
Program Transformation for 
Asynchronous Query 
Submission

Mahendra Chavan*, Ravindra Guravannavar, 
Karthik Ramachandra, S Sudarshan

Indian Institute of Technology Bombay,
Indian Institute of Technology Hyderabad

 *Current Affiliation: Sybase Inc.



The Problem

And what if there is only one taxi?



The Problem

 Applications often invoke Database queries/Web Service 
requests
 repeatedly (with different parameters)
 synchronously (blocking on every request)

 At the Database end:
 Naive iterative execution of such queries is inefficient

 No sharing of work (eg. Disk IO)
 Network round-trip delays



Solution 1: Use a BUS!



 Repeated invocation of a query automatically replaced 
by a single invocation of its batched form.

 Enables use of efficient set-oriented query execution 
plans

 Sharing of work (eg. Disk IO) etc.
 Avoids network round-trip delays
Approach
 Transform imperative programs using equivalence rules
 Rewrite a stored proc to accept a batch of bindings 

instead of a single binding.

(Our) Earlier Work: Batching

Rewriting Procedures for Batched Bindings
Guravannavar et. al. VLDB 2008



Program Transformation for Batched 
Bindings (VLDB08 paper)

qt = con.prepare(
"SELECT count(partkey) 
" + "FROM part " +

   "WHERE p_category=?");

While(!
categoryList.isEmpty(){

Category =       
categoryList.next();
qt.bind(1, category);
count =        
qt.executeQuery();
sum += count;

}

qt = con.Prepare(
"SELECT count(partkey) " +
"FROM part " +
"WHERE p_category=?");

while(!
categoryList.isEmpty()) {

category =             
   categoryList.next();

qt.bind(1, category);
qt.addBatch();

}

qt.executeBatch();

while(qt.hasMoreResults()) {
count = 

qt.getNextResult();
sum += count;

}
** Conditions apply.  See Guravannavar and Sudarshan, VLDB 2008

**



/56

Batched Forms of parameterized 
relational Queries

where q(p1,p2,..pn) be a query with n parameters and qb as its
 batched form



Batch Safe Operations

Batched forms – no guaranteed order of parameter 
processing

Can be a problem for operations having 
   side-effects

Batch-Safe operations
All operations that have no side effects
Also a few operations with side effects

E.g.: INSERT on a table with no constraints
Operations inside unordered loops (e.g., cursor loops 

with no order-by)



/56

Rule1: Rewriting a Simple Set Iteration 
Loop

where q is any batch-safe operation with qb as its batched form

1A(ii). Form with loop invariant parameters

1A(i). Basic Form



/56

Rule 1: Rewriting a Simple Set Iteration 
Loop

1C. Conditional Invocation

1B. Unconditional invocation with return value



Data Dependency Graph
(S1)while (category != null) {
(s2)   item-count =q1(category);
(s3)   sum = sum + item-count;
(s4)  category =getParent(category);
      }

Flow Dependence
Anti Dependence

Output Dependence

Loop-Carried

Control Dependence

Data Dependencies

W->R
R->W
W->W

Pre-conditions for Rule-2 (Loop splitting)
No loop-carried flow dependencies cross the points 

at which the loop is split
No loop-carried dependencies through external data 

(e.g., DB)



Rule 2: Splitting a Loop

while (p) {
  ss1;
  sq;
  ss2;

}

Table(T) t; 
while(p) { 

ss1 modified to save  
local variables as a tuple in 
t
}

Collect the
parameters

for each r in t {
sq modified to use 

attributes of r;
}

Can apply Rule 1A-1C 
and batch.

for each r in t {
ss2 modified to use 

attributes of r;
}

Process the 
results

* Conditions Apply



Rule 3: Isolating batch safe operation



 Limitations (Opportunities?)
 Some data sources e.g. Web Services may not provide a set 

oriented interface
 Arbitrary inter-statement data dependencies may severely 

limit applicability of transformation rules
 Multicore processing power on the client can be exploited 

better by using multiple threads of execution
 Our Approach

 Exploit asynchronous query execution, through
 New API
 Automatic Program rewriting

 Improved set of transformation rules
 Increase applicability by reordering

Limitations of Earlier Work on Batching



Asynchronous Execution: More Taxis!!



