

Asynchronous View Maintenance
for VLSD Databases

Parag Agrawal, Adam Silberstein, Brian F.
Cooper, Utkarsh Srivastava,
Raghu Ramakrishnan
SIGMOD 2009

Talk by-
Prashant S. Jaiswal
Ketan J. Mav

Motivation
 Companies have begun to develop Very Large Scale

Distributed (VLSD) system to cope up with increasing
demands e.g. BigTable, PNUTS etc.

 These system usually only support operations on single
records identified through primary key or range scans
through key.

 No complex queries like group by aggregation, secondary
attribute lookup.

 Query expressiveness is sacrificed for scalability and
performance.

3

Traditional Database
Systems

VLSD

High Query
Expressiveness.
(SQL)

Limited Scalability

Limited Availability

High Performance

Low Query
Expressiveness.
(Just Primary Key
Operations)

High Scalability

High Availability

Latency may increase
due to distributed
nature.

BigTable, PNUTS,
Cassandra.

Introduction
 Complex queries involving joins or aggregates are required

in VLSD to improve usability.
 Solution: To create indexes and materialized views.
 Index is just a materialized view with a projection view sorted

by one or more secondary attributes.
 Synchronous Updates: Updates are made to the views at

the same time as the base table. Query cost increased.
 Asynchronous Updates: Updates are made to the views only

after the the base table update is completed. View staleness
is an issue here.

Introduction
 In VLSD, data is replicated and distributed across

servers. So, synchronous updates are expensive in
terms of query response time.

 Approach followed: Deferred View Maintenance:

Update the views only after the base table update
completes.

 Decreases query cost and response time improves.
 Challenges are:

 Ensuring view updates even in failures.
 Providing consistency guarantees.
 Replicate the views like base tables.

6

PNUTS : Architectural Overview

Clients

API

Log Manager

Partition
Controller

Storage servers

Storage server

Query
 Processor

Update
Processor

LVT
Maintainer

RVT
Maintainer

Storage

Query Routers

Read Query Request

Request forwarded to server

Query
 Processor

7

PNUTS : Architectural Overview

Clients

API

Log Manager

Partition
Controller

Storage servers

Storage server

Query
 Processor

Update
Processor

LVT
Maintainer

RVT
Maintainer

Storage

Query Routers

Write Query Request

Request forwarded to server

Query
 Processor

To
 remote

Data centers
 asynchronously

Write-ahead log

Remote View Tables

 RVT is a TABLE separate from the base tables that
stores the materialized view over the base table.

 It is maintained asynchronously by RVT maintainer.
 RVTs are partitioned on different key as compared to

base table and view records will be on different storage
server as compared to base records. Hence called
“Remote view tables”.

 Staleness is obvious in RVTs.

9

 Base Tables :
 Items (Items (ItemIDItemID, Name, Description , Category, Date, Price, , Name, Description , Category, Date, Price,

SellerID);SellerID);
 Reviews (Reviews (ReviewIDReviewID, ItemID, Date, Subject, Rating, Text, , ItemID, Date, Subject, Rating, Text,

Reviewer)Reviewer)

 e.g. e.g. CREATE VIEW ByPrice ASCREATE VIEW ByPrice AS

 SELECT SELECT PricePrice, , ItemIDItemID, Name, Category, Name, Category

 FROM Items;FROM Items; (Partitioned on key (Price, ItemID))

Price ItemID Name Category

7000 2 T.V Electronics

2000 4 Chair Furniture

2000 1 Car Toys

50 3 Doll Toys

10

Maintaining RVTs

Clients

API

Log Manager

Partition
Controller Storage servers

Storage server S1

Query
 Processor

Update
Processor

LVT
Maintainer

RVT
Maintainer

Storage

Query Routers

Update base table Request

Request forwarded to server

Query
 Processor

To
 remote

Data centers
 asynchronously

Write-ahead log plus “Information necessary to
update views (old field values)”

RVT
Maintainer

RVT Maintainer of S1 subscribes to the log manager
to get updates for records in S1

