CS 632 : Course Seminar Presentation

On the paper

RDF-3X: a RISC-style Engine for RDF,

Thomas Neumann and Gerhard Weikum, PVLDB 2008

Presented by: Jiji

Angel '
Guided by: Prof S |
Sudarshan . N

Seminar Outline

Introduction

- RDF
- SPARQL

Implementation details of RDF:3X

- Storage & Indexing
— Query Processing & Optimization

- Selectivity Estimates

Experimental Setup & Evaluation Results

Conclusion

2/47}, |

] 'Introduction

e RDF - Resource Description Framework
e Originally was used to model data for semantic web

e Primarily used for knowledge representation and data
interchange

e Usages:
- Ontology representation for semantic web
- Knowledge base representation; Examples: Freebase, DBpedia, YAGO

- Import/export data format

- Non-proprietary data exchange format

3/47;. |

I
Introduction 2/11)

 RDF Triples

e In RDF every data item is represented using a triple

(subject, predicate, object) aka (subject, property, value)

For example, information about the movie “Sweeney Todd” may be ‘triplified’ as:

(id1, hasTitle, 'Sweeney Todd'),

(id1, producedYear, '2007'),

(id1, directedBy, 'Tim Burton'),

(id1, hasCasting, id2),

(id1, hasCasting, id3),

(id2, roleName, 'Sweeney'),

(id3, roleName, 'Lovett'),

(id2, actor, idiil),

(id3, actor, idi2),

(id11, hasName, 'Johny Depp'), 4/47

= (id12, hasName, 'Helena Carter') i

| _fn:tr'oc'luctio'n {(3/11)

RDF - Graph based data model

e Each set of triples is called an RDF graph.

« Each triple is represented as a node-arc-node link; nodes
denote subject or object; links denote the predicate

'Sweeney Todd"' - ONQ’
% 0 id2 (o
-~ Y 5 I\ Q
‘ heediitiate 4 oe % hasName(39hny Depp!
i o ‘ id11
e - 0] R
-y 3
Year idl
9 -
Q

| ny
Q_) S
0
8 : hasName/, :
I 0 o id12 Helena Carter
cr O
@O - X
j et N 15) 5?
g -
“Tim Burton' e

5/47

I
Introduction (4/11)

RDF

« Extends the linking structure of the Web by using
URIs(Uniform Resource Identifiers) for relationship

- Subjects and predicates are identified by URI values

« Schema language is RDFS (RDF Schema)

Tri p 1 es are.: http:/Awww.w3. org/2000/ 10/swap/pim/contact#Person

(<http://www.w3.0rg/People/EM/contact#me>,
<http://www.w3.0rg/2000/10/swap/pim/contact#fullName>, _
“Eric Miller”), Http: s w3, org/Peop lefEM/contact#me

httpefderana w3 orgd/ 19980202 2 -rdf-syntax-ns#ty pe

)

(<http . //WWW i W3 0 rg/PeOple/EM/ContaCt#me> . \ o fherwnw w3 org 200001 Ofswapd pimfcontactEfuliMName
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://www.w3.0rg/2000/10/swap/pim/contact#Person>

Eric Miller

http:feewewow 3. org 200011 Ofswap/pimfcontactiEmail box

[/

mailte: emE@wi.org

Rttp: ffeewen w3, orglZ20000 1 Ofswapdpimfcontactitpersonal Title

Dir.
Sample Schema

Introduction :(5/11)

~ Freebase - a knowledge base

Open knowledge base; Collaboratively edited
Creative Commons Attribution License

Repository size: 47+million topics, 2+Dbillion facts, (as of
15/03/2015)

Initially seeded by pulling data from sources such as
Wikipedia, MusicBrainz etc.

