 : Given an image containing text, get the text from it (aka CAPTCHA)

Example 2 : Given a university and department name, find the link to
department webpage

Example 3 : Given a set of photographs of people from a disaster, and pictures
submitted by family members of lost individuals, perform a fuzzy join across
both sets, using humans to determine equality

All these examples are trivial for a human to do but expensive to do as a
computer

4 / 40

Crowdsourcing

- Platform

A crowdsourcing platform creates a marketplace on
which requesters offer tasks and workers accept and
work on the tasks

The largest among these is Amazon Mechanical Turk

Platform had 500,000 workers in 2011 and
continuously growing.

5 / 40

Crowdsourcing

- Platform

- Definitions

HIT : A Human Intelligent Task, or HIT, is the smallest
entity of work a worker can accept to do. HITs contain
one or more jobs.

Eg: Given a university and department name, find the
url of department webpage

Assignment : Every HIT can be replicated into multiple
assignments.

HIT Group : Group of similar HITs. Grouped for
convenience of 'turkers'

Eg: We can post 1000 HITS to get the URL of 1000
different departments spread across universities.

6 / 40

Crowdsourcing

- Platform

- Definitions

- Workflow

Package the jobs comprising of information into HITs,
determines the number of assignments required for
each HIT and posts the HITs

Optionally specify requirements that workers must
meet in order to be able to accept the HIT

AMT Groups compatible HITs into HIT Groups and
posts them so that they are searchable by workers

A worker accepts and processes assignments

Requesters then collect all the completed assignments
for their HITs and apply whatever quality control
methods they deem necessary. More on this later.

7 / 40

Motivation

8 / 40

Hybrid Human-Machine DBMS

Hard Database Problems
Missing Data

A key limitation of relational technology stems from the Closed World
Assumption. People, aided by tools such as search engines and reference
sources, are quite capable of finding information that they do not have
readily at hand.

Fuzzy Comparisons

People are skilled at making comparisons that are difficult or impossible
to encode in a computer algorithm

Harness Human Computation for solving problems that are impossible or too
expensive to answer correctly using computers.

Is it possible leverage such human resources to extend the capabilities of
database systems ?

9 / 40

Design Considerations

10 / 40

Design Considerations
Performance and Variability

Humans and machines differ greatly in type, speed and cost of work done
People show tremendous variability from person to person and over time
Need appropriate query planning, fault tolerance and answer quality

Task Design and Ambiguity

Carefully designed user interface with human readable instructions are
needed.

11 / 40

Design Considerations
Affinity and Learning

Workers develop relationship with requesters and skills for certain types
of HITs. Not uncommon to find workers doing only image classification.
Hesitant to do tasks from requesters who don't provide well-defined tasks
/ pay appropriately. CrowdDB design to take longer-term view on task and
worker community development.

Relatively Small Worker Pool

Open vs Closed World

In CrowdDB closed world assumption doesn't hold. Any one query
operator could conceivably return an unlimited number of answers.
Implications on query planning, cost and answer quality.

12 / 40

Overview of CrowdDB

13 / 40

Overview of CrowdDB

Left side of the figure are traditional QO parts: parsing, optimization and
execution. Right side contain components used to extend the traditional DB
system to get human generated input.

14 / 40

CrowdSQL

15 / 40

CrowdSQL
CrowdSQL is a SQL extension that supports crowdsourcing.

Supports two main use cases:

allow crowdsourcing missing data

support subjective comparisons

16 / 40

CrowdSQL

Incomplete
Data

SQL DDL Extensions

Two scenarios:

Specific attributes could be crowdsourced
Entire tuples could be crowdsourced

Introduce a CROWD keyword to solve both.

Let us revisit the initial example of finding the department
webpage url. In CrowdSQL it translates into

CREATE TABLE Department (
 university STRING,
 name STRING,
 url CROWD STRING,
 phone STRING,
 PRIMARY KEY (university, name));

The crowd keyword indicates that the url attribute will be
got using crowdsourcing.