Local View Tables
 Local View Tables

 Computes on each base partition.
 Stores the result in the same partition.
 Partitioned in the same way as base table.
 Staleness is not the issue.
 Synchronous update: Updation is the part of same

database transaction.
 Increase in the Query cost.

 e.g.
CREATE VIEW ByCategory ASCREATE VIEW ByCategory AS

SELECT Category, COUNT(*)SELECT Category, COUNT(*)

FROM ItemsFROM Items

GROUP BY Category;GROUP BY Category; (Partitioned on ItemID) (Partitioned on ItemID)

LVT Over RVT
 Exploits the fact that RVT is just a normal PNUTS table.
 So, LVT can be built on RVT to collect the partial results of

RVTs.
 Generally used to support “Group By” queries.
 Cheaper as the partitioning key of the RVT is same as the

group by key of the LVT.
 Data will be pregrouped and aggregates over the RVT are

materialized.

13

Combining RVTs and LVTs

 Main application of LVTs : materialize aggregates over
RVTs.

 E.g. :

ItemID Name Category Price

1 Car Toys 2000

2 T.V Electronics 7000

3 Doll Toys 50

4 Chair Furniture 2000

5 Table Furniture 5000

Price ItemID Name Category

7000 2 T.V Electroni
cs

2000 4 Chair Furniture

2000 1 Car Toys

50 3 Doll Toys

Price Count

7000 1

2000 2

50 1

LVT on RVT

Base Table

RVT on Base table

View Types
 Limited Query Expressiveness is supported using views like

 Indexes
 Equijoins
 Selections
 Group By aggregates

View Type: Indexes
 Views are projection with reordering of base table.

 E.g. RVT : ByPrice(Price, ItemId, Name, Category)
 Name and Category are extra attributes: to satisfy some

queries using index only.
 Inserting record is as follows

View Type: Indexes
 Updating a key attribute

 Updating a non-key attribute.

View Types: Equijoins
 Co-locating joining records in the same partition but not actually

joining them until query time.
 Accomplished using RVT defined as two Indexes on the join-

attributes for two relation stored in the same table.
 Outer join is maintained (as we don't materialize join).

ItemId Name Categor
y

Price Review
erID

Text Rating

1 Tweety Toy 1000

1 123 best 10

2 Car Toy 2000

3 Scissor Stationa
ry -Item

50

3 234 bad 2

Equijoin

 It increase query time but maintains simplicity
and maintenance cost.

 LVT cannot be used as two tables may have
different primary keys, Base tables are
partitioned differently.

 Equijoin is handled just like Index maintenance
(using same mechanism).

View Types: Selections

 Subset of records from the base tables.
 E.g.: CREATE VIEW ELECTRONICITEMS

SELECT * FROM Items WHERE Category='Electronics'
 Maintained as RVT and like an Index.
 LVTs can be used but cost of querying all the storage

server to collect partial view records is high.

 Group-by Aggregates
 Multiple base records contribute to one view record, so cant

be achieved using RVT index mechanism.
 RVT is replica of single record: cannot be used.
 Generally, LVTs are used to support aggregation either

 By maintaining LVT over base table
 Or by maintaining LVT over RVT.

 For min(max) queries, scan one partition for new min(max).
 LVT (over base or over RVT) is maintained synchronously.

(Query time increased)

Group-By aggregation views

ItemID Name Category Price

1 Car Toys 2000

2 T.V Electronics 7000

Price Count

7000 1

2000 1

LVT on Partition 1

Base Table

ItemID Name Category Price

3 Doll Toys 50

4 Chair Furniture 2000

Partition 1 Partition 2

Price Count

2000 1

50 1

LVT on Partition 2

Group-By aggregation views

ItemID Name Category Price

1 Car Toys 2000

2 T.V Electronics 7000

Price ItemID Name Category

7000 2 T.V Electroni
cs

2000 4 Chair Furniture

2000 1 Car Toys

50 3 Doll Toys

Price Count

7000 1

2000 2

50 1

LVT on RVT

Base Table

RVT on Base table

ItemID Name Category Price

3 Doll Toys 50

4 Chair Furniture 2000

Partition 1
Partition 2

Unsupported View Definitions

 Joins of three or more tables not all joined
on same attributes.
Joinable records are not located in the same

partition

 Joins that are not equijoins.
Complex and expensive

 Full SQL99 aggregate functions:

Design Rationale
 View Maintenance: Client or System

 Not exposing log to the client

 Avoid Redundant Redo logs maintained by client.