Uses RDF graph model for data storage
Freebase triplestore is named as graphd

Developed by Metaweb and later aquired by Google

7/47, |

Introduction :(6/11)

~ Introduction - SPARQL

e SPARQL — SPARQL Protocol and RDF Query Language

- Official standard query language for querying RDF repositories

« SPARQL queﬁes are basically pattern matching queries on

triples from the RDF data graph

8/47, . |

ntrodction (711

~ SPARQL Query Examples an

o Select all the movie titles (assume that predicate <hasTitle> implies movie titles)

SELECT ?title
WHERE({ ?x <hasTitle> ?title }

« Select the director of the movie 'Sweeéeney Todd'

SELECT ?directorName
WHERE{ ?movield <hasTitle> “Sweeney Todd”.
?movield <directedBy}”ﬂf"MD*n”fl\Tﬂmn1~~————————————~~—~~~~~~~~

‘Sweeney'

« Select all the roles and the ac

2 4
@

hasNg(Johny Depp'
me
&=

SELECT (?role AS ?RoleName) (
WHERE({ ?roleld <roleName> '?r

?roleld <actor> ?actorlId.

?actorld <hasName> ?name }

hh?rp@a'c{idn :(8/11)

~ SPARQL Query Examples Ak

« Select all the movie titles along with the year in which it was produced.

Make sure to get the movie titles even if the production year details are not

(SELECT (?title AS ?MovieTitle) (?pYear AS ?ProductionYear)
WHERE{ ?movield <hasTitle> ?title
OPTIONAL {?movield <producedYear> ?pYear}}

—r— SELECT.(2title AS ?MoviesAfter:j . @
WHERE{ ?movield <hasTitle> 2t &

?movield <producedYej
FILTER (?pYear <= Al

e —

hasNg(Johny Depp!
me

me
5

"Tim Burton'

pYearSweenc

hh?rp@a'c{idn :(9/11)

~ SPARQL Query Examples Ak

» To retrieve the titles of all the movies with Johny Depp by the SPARQL

UYUSEYECT 2title
WHERE {

?m <hasTitle> ?title. ?m <hasCasting> ?c. ?c <actor> ?a. ?a

<hasName> “Johny Depp” }

e Toretrieve movie titles and the list them if the number of actors is

more than 10, SPAQRL query can be written as:
SELECT (?title AS ?movieTitle) (COUNT(?actors) AS ?numberOfActors)) [

WHERE { |
?x <hasTitle> ?title. ?x <hasCasti;
GROUP BY ?x
HAVING (COUNT(?actors) > 10)
ORDER BY ?numberOfActors |

e —

hasNg(Johny Depp!
me
@

|
_Introduction :(10/11)

~ Introduction - SPARQL Syntax

PREFIX foo: <...>
PREFIX rdf: <...>
SELECT [DISCTINCT | REDUCED] ?variablel ?variableZ ...
WHERE {
patternl. patternZ. ...}
ORDER BY
LIMIT
OFESET

- Each pattern consists of S, P, O and each of these may be either a
variable or a literal

- A dot(.) corresponds to join/conjunction; UNION keyword is used
for disjunctions

- ORDER BY keyword :orders the result
_ - _Result Query
— DISTINCT keyword : removes duplicates from the resulmodifiers

\

- REDUCED keyword : may but need not remove duplicates 1247, |
.

_Introduction :(11/11)

. Motivation and Problem

« Managing large-scale RDF data involves technical
challenges:

Physical database design is difficult because of the absence of a
global schema

RDF data is fine-grained and meant for on-the-fly applications; this
calls for appropriate choice of query processing and optimization
algorithms

Statistics gathering for join-order and execution-plan optimization
1S not very obvious

RDF stores data as graph rather than tree structure used by XML

13/47, |

'Contribution & Outline

 RDF-3X (RDF Triple eXpress)

- RDF-3X engine is an implementation of SPARQL that achieves
excellent performance through RISC-style architecture, puristic
data structures and operations

- Key Features:

» Physical design is workload independent. With exhaustive
compressed indexes, it eliminates need for physical-
design tuning

* Query processor rely mostly on merge joins over sorted
index lists

* Query optimizer focuses on join order in generating the
execution plan; dynamic programming for plan
enumeration

- Cost model is based on RDF-specific statistics synopsis.; |

4

Storage and Indexing

1
15/478: |

|
. N

I
L]

i

 RDF Déta Storage

e There are three approaches followed by various
implementations:

- Giant Triple Table method
~i={RTOPerty Table method
— Cluster Property Table method

16/47, |

5 0% 1A P
S age and it (771%)

:

_ Giant Triple Table method

» All triples are stored in a single, giant triple table with generic

attributes subject, predicate, object

« RDF-3X follows this approach

! Triple Table

id1
id1
id1
id1
id1
1d2
1d3
1d2
1d3
id11
1d12

hasTitle
producedYear
directedBy
hasCasting
hasCasting
roleName
roleName
actor

actor
hasName

hasName

“Sweeney Todd”
2007

“Tim Burton”
id2

id3

“Sweeney Todd”
“Lovet”

id11

id12

“Johny Depp”

“Helena Carter”

17/47

g

i
r TE : . | |
~ Property Table method T

e Séparate tables for each predicate

\, Triple Table hasTitle

hasTitle “Sweeney Teld” idl1 “Sweeney Todd”

id1 producedYear]

id1 producedYear

an 5 0
i1 idl 2007

1d2 “Sweeney Todd”

_ directedBy

id3 {Lovet”

id1 “Tim Burton”
id3
id11 hasName hasCasting
hasName
id1l id2
id1l id3

1d2 “Sweeney Todd”
1d3 “Lovet”

actor

id2 id11

1d3 id12

hasName

id11 “Johny Depp”

id12 “Helena Carter”

1604

e M=

e e R M e Rl

A1
g-:_n_@ Qldéxmg (4/13)

uster-property Table raethod

|

« Correlated predicates are kept together in a single table

a:

Triple Table

Property Table

S Ee——— T

hasTitle

roducedYear @ 2007
dikectedBy “Tim Burton”

I
B i1 hasCasting y’ |
it :

id1 1d2 “Sweeney Todd” | id11 “Tohny Depp”

id1 id3 “Lovet” id12 “Helena Carter” '

- id1 hasCastin /id3] | T
‘ Left Over Triple Table
i id1 hasTitle “Sweeney Todd”
id1 producedYear 2007
1
id1 directedBy “Tim Burton”

“Helena Carter

|
~ Storage and Indexing:(5/13)

~ Triple Store and Mapping Dictionary

 RDF-3X uses giant triple table approach

- Drawback - literals can be very large and may contain lot of
redundancy

 Solution used by RDF-3X: |
- Use dictionary compression: Mapping Dictionary
« Compresses the triple store
 Fast query processing

- Store all the triples in a clustered B'-tree

» Triples are sorted lexicographically
« Eases SPARQL range queries

20/47, . |

|j§t;a;fagé and Indexing:(6/13)

~ Mapping Dictionary

e Used to map literals to a corresponding id
- This compresses the triple store

- Simplifies query processing

e Incurs a minor cost of additional dictionary indices

Triple Table Mapping Dictionary
[sabict [et [ot | T
00 01 02 oo 1di |
‘ 01 hasTitle
| 00 03 04
02 “Sweeney ‘
00 05 06 Todd” |
03 Yo
00 07 08 producedYear
‘ 04 2007
00 07 09 _
05 directedBy
06 “Tim Burton” 1
07 hasCasting }
\ 08 id2 ‘ 21/47
09 id3 ‘

1 . 4

~ Storage and Indexing:(7/13)

~ Compressed Indexes

« When literals are prefixes and variables are suffixes in the
pattern, the query acts like a range query; suffices to have
single index-range-scan

- For example: (literall, literal2, ?x)

« To guarantee that queries with all possible patterns are
answered In a single index scan, RDF-3X maintain all six
possible permutations of subject(S), predicate(P) and
object(0), in six seperate indices

SPOISOPIOSP{OPS] RSO, POS
Triples in the index are sorted lexicographically
Are directly stored in the leaf pages of the clustered B+-tree

This ordering causes neighboring triples to be very similar

Hence compression of triples is possible: instead of storing full %47 |

triples RDF-3X stores only the changes between the triples =

|
" RDF-3X Storage and Indexing:(8/13)

~ Sort Orders

Which sort order to choose?