17 / 40

CrowdSQL

Incomplete
Data

Let's go one step further. We want to get the details of all
the professors in a department. This translates into:

CREATE CROWD TABLE Professor (
 name STRING PRIMARY KEY,
 email STRING UNIQUE,
 university STRING,
 department STRING,
 FOREIGN KEY (university, department)
 REF Department(university, name));

Notice the CROWD keyword on table. It indicates that all
tuples in this relation will be crowdsourced.

There are no constraints placed and tables both crowd /
non-crowd treated same way w.r.t referential integrity
constraints.

However there is one exception: CROWD tables must have
a primary key so that CROWDDB can infer if two workers
input same tuple.

18 / 40

CrowdSQL

Incomplete
Data

SQL DML Extensions

A special CNULL value indicates data in CROWD columns
that should be crowd-sourced when needed as part of
processing a query.

During INSERT/UPDATE, crowd columns can also be
initialised. All non-initialised crowd columns are set to
CNULL.

INSERT INTO Department(university, name)
VALUES ("UC Berkeley", "EECS");

Consider example above, it sets url to CNULL

19 / 40

CrowdSQL

Incomplete
Data

Query Semantics

CrowdDB supports any kind of SQL query on CROWD
tables and columns

CrowdSQL specifies that tables are updated as a side-effect
of crowdsourcing.

Let us take two examples based on the tables created
previously:

SELECT url FROM Department
WHERE name = "Math";

In this, the url column would be implicitly updated with
the crowdsourced URL.

SELECT * FROM Professor
WHERE email LIKE "%berkeley%" AND dept = "Math";

In this query missing values in the email column would be
implicitly populated and new professors of math
department would be implicitly inserted as a side-effect of
processing.

20 / 40

CrowdSQL

Incomplete
Data

Subjective
Comparisons

Beyond finding missing data, subjective comparisons
important use of CrowdDB

Two new operators: CROWDEQUAL and CROWDORDER

CROWDEQUAL(~=) takes two parameters (an lvalue and
an rvalue) and asks the crowd to decide whether the two
values are equal

SELECT * FROM department
WHERE name ~= "CS";

Here the query writer asks the crowd to do entity
resolution with the possibly different names given for
Computer Science in the database like 'Computer Science',
'CSE', etc.

21 / 40

CrowdSQL

Incomplete
Data

Subjective
Comparisons

CROWDORDER is used whenever the help of the crowd is
needed to rank or order results

The CrowdSQL query below asks for a ranking of pictures
with regard to how well these pictures depict the Golden
Gate Bridge

CREATE TABLE picture (
 p IMAGE,
 subject STRING
);
SELECT p FROM picture
WHERE subject = "Golden Gate Bridge"
ORDER BY CROWDORDER(p,
"Which picture visualizes better %subject");

As with missing data, CrowdDB stores the results of
CROWDEQUAL and CROWDORDER calls so that the crowd
is only asked once for each comparison. This caching is
equivalent to the caching of expensive functions in
traditional SQL databases

22 / 40

User Interface Generation

23 / 40

User
Interface
Generation

- Overview

UI is important!
A clear, unambiguous user interface helps greatly in
improving accuracy.

Two step process:

Compile-time

CrowdDB creates templates to crowd-source missing
information from all CROWD tables and all regular
tables which have CROWD columns. JS is generated in
additon to HTML to do type checking.

Runtime

These templates are instantiated at runtime in order to
provide a user interface for a concrete tuple or a set of
tuples.

24 / 40

User
Interface
Generation

- Overview

- Basic
Interfaces

Basic UI for crowd tasks

(a) is our earlier example where we want to
crowdsource url

(b) does entity resolution using CROWDEQUAL

(c) is our earlier example to rank a set of images based
on how well they visualize subject (here Golden Gate
Bridge)

25 / 40

User
Interface
Generation

- Overview

- Basic
Interfaces

The following optimizations are used:

Batching: Get information of several tuples at once
(Eg: URL of Elec, CS, EP of UC-Berkeley). Assumption:
cheaper to input two pieces of information of the same
kind in a single form rather than separate forms

Prefetching: Consider, say both the department and
email of a professor are unknown, but only the email
of that professor is required to process a query, it
might make sense to get the department too.

