
Generating Test Data for Killing SQL Mutants
: A Constraint based Approach

Shetal Shah, S. Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta, Devang Vira

Slides by Sunny Raj Rathod
Updated and Presented by Saurabh Sarda

Outline

● Motivation
● Mutation Testing
● Related Work
● Contributions
● Implementation[XDa-TA]
● Experiments
● Extensions
● Future Work

Testing SQL Queries : A Challenge

● Complex SQL queries hard to get right
● Question: How to check if an SQL query is correct?

○ Formal verification is not applicable since we do not have a separate
specification and an implementation

○ State of the art solution: manually generate test databases and check if
the query gives the intended result
■ Often misses errors

Generating Test Data: Prior Work

● Automated Test Data generation
○ Based on database constraints, and SQL query

■ Agenda [Chays et al., STVR04]
○ Reverse Query Processing [Binning et al., ICDE07]

■ takes desired query output and generates relation instances
■ Handle a subset of Select/Project/Join/GroupBy queries

○ Extensions of RQP for performance testing
■ guarantees cardinality requirements on relations and intermediate query results

● None of the above guarantee anything about detecting errors in SQL
queries

● Question: How do you model SQL errors? Answer: Query Mutation

Mutation Testing
● Mutant: Variation of the given query
● Mutations model common programming errors, like

○ Join used instead of outerjoin (or vice versa)
○ Join/selection condition errors

■ < vs. <=, missing or extra condition
○ Wrong aggregate (min vs. max)

● Mutant may be the intended query

Mutation Testing of SQL Queries

● Traditional use of mutation testing has been to check coverage of
dataset
○ Generate mutants of the original program by modifying the program in a controlled

manner
○ A dataset kills a mutant if query and the mutant give different results on the

dataset
○ A dataset is considered complete if it can kill all non-equivalent mutants of the

given query
● Our goal: generating dataset for testing query

○ Test dataset and query result on the dataset are shown to human, who verifies
that the query result is what is expected given this dataset

○ Note that we do not need to actually generate and execute mutants

Related Work

● Tuya and Suarez-Cabal [IST07], Chan et al. [QSIC05] defined a class
of SQL query mutations
○ Shortcoming: do not address test data generation

● More recently (and independent of our work) de la Riva et al [AST10]
address data generation using constraints, with the Alloy solver
○ Do not consider alternative join orders
○ No completeness results
○ Limitations on constraints

Contributions

● Principled approach to test data generation for given query
● Define class of mutations:

○ Join/outerjoin
○ Selection condition
○ Aggregate function

● Algorithm for test data generation that kills all non-equivalent mutants in
above class for a (fairly large) subset of SQL.

○ Under some simplifying assumptions
○ With the guarantee that generated datasets are small and realistic, to aid in human

verification of results

NP Hardness of Data Generation Problem
● Data Generation Problem : Is there an assignment of tuples to each relation in

query , Q such that the result of Q and its mutation Q’ differ?
● Query Containment Problem: Given two SQL queries Q1 and Q2, is Q2

contained in Q1 ? (Already known to be NP-complete)
● Reduction: Consider Q2 Q1 and Q2 Q1.

○ If Data Generation Problem assigns tuples to the relation in Q1 and Q2 such that the results of
above two trees differ than Q2 is not contained in Q1.

○ If there is no such assignment, Q2 is contained in Q1.