- 6 possible orderings, store all of them (SPO, SOP, OSP, OPS,
PSO, POS)

- Will make merge joins very convenient

« Each SPARQL triple pattern can be answered by a single
range scan

« Eg: If we need to know all actors of a film, the subject
(“Film object”) and predicate (<hasActor>) remain the
same. So, we use the index on sort order “SPO”

e« On the other hand, if we need to find all movies in which
an actor has acted, the object (“Actor”) and predicate
(<hasActor>) remain the same. So, the index on sort order

“OPS” would be more suitable T
=

B
" RDF-3X Storage and Indexing:(9/13) |

- Compressed Triple Structure

« Comparion of triples is the difference in their id values

- Triples are sorted lexicographically which allows SPARQL
pattern matching into range scans

~ Can be compressed well (delta encoding)
~ Efficient scan, fast lookup if prefix is known
- Structure of byte-level compressed triple is

1 Bit 7 Bits 0-4 Bytes 0-4 Bytes 0-4 Bytes

Header valuel value?2 value3

« Header byte denotes number of bytes used by the three values
(5*5*5=125 size combinations)

» Gap bit 1s used when only value3 changes and delta is less than |
128 (that fits in header) 24/47, |

1 .

|
" RDF-3X Storage and Indexing:(10/13)

~ Triple Compression Algorithm

compress((vl, v2,v3), (prevl, prev2. prev3))

//Writes (vl, v2, v3) relative to (prevl, prev2, prev3)

ifvl = prevl && v2 = prev2
if v3 — prev3d < 128

write v3 — prev3

else encode(0, 0, v3 — prev3 — 128)

else if v] = prevl

encode(0, v2 — prev2, v3)

else

encode(vl — prevl, v2, v3)

encode(81, 62, &3)

//Writes the compressed tuple corresponding to the
deltas

write
128+bytes(81)*25+bytes(82)*5+bytes(53)

write the non-zero tail bytes of 41
write the non-zero tail bytes of 62

write the non-zero tail bytes of 43

25/47

JoaCs 6]
_RDF-3X Storage and Indexing:(11/13)

~ Compressing Triple Example

« Examplel: Suppose the first triple is (10,20,1123) and the next triple is
(10,20,1173).

v1 = prevl and v2 = prev2

Also, v3 - prev3 < 128

Hence, the delta entry would be 1173-1123 =50 in t
Hence, the size of this tuple is only 1 byte; gap bit s

eader Byte

« Example2: Suppose the first triple is (10,20,1000), second triple is
(10,20,1500)

vl = prevl and v2 = prev2; but (1500-1000) = 500 < 128
Function call: encode (0,0,372)
Header will contain 128 +0+ 0+ 2 =130

61 has 0 non-zero bytes, 62 has 0 non-zero byte, 63
bytes

)
eader pbyie AL

b |

Hence, the overall size of the tuple will be 3 bytes

RDF-3X Storage and Indexing:(12/13)

~ Aggregated Indices

 For many SPARQL queries indexing partial triples rather
than full triples would be sufficient

SELECT ?a ?c
WHERER 74 ?b{?c}
« Aggregated Indices:

- Two-value indices: Each of the possible pairs out of a triple (SP, PS,
SO, 0S, PO, OP) and the number of occurences of each pair in in the
full set of triples

- One-value indices: Three one valued indices, (S/P/O, count) are
stored

27/47}, |

“RDE3¥ thdexing - Three Types

__Indices

Six triple indexes: SPO, PSO, SOP, OSP, POS, OPS

Six two valued aggregated indices and their count: SP, PS,
POLOP; SO 0S

Three one valued aggregate indices and the respective
counts

Experimentally total size of all indexes is less than original
data

28/47, . |

Query Processing and Optimization

29/47, . |

: 'Transl'ating SPARQL Queries

o Stepl: Convert the SPARQL query into a query graph
representation, interpreted as relational tuple calculus
expression

« StepZ: Conjunctions are parsed and expanded into a set of triple
patterns

« Step3: Literals are mapped to ids through dictionary lookup

« Step4: Multiple query patterns are computed by joining
individual triple patterns