 Eagerness of Updation
 Synchronous

 Used for LVT.

 Lazy Updates
 Used for RVT.

 Batched Lazy Updates
 Not used in order to reduce view staleness.

 Periodic View Refresh
 High throughput, staleness but wasted effort

Consistency model

ReadAny=$10 ReadCritical(5)=$20

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1

v. 6 v. 8

Insert (“toaster”,$10)
Update($20)

Update($15)

ReadLatest=$15

Maintaining View Consistency
 Base consistency model: timelines of all records are

independent
 Multiple records of the views are connected to base records.
 Information in a view record vr comes from a base

record r, vr is dependent on r while r is incident on vr.
 Indexes, selections, equi-joins: one to one
 Group by aggregates: Many to one

Cost of view maintenance
 Log record of “br” keeps the information needed to update

the views.
 For an update to base record br

 Indexes: If update to key of view, then two updates, else one
update.

 Equi-joins: Same as indexes.
 Selection views: at most single view update.
 Group-by aggregate views: for sum/count, view can be

updated by knowing only the change in the aggregated field of
br and the value of the grouped attribute.

ItemID Name Category Price

1 Car Toys 2000

2 T.V Electronic
s

7000

3 Doll Toys 2000

4 Chair Furniture 2000

Price Count

7000 1

2000 3

ItemID Name Category Price

1 Car Toys 2000

2 T.V Electronic
s

7000

3 Doll Toys 2000

4 Chair Furniture 2000

Price ItemID

2000 1

7000 2

2000 3

2000 4

One To One View Projection

Many To One View Group By

Read Consistency for views:RVT

 Single record reads for one-to-one views:
 Each view record has single incident base record
 View records can use the version no. of the base records
 Consistency guarantees are inherited from the base table

reads: ReadAny(vr), ReadCritical(vr, v'), ReadLatest(vr)

 Single record reads for many-to-one views:
 Multiple br are incident on single vr
 ReadAny: reads any version of base records.

 Single record reads for many-to-one views (Cont.)
 ReadCritical: Needs specific versions for certain subsets of base

records and ReadAny for all other base records.
 For e.g. When user updates some tuples and then reads back, he

would like to see the latest version of the updated records and
relatively stale other records may be acceptable.

 Base record versions are available in RVT/base table on which view
is defined

 ReadLatest: Accesses base table, high cost unavoidable

31

Read consistency for views: LVT
 LVT is always up-to-date wrt local replica of the underlying base table.

 Thus, any request can be satisfied from the LVT if underlying local base
table has correct version.

 ReadAny: may return ver0 if record is absent.

 ReadCritical: In case of staleness, read the relevant records from the
base table master.

 ReadLastest: has high cost for RVT because it should access the master
base table each time. But cheaper than scanning entire table.

 LVT on RVT: fairly cheap for ReadCritical, expensive for ReadLatest as
base table has to be accessed.

32

Read consistency for views: Range Scans

 Problem of missing and stale records.

 Order of Insertion and Deletion of View records cause extra
problems.
 Insert before delete: record may appear twice
 Delete before insert: missing record.

 Filter out multiple records corresponding same base record.

 Retain tombstones during deletes.

 Look up base record using key stored in tombstone to include it in
scan results.

 Need to garbage collect old tombstones.

 Not implemented in PNUTS yet.