Killing Join Mutants : Example 1
Example 1: Without foreign key constraints

Schema: r(A), s(B)

● To kill this mutant: ensure that for some r tuple there is no matching s tuple
● Generated test case: r(A)={(1)}; s(B)={}
● Basic idea, version 1 [ICDE 2010]

○ run query on given database
○ from result extract matching tuples for r and s
○ delete s tuple to ensure no matching tuple for r

● Limitation: foreign keys, repeated relations

Killing Join Mutants : Example 2
Example 2: Extra join above mutated node

Schema: r(A,B), s(C,D), t(E)

● To kill this mutant we must ensure that for an r tuple there is no matching s
tuple, but there is a matching t tuple

● Generated test case: r(A,B)={(1,2)}; s(C,D)={}; t(E)={(2)}

Killing Join Mutants : Example 3
Example 3: Equivalent mutation due to join

Schema: r(A,B), s(C,D), t(E)

● Note: right outer join this time
● Any result with a r.B being null will be removed by join with t
● Similarly equivalence can result due to selections

Killing Join Mutants : Example 4
● teaches instructor is equivalent to teaches instructor if there is a

foreign key from teaches.ID to instructor.ID
● The two expressions are no longer equivalent if instructor is replaced with

● Key idea: have a teaches tuple with an instructor not from CS
● Selections and joins can be used to kill mutations

Killing Join Mutants: Equivalent Trees

● Space of join-type mutants: includes mutations of join operator of a single
node for all trees equivalent to given query tree

● Datasets should kill mutants across all such trees

Killing Join Mutants: Equivalent Trees
Whether a query is written in the form A.x = B.x AND B.x = C.x, or A.x = B.x
AND A.x = C.x should not affect set of mutants generated

Solution: Equivalence classes of attributes

Assumptions
● A1, A2: Only primary and foreign key constraints; foreign key columns not

nullable
● A3: Single block SQL queries; no nested subqueries
● A4: Expr/functions: Only arithmetic expressions
● A5: Join/selection predicates : conjunctions of {expr relop expr}
● A6: Queries do not explicitly check for null values using IS NULL
● A7: In the presence of full outer join, at least one attribute from each of its

inputs present in the select clause (and A8 for natural join: see paper)

Generating Constraints to kill Join Mutations

There exists a tuple in A for which there does not exist any matching tuple in B.

There exists a tuple in B for which there does not exist any matching tuple in A.

Problems
● Translate high level requirements into constraints on individual tuples
● Ensure the difference exposed at an internal node is propagated to root
● Exponential number of join trees
● Repeated relation occurences

Data Generation in 2 Steps

● Step 1: Generation of constraints
○ Constraints due to the schema
○ Constraints due to the query
○ Constraints to kill a specific mutant

● Step 2: Generation of data from constraints Using solver, currently CVC3

Data Generation Algorithm : Overview

Preprocess Query Tree
● Build Equivalence Classes from join conditions

○ A.x = B.y and B.y = C.z
○ Equivalence class: A.x, B.y and C.z

● Foreign Key Closure –
○ A.x -> B.y and B.y -> C.z then A.x -> C.z

● Retain all join/selection predicates other than equijoin predicates

Helper Functions
● CvcMap(rel.attr)

○ Takes a rel and attr and returns r[i].pos where
■ r is base relation of rel
■ pos is the position of attribute attr
■ i is an index in the tuple array *

● GenerateEqConds(P)
○ Generates equality constraints amongst all elements of an equivalence class P

Killing Equi Join Condition Mutations

Killing Equi Join Condition Mutations (contd.)

Killing Other Predicates

● Create separate dataset for each attribute in predicate
● e.g. For Join condition B.x = C.x + 10

○ Dataset 1 (nullifying B:x):
ASSERT NOT EXISTS (i : B_INT) : (B[i].x = C[1].x + 10);

○ Dataset 2 (nullifying C:x):
ASSERT NOT EXISTS (i : C_INT) : (B[1].x = C[i].x + 10);

Killing Comparison Operator Mutations
● Example of comparison operation mutations:

○ A < 5 vs. A <= 5 vs. A > 5 vs A >= 5 vs. A=5, vs A <> 5

● Idea: generate separate dataset for three cases (leaving rest of query
unchanged):

○ A < 5
○ A = 5
○ A > 5

● This set will kill all above mutations

Killing Unconstrained Aggregation Mutations
● Aggregation operations

○ count(A) vs. count(distinct A)
○ sum(A) vs sum(distinct A)
○ avg(A) vs avg(distinct A)
○ min(A) vs max(A)
○ and mutations amongst all above operations