« Step5: If distinct results are to be obtained, duplicates are
removed from the result

« Step6: The result contains ids now; dictionary lookup is
performed to get back the actual string equivalents

30/47 . |

|
_ Query Processing and Optimization:(2/10)

SPARQL Query Graph

« Each triple pattern corresponds to one node in the query
graph

e An edge between two nodes is a common query variable

zllllllllllllllllllIIlllllllllllllllllllllIlll: :llllllllllllllllllllIIllllllllllllllllllllIllllllllllllllllllllllIlllllllllllllllllllllllllllllllll:
-

SELECT ?title WHERE { : ' P1=2?m <hasTitle> ?title
?m <hasTitle> ?title. 2 P2 =?m <hasCasting> ?c
?m <hasCasting> ?c. St P3|="?a <actor>?c
?a <actor> ?c. : P4 =7a<hasName> “Johny Depp” :
: ?a <hasName> “Johny Depp” }
SPARQL query Triple Form l
> T HB S
P2c=P3.c = :
Ll I i s : g
/// \\\ : :
> >« RN E
PLm = P2.m _P3.a=P4a 2l (P3 P4
/ \ L1 E "" d
= | P1 P2 P3 P4 e I

Possible Join Tree

|
_ Query Processing and Optimization:(3/10)

Optimizing Join Ordering

« SPARQL query execution demands join queries which can
be really complex:

- SPARQL queries contain star-shaped subqueries and hence
strategies to handle bushy join trees are required

- Since large number of joins are common in SPARQL queries, fast
plan enumeration and cost optimization are required

» RDF-3X uses desicion cost based dynamic programming
approach for optimizing join orderings

32/47}, |

_ Query Processing and Optimization:(4/10)

~ DP Based Join Optimization

« RDF-3X uses bottom-up dynamic programming approach

Takes a connected query graph as input and outputs an optimal
bushy join tree

Enumerates DP table with the initial set of triples efficiently and
correctly

Unused(unbound) variables are projected away by using
aggregated index

The plans that are costlier and equivalent to other plans are
pruned

« Sometimes plans are retained even if they are costlier based on
order optimization

The larger optimal plan is generated by joining optimal solutions to
smaller problems that are adjacent in the query graph

33/47, |

|
_ Query Processing and Optimization:(5/10)

Selectivity Estimates

 Identification of lowest-cost execution plan hugely relies on
the estimated cardinalities and selectivities

« A bit different from standard join ordering:
~ One big "relation", no schema
- Selectivity estimates are hard

- Standard single attribute synopses are not very useful:

e Only three attributes and one big relation;

* But (?a, ?b, "Mumbai”) and (?a, ?b, ”1974-05-30”) produces vastly
different values for ?a and ?b

« Two kinds of statistics are maintained by RDF-3X
- Selectivity Histograms

- Frequent Join Paths .
34/47, |

| |
Pr _odessmg and Optimization:(6/10)

ect1v1ty Histograms

|_.._|;c‘

ey
Se

~« Query optimizer uses aggregated indexes for calculations
- based on triple cardinalities

» For estimating join selectivity, histogram buckets with
additional information are mamtamed as follows

Number of distinct 2—pref1xes

Number of distinct 2-prefixes = 3

Join partners on subject

Join partners on subject

|
Join partners on predicate Join partners on predicate [
i ~ Join partners on object Join partners on object |
.
ol e
'Bucket structure Example Bucket 35/47
b]t implementation

|
_ Query Processing and Optimization:(7/10)

~ Selectivity Histograms

« Generic but assumes predicates are independent
« Aggregates indexes until they fit into one page

« Merge smallest buckets(equi-depth)

« For each bucket compute statistics

« 6 indexes, pick the best for each triple pattern

« Assumes uniformity and independence, but works quite well

36/47, |

|
_ Query Processing and Optimization:(8/10)

Frequent Paths

« Correlated predicates appear in SPARQL queries in two
ways:

- Stars of triple patterns: a number of triple patterns with different
predicates sharing the same subject

SELECT o
WHERE{ @ Ipl.x). (r/p r.). .| pirD)]