Motivation

 Multiple queries could be issued concurrently
 Application can perform other processing while query is 

executing
 Allows the query execution engine to share work across 

multiple queries
 Reduces the impact of network round-trip latency

Fact 1: Performance of applications can be significantly  
improved by asynchronous submission of queries



Contributions in this paper

1.Automatically transform a program to exploit 
Asynchronous Query Submission

2.A novel Statement Reordering Algorithm that greatly 
increases the applicability of our transformations

3.An API that wraps any JDBC driver and performs these 
optimizations (DBridge)

4.System design challenges and a detailed experimental 
study on real world applications



Automatic Program 
Transformation for 
asynchronous submission

Increasing the applicability of 
transformations

System design and experimental 
evaluation



Program Transformation Example

qt = con.prepare(
"SELECT count(partkey) 

    " + "FROM part " +
    "WHERE      

 p_category=?");

While(!        
categoryList.isEmpty()) {

category =      
categoryList.next();
qt.bind(1, category);
count =              

   executeQuery(qt);
sum += count;

}

qt = con.Prepare(
"SELECT count(partkey) " +
"FROM part " +
"WHERE p_category=?");

int handle[SIZE], n = 0;
while(!
categoryList.isEmpty()) {

category =       
categoryList.next();
qt.bind(1, category);
handle[n++] =            

   submitQuery(qt);
}
       
for(int i = 0; i < n; i++) {

count = 
fetchResult(handle[i]);

sum += count;
}

 Conceptual API for asynchronous execution
 executeQuery() – blocking call
 submitQuery() – initiates query and returns immediately
 fetchResult() – blocking wait



Asynchronous query submission model

qt = con.prepare(
"SELECT count(partkey) " +
"FROM part " +
"WHERE p_category=?");

int handle[SIZE], n = 0;
while(!categoryList.isEmpty()) {

category = categoryList.next();
qt.bind(1, category);
handle[n++] = submitQuery(qt);

}
       
for(int i = 0; i < n; i++) {

count = fetchResult(handle[i]);
sum += count;

}

Submit Q

Result array

Thread

DB

 submitQuery() – returns immediately
 fetchResult() – blocking call



/56

Rule A : Basic Equivalence Rule for Loop 
Fission



/56

Transforming Control-Dependencies to 
Flow Dependencies



/56

Dealing with Nested Loops



Program Transformation

 Possible to rewrite manually, but tedious.
 Challenge: 

 Complex programs with arbitrary control flow
 Arbitrary inter-statement data dependencies
 Loop splitting requires variable values to be stored and restored

 Contribution 1: Automatically rewrite to enable 
asynchrony.

int handle[SIZE], n = 0;
while(!categoryList.isEmpty()) 
{

category =             
    categoryList.next();

qt.bind(1, category);
handle[n++] =           

    submitQuery(qt);
}      
for(int i = 0; i < n; i++) {

count =       
    fetchResult(handle[i]);

sum += count;
}

while(!
categoryList.isEmpty()) {

category =        
categoryList.next();
qt.bind(1, category);
count =             

    executeQuery(qt);
sum += count;

}



Increasing the applicability of 
transformations

System design and experimental 
evaluation

Automatic Program 
Transformation for asynchronous 
submission



Applicability of transformations

 Pre-conditions due to inter statement dependencies restrict 
applicability

 Contribution 2: A Statement Reordering algorithm 
that 
 Removes dependencies that prevent transformation
 Enables loop fission at the boundaries of the query 

execution statement

while (category != null) {
qt.bind(1, category);
int count = 

executeQuery(qt);   
sum = sum + count;
category = 

getParent(category);
}

while (category != null) {
 int temp = category;
category = 

getParent(category);
qt.bind(1, temp);
int count = 

executeQuery(qt);   
sum = sum + count;

}
Loop fission not possible due to 

dependency (            ) 
Loop fission enabled by safe 

reordering



/56

Basic Rules that Facilitates Reordering of Statements



The Statement Reordering Algorithm

 Goal: Reorder statements such that no LCFD edges 
cross the program point immediately succeeding sq.

 Input:
 The blocking query execution statement Sq
 The basic block b representing the loop

 Output: Where possible, a reordering of b such that:
 No LCFD edges cross the split boundary Sq
 Program equivalence is preserved



If a query execution statement doesn’t lie on a true-
dependence cycle in the DDG, then algorithm reorder 
always reorders the statements such that the loop can be 
split.

 Proof in [Guravannavar 09]
 Theorem and Algorithm applicable for both Batching 

and Asynchronous submission transformations

Theorem:

Definition: A True-dependence cycle in a DDG is a 
directed cycle made up of only FD and LCFD edges.

The Statement Reordering Algorithm



The Statement Reordering Algorithm



 Step 1: Identify which statement to move(stm) past which 
one (target)

 Step 2: Compute statements dependent on the stm (stmdeps)
 Step 3: Move each of stmdeps past target
 Step 4: Move stm past target

The Statement Reordering Algorithm*

*heavily simplified; refer to paper for details

For every loop carried dependency that crosses the query execution 
statement



Before

Flow Dependence (W-R)
Anti Dependence (R-W)
Output Dependence (W-W)

Loop-Carried
Control Dependence

Data Dependence Graph (DDG)

S1

S2

S3

While (category != null) loop

      (s1) icount = q(category)

      (s2) sum = sum + icount

      (s3) category = getParent(category)

End loop



Before

After

Intuition: Move 
s1 pass s3

While (category != null) loop

      (s1) icount = q(category)

      (s2) sum = sum + icount

      (s3) category = getParent(category)

End loop

While (category != null) loop

      (s1) icount = q(category)

      (s2) sum = sum + icount

      (s3) category = getParent(category)

End loop

While (category != null) loop

      (ts1) category1 = category

      (s3) category = getParent(category)

     (s1) icount = q(category1)

     (s2) sum = sum + icount

End loop 



System design and 
Experimental evaluation

Automatic Program 
Transformation for asynchronous 
submission

Increasing the applicability of 
transformations



System Design: DBridge
 For Java applications using JDBC
 SOOT framework for analysis and transformation 

 Note: Rule application will stop when all query execution statement which don't lie on true 
dependence cycles are converted to asyn calls.