Interfaces for CROWDEQUAL(Fig (b)) and
CROWDORDER(Fig (c)) can also be batched.

26 / 40

User
Interface
Generation

- Overview

- Basic
Interfaces

- Multi-
Relation
Interfaces

Crowdsourcing relations with foreign keys require special
considerations

If foreign key references non-CROWD table, the
generated user interface shows a select box and for
larger lists a ajax based suggest method

If foreign key references CROWD table, there are two
types of interfaces which are used:

Normalised Interface : The worker inputs the value
of foreign key but no other attributes of referenced
tuple

27 / 40

User
Interface
Generation

- Overview

- Basic
Interfaces

- Multi-
Relation
Interfaces

Denormalised Interface : There is a select box and an
add button which allows the worker to input a new
department

To source entirely new tuples, the non-key attributes
can be preset via WHERE clause, autosuggest while
typing and an option to say no new professor entry
present. If many workers say no new professor entry
present, we can stop.

28 / 40

Query Processing

29 / 40

Query
Processing

The traditional database model extended:

SQL extended to CrowdSQL

Crowd Operators for crowdsourcing

Optimizer that handles crowd operators.

CPU time taken << time taken by crowd to answer
=> goal of optimizer is to find plan which results in
least number of queries to Crowd.

30 / 40

Query
Processing

Example

31 / 40

Query
Processing

Example

Crowd
Operators

CROWDPROBE
Crowdsources missing information of CROWD
columns (i.e., CNULL values) and new tuples

Quality control carried by majority vote. If not
majority achieved at max hits, choose randomly from
most frequent ones.

In the case of new tuples, finding majority impossible.
The DB reposts the tasks with only primary key filled
in.

32 / 40

Query
Processing

Example

Crowd
Operators

CROWDJOIN
Implements a nested-loop join where atleast one of
the tables is a CROWD table

For every tuple of outer relation, creates HIT's to find
the inner tuples

CROWDCOMPARE
Implements the CROWDEQUAL and CROWDCOMPARE
functions

Typically used inside a traditional operator like sorting

33 / 40

Query
Processing

Example

Crowd
Operators

Physical Plan
Generation

The basic functionality of all Crowd operators is the same.

Initialized with a user interface template and the
standard HIT parameters
At runtime, they consume a set of tuples
Depending on the Crowd operator, crowdsourcing can
be used to source missing values of a tuple or to
source new tuples.
Batch HITs. Create HIT Groups.
Consume tuples from crowd and do quality control

Quality control is currently carried out by a majority vote.
The number of workers assigned to each HIT is controlled
by an Assignments parameter.

34 / 40

Experiments and Results
As the HIT group size increases, the time to get first x responses decreases.
Larger HIT groups mean more tasks to attempt. HITs are repetitive tasks and
there is an initial overhead of learning how to do the task. Hence larger HIT
groups give higher payoffs and attract more turkers.

35 / 40

Experiments and Results
However the percentage of HIT's completed in the 30 minutes increases and
then decreases. Exhibits tradeoff between throughput and completion %.

36 / 40

Experiments and Results
Paying more than 1 cent per task attracts more workers. However beyond 2
cents, there is barely any difference.

37 / 40

Experiments and Results
The graph below shows the work distribution. It is highly skewed. Total 750
workers.

Tasks acquire a community

The authors thought the ones doing more hits will have lesser error but
this behaviour not seen in experiments.

38 / 40

Complex Queries
Query is to sort the pictures for Golden Gate bridge. They rankings are close to
ranking by experts.

39 / 40

References
CrowdDB: answering queries with crowdsourcing
Michael J. Franklin, Donald Kossmann, Tim Kraska, S. Ramesh, Reynold Xin

Suggested Reading:

CrowdScreen: algorithms for filtering data with humans
Aditya Parameswaran, et al.

Crowdsourced databases: Query processing with people
A Marcus, et al.

Deco: Declarative Crowdsourcing
Aditya PArameswaran, et al. 40 / 40