- Chains of triple patterns: a number of triple patterns where object
of the first pattern is subject of the second pattern

SELECT 31

n+1

WHHRREL (e fpl T). (T r). L. I(Pl 1))

n n+l

e Most frequent paths(ie., the paths with the largest
cardinalities) are computed, the result cardinalities are
materialised along with the path descriptionp,p,, ... p_ sz |

4

|
Que"y Processing and Optimization:(9/10) - B

Frequent Path Mining Algorithm

FrequentPath(k)
// Computes the k most frequent paths
d = {Pp | p is a predicate in the database}
sort C, keep the k most frequent
= CIr =11
do
‘ Ci+1 F (I)
for each p' € C, p predicate in the database
| iftop kof CUC,, U {Pp,p} include all subpaths of p'p
Ci+1 r Ci+1 U {Pp'p}
iftopkof CUC_ U {Ppp,} include all subpaths of pp’
Ci+1 5 Ci+1 U {Ppp'}
e d U Gh{sert G keep k the most frequent
Bl=d ndi=id
while C # ¢

return C

38/47

" RDF-3X Storage and Indexing:(10/10)

Estimates for Composite Queries

Combining histogram with frequent path statistics

Long join chain decomposed to subchains of maximal length

- For exampleconsider a query like:

? ? %17 PX |7 ?
IERARIN N2 W W & JeCh

’X,av,.?X p,?X.?X P ?X.?X a Vv,
For subchains p -p -p, and p -p, ’ selectivity estimation 1s done using

frequency path and for selections histograms are used

In absence of any other statistics, assume the above two estimators
as probabilistically independent - use product formula with per-
chain and per-selection statistics as factors

39/47, |

r--- " - [} - [

' Evaluation

i

e RDF-3X is compared with:
- MonetDB (column store approach)

— PostgreSQL (triple store approach)

« Three different data sets:
- Yago, Wikipedia-based ontology: 1.8GB
- LibraryThing : 3.1
- Barton library data : 4.1GB

40/47 |

1 1 L

"J_. [| fJT r]l]JrJl||| fll

200 —

RDF.Q).: -] |]]] |]
180 F (codd caches) EZH
MonetDB
160 ' (cokd caches)
PostgreSOL mm

140 - (ookd caches)

execution time [s]

A AZ A3 B B2 B C1 C2 geomean

sample query(B2) : select ?nl1 ?n2 where { ?pl
<isCalled> 7?nl.

?pl <borninLocation> ?city. ?pl <isMarriedTo> ?p2.

?p2 <isCalled> ?n2. ?p2 <borninLocation> ?city }

42/47

r--- " - [} - [

Evaluation - LibraryThing

i

10000 — . . ! T I
. ROF-3X mm
MonetDB
r PosigreS0L mm
1000 £
2 i]
e 7
s | 1
3 10t
2 |
i 7
1t E
0.1
Iy

Al

Al Bl B2 B C1 C2 geomean

sample query(B3): select distinct ?u where { ?u [] ?b1.
20 11 2b2:?u [1?B3.?bl [] <german> ?b2/[] <french> |
?b3 [] <english>} 43/47

r--- " - [} - [

F Evaluation — Barton Dataset

300

"ROF-3X mm S
(cold caches) &0 £
259 | MonetDB 7
{cold caches) ::E:
PostgreS0L mm 7
G oy | (oKl caches) I i -
. v 7
: -
. . 5555
: - 5:5
3 A /
50

Q1 Qa2 Q3 4 Q5 Q6 Q7 geo.mean

sample query (Q5) select ?a ?c where
{ ?a <origin> <marcorg/DLC>. ?a <records> ?7Db.
7b <type >7c. filter (?c |= <Text>) } A44/47

r--- " - [} - [

Conclusion

i

« RDF-3Xis a fast and flexible RDF/SPARQL engine

- Exhaustive but very space-efficient triple indexes
- Avoids physical design tuning, generic storage

- Fast runtime system, query optimization has a huge impact

45/47 |

® ' Questions

+_ﬁ_,1] o 185 |

CrdARERE

- Thank You

47/ 47 e 11

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