33

Insert Before Delete

Price ItemID Name Category

7000 2 T.V Electronics

2000 4 Chair Furniture

2000 1 Car Toys

50 3 Doll Toys

Price ItemID Name Category

400 7 T.V Electronics

200 6 Chair Furniture

200 5 Car Toys

Price ItemID Name Category

7000 2 T.V Electronics

2000 4 Chair Furniture

2000 1 Car Toys

50 3 Doll Toys

Price ItemID Name Category

400 7 T.V Electronics

200 6 Chair Furniture

200 5 Car Toys

60 3 Doll Toys

Partition 1

Partition 1

Partition 2

Partition 2

Update price=60 of ItemId=3

34

Price ItemID Name Category

7000 2 T.V Electronics

2000 4 Chair Furniture

2000 1 Car Toys

50 3 Tombstone

Delete Before Insert

Price ItemID Name Category

400 7 T.V Electronics

200 6 Chair Furniture

200 5 Car Toys

Price ItemID Name Category

7000 2 T.V Electronics

2000 4 Chair Furniture

2000 1 Car Toys

50 3 Doll Toys

Price ItemID Name Category

400 7 T.V Electronics

200 6 Chair Furniture

200 5 Car Toys

Partition 1

Partition 1

Partition 2

Partition 2

Update price=60 of ItemId=3

35

Evaluation
 View maintenance cost is measured upon

 Latency
 Throughput
 Average staleness of the views

 Setup: C++ and Linux/BSD

 Evaluation of costs:
 10GB data on each server
 MySQL buffer pool- 2GB
 90% reads served from cache
 Thin views (indexed attribute and record primary key)
 I/O bound

36

Experiment 1: Varying View Type

 Need to provide enough capacity to accommodate extra
view maintenance work

37

Experiment 2: Varying Read/Write Workload

Latency increases with increase in write percentage

38

Experiment 3: Varying no. of views

 Effect is larger for RVTs than LVTs

39

Query Evaluation
 Index plans

Look up on secondary attributes
As the resultset size increases, the cost of Index

scan also increases.

 Aggregates
 Index Scan
LVT on base
LVT on RVT

40

Query Evaluation : Aggregates

•LVT approaches constant across all group sizes
•LVT-on-base : most expensive
•LVT on RVT : cheapest
•Cost of index scan increases with group size

41

Query Evaluation : Aggregates

•Fixed group size : 500
•Index scan and LVT on RVT unaffected by no of partitions
•For small partitions, LVT on base beats index scan
•LVT on RVT – best strategy

42

Conclusion

 Maintaining views is essential to enhance the query
power in VLSD databases.

 Factors system complexity, throughput and view
staleness are to be balanced while selecting the views
to be supported.

 RVT: useful for index, equijoin and selection.
 LVT: useful for group-by aggregates.
 Existing PNUTS mechanism for replication and recovery

are reused to apply to achieve deferred view
maintainance.

43

Megastore:
 Blends the scalability of NoSQL datastore with the

convenience of traditional RDBMS.
 Provides both strong consistency guarantees and

high availability.
 Provides fully serializable ACID semantics within

fine-grained partitions of the data.
 Synchronous replication of each write across a wide

area network with reasonable latency.

44

45

46

Indexes
 Paxos used to deal with Unreachable Replicas.

 Secondary indexes can be declared on any list of entity properties.

 Local index:
Treated as separate for each entity group.

 Is used to find data within an entity group.

Stored in the entity group and is updated atomically and consistently with the
primary entity data.

 Global index:
Spans entity groups

Used to find entities without knowing in advance the entity groups that
contain them

They are not guaranteed to reflect all recent updates.

47

References

 Asynchronous View maintenance for VLSD databases
Parag Agrawal,Adam S, Brian C, Utkarsh S, Raghu Ramakrishnan,

SIGMOD 2009

 “PNUTS: Yahoo!’s Hosted Data Serving Platform”
Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam

Silberstein, Philip Bohannon,et al

 Megastore: Providing Scalable, Highly Available Storage for
Interactive Services
Jason Baker et. al. Google, Inc.

48

Thank You!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	PNUTS : Architectural Overview
	Slide 7
	Slide 8
	Slide 9
	Maintaining RVTs
	Slide 11
	Slide 12
	Combining RVTs and LVTs
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Experiment 1: Varying View Type
	Experiment 2: Varying Read/Write Workload
	Experiment 3: Varying no. of views
	Slide 39
	Query Evaluation : Aggregates
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	References
	Slide 48