DBridge API
 Java API that extends the JDBC interface, and can 

wrap any JDBC driver
 Can be used with:

 Manual rewriting (LoopContext structure helps deal with loop 
local variables)

 Automat ic rewriting
 Hides details of thread scheduling and management
 Same API for both batching and asynchronous 

submission

DBridge: A Program Rewrite tool for Set-oriented 
Query Execution
Demonstrations Track 1, ICDE 2011



Extensions And Optimizations
 1. Overlapping the Generation and Consumption of 

Asynchronous Requests
l  On applying the basic loop fission , a loop will 

result in two loops.
l First loop generates asynchronous requests – 

Producer loop
l Second loop that processes the result – 

Consumer loop

l Problem: First producer loop will complete then 
only consumer loop will start processing , high 
response time.

l Solution : Overlapping the consumption of query 
result with the submission of requests.



Extensions And Optimizations
 2. Asynchronous Submission of Batched queries

l Asynchronous submission of multiple, smaller
l batches of queries.
l With asynchronous batching, the thread can 

observe the whole queue, and pick up one, or 
more, or all requests from the queue

l Advantages: 
l Reduces network round trip delays
l Overlaps client computation with that of server
l Reduces random IO at database
l Memory requirement do not grow as much as 

with pure batching due to small batch size. 



Adaptive tuning of batch size
1. One or all Strategy:
 If n = 1, then pick up the request from the queue, and 
execute it as an individual request. If n > 1, pick up all the n 
requests in the queue and batch them.

2. Lower Threshold Strategy: 
l Batching results in three network round trip and very small 

batches perform poorly as compared to asynchronous 
submission.

l If n > bt, then pick up all the n requests in the queue and 
batch them.

l If 1 ≤ n ≤ bt, then pick up one request from the queue, and 
execute it as an individual request. 

bt>=3



Adaptive tuning of batch size
3. Growing upper-threshold based Strategy: 

l Problem in Lower threshold approach: Situations where the 
arrival rate of requests is high, it may lead to a situation 
where a single large batch is submitted while the remaining 
threads are idle.

Growing upper-threshold strategy works as follows.

l  If the number of requests in the queue is less than the 
current upper threshold, all requests in the queue are added 
to a single batch. 

l If the number of requests in the queue is more than the 
current upper threshold, the batch size that is generated is 
equal to the current threshold; however, for future batches, 
the upper threshold is increased. 



Experiments

 Conducted on 5 applications
 Two public benchmark applications (Java/JDBC) 
 Two real world applications (Java/JDBC)
 Freebase web service client (Java/JSON)

 Environments
 A widely used commercial database system – SYS1

 64 bit dual-core machine with 4 GB of RAM
 PostgreSQL

 Dual Xeon 3 GHz processors and 4 GB of RAM



Experiment scenarios

 Impact of iteration count 
 Impact of number of threads
 Impact of Warm cache vs. Cold cache

 Since Disk IO on the database is an important parameter



Auction Application: Impact of Iteration 
count, with 10 threads

 For small no. (4-40) iterations, transformed program slower
 At 400-40000 iterations, factor of 4-8 improvement
 Similar for warm and cold cache

Time
(In seconds
Log Scale)



Auction Application: Impact of thread 
count, with 40K iterations

 Time taken reduces drastically as thread count increases
 No improvement after some point (30 in this example)



WebService: Impact of thread count 

 HTTP requests with JSON content
 Impact similar to earlier SQL example
 Note: Our system does not automatically rewrite web 

service programs, this example manually rewritten using 
our transformation rules



Comparison of approaches 

 At Small no of iterations, all approaches behaves similarly
 At 40000 iterations asynch submission with 12 threads 

gives 50 % improvement, batching gives 75 % impovement 
 Asynch Batching with 48 threads and lower batching 

threshold of 300 leads to about 70% improvement.



Behaviour of one run of asynchonous batching 

l Initially many requests are sent individually.
l As the execution progresses, there are more and more batch submission and 

batch size also start growing.



Time to k-th response

Observe “Asynch Batch Grow” (black) 
stays close to the original program (red) at smaller 

iterations
stays close to batching (green) at larger number of 

iterations.
The Async Batch Grow approach behaves the best

          in balancing response time vs total execution time



Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