● Idea: given relation r(G, O, A) and query
Tuples (g1, o1, a1), (g1, o2, a1), (g1, o3, a2) , with a1 <> 0 will kill above
pairs of mutations

● Additional constraints to ensure killing mutations across pairs

Aggregation Operation Mutation

● Issues:
○ Database/query constraints forcing A to be unique for a given G
○ Database/query constraints forcing A to be a key
○ Database/query constraints forcing G to be a key

● Carefully crafted set of constraints, which are relaxed to handle such
cases

Completeness Results
Theorem: For the class of queries, with the space of join-type and selection
mutations defined in the paper, the suite of datasets generated by our algorithm is
complete. That is, the datasets kill all non-equivalent mutations of a given query

● Completeness results for restricted classes of aggregation mutations
○ aggregation as top operation of tree, under some restrictions on joins in input

Experimental Results
● x86 machines, 1.86 GHz processor, 2 GB main memory
● Schema: University database from Database System COncepts (6th ed.)
● Queries with joins with varying number of foreign keys imposed
● Queries with comparison, aggregation and inner joins

Inner Join Queries

Selection/Aggregation Queries

Extensions
● Handling Nulls
● String Constraints
● Constrained Aggregation

Source :
Extending XData to kill SQL query mutants in the wild

Handling Nulls
● For text attributes, enumerate a few more values in the enumerated type and

designate them NULLs.
○ Example : for an attribute course_id, we enumerate values NULL_course_id_1, NULL_course_id_2,

etc.

● For numeric values, we model NULLs as any integer in a range of negative values
that we define to be not part of the allowable domain of that numeric value.

● Add constraints forcing those attribute values to take on one of the above
mentioned special values representing NULL.

● Add constraints to force all other values to be non null
● Enables handling of nullable foreign keys, and explicit IS NULL checks

String Constraints
● String Constraints

○ S1 likeop pattern
○ S1 relop constant
○ strlen(S) relop constant
○ S1 relop S2

where
● S1 and S2 are string variables,
● likeop is one of LIKE, ILIKE (case insensitive like),NOT LIKE and NOT ILIKE
● relop operators are =, <, ≤, >, ≥, <>, and case-insensitive equality denoted by =.

String Constraints
● String solver
● String constraint mutation: {=, <>, <, >, ≤, ≥}

○ S1 = S2
○ S1 > S2
○ S1 < S2

● LIKE predicate mutation: {LIKE, ILIKE,NOT LIKE, NOT ILIKE }
○ Dataset 1 satisfying the condition S1 LIKE pattern.
○ Dataset 2 satisfying condition S1 ILIKE pattern, but not S1 LIKE pattern
○ Dataset 3 failing both the LIKE and ILIKE conditions

Constrained Aggregation Operation
● Aggregation Constraints: Example : SUM (r.a) > 20
● CVC3 requires us to specify how many tuples r has.
● Hence, before generating CVC3 constraints we must

(a) estimate the number of tuples n, required to satisfy an aggregation
constraint
(b) translate this number n to appropriate number of tuples for each base
relation so that the input of the aggregation contains exactly n tuples.

XDa-TA System
● For each query in an assignment, a correct SQL query is given to the tool,

which generates datasets for killing mutants of that query.
● Modes:

○ admin mode
○ student mode.

● Assignment can be marked as :
○ learning assignment
○ graded assignment.

Source:
XDa-TA : Automating Grading of SQL Query Assignments

Sample Query Set

Results

Future Work
● Integration with course management systems such as Moodle or Blackboard

using the Learning Tools Interoperability (LTI) standard (complete)
● Partial Marking Scheme implementation (ongoing)
● Future work:

○ Handling SQL features not supported currently
○ Multiple queries
○ Form parameters

Thank You!

42

Questions?

