Generating Test Data for Killing SQL Mutants
. A Constraint based Approach

Shetal Shah, S. Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta, Devang Vira

Slides by Sunny Raj Rathod
Updated and Presented by Saurabh Sarda

Outline

Motivation

Mutation Testing
Related Work
Contributions
Implementation[XDa-TA]
Experiments

Extensions

Future Work

Testing SQL Queries : A Challenge

e Complex SQL queries hard to get right

e Question: How to check if an SQL query is correct?
o Formal verification is not applicable since we do not have a separate
specification and an implementation
o State of the art solution: manually generate test databases and check if
the query gives the intended result
m Often misses errors

Generating Test Data: Prior Work

e Automated Test Data generation

o Based on database constraints, and SQL query
m Agenda [Chays et al., STVR04]

o Reverse Query Processing [Binning et al., ICDEQ7]
m takes desired query output and generates relation instances
m Handle a subset of Select/Project/Join/GroupBy queries

o Extensions of RQP for performance testing
m guarantees cardinality requirements on relations and intermediate query results

e None of the above guarantee anything about detecting errors in SQL
queries
e Question: How do you model SQL errors? Answer: Query Mutation

Mutation Testing

e Mutant: Variation of the given query

e Mutations model common programming errors, like
o Join used instead of outerjoin (or vice versa)
o Join/selection condition errors
m < Vs. <=, missing or extra condition
o Wrong aggregate (min vs. max)

e Mutant may be the intended query

>

(rB=t.E)

<

(rA=s.C N

Mutation Testing of SQL Queries

e Traditional use of mutation testing has been to check coverage of

dataset
o Generate mutants of the original program by modifying the program in a controlled
manner
o A dataset kills a mutant if query and the mutant give different results on the
dataset
o A dataset is considered complete if it can kill all non-equivalent mutants of the
given query

e Our goal: generating dataset for testing query
o Test dataset and query result on the dataset are shown to human, who verifies

that the query result is what is expected given this dataset
o Note that we do not need to actually generate and execute mutants

Related Work

e Tuya and Suarez-Cabal [ISTO7], Chan et al. [QSIC05] defined a class
of SQL query mutations
o Shortcoming: do not address test data generation
e More recently (and independent of our work) de la Riva et al [AST10]

address data generation using constraints, with the Alloy solver

o Do not consider alternative join orders
o No completeness results
o Limitations on constraints

Contributions

e Principled approach to test data generation for given query

e Define class of mutations:

o Join/outerjoin
o Selection condition
o Aggregate function

e Algorithm for test data generation that kills all non-equivalent mutants in
above class for a (fairly large) subset of SQL.
o Under some simplifying assumptions

o With the guarantee that generated datasets are small and realistic, to aid in human
verification of results

NP Hardness of Data Generation Problem

e Data Generation Problem : Is there an assignment of tuples to each relation in
query , Q such that the result of Q and its mutation Q’ differ?

e Query Containment Problem: Given two SQL queries Q: and Qz, is Q2
contained in Q:? (Already known to be NP-complete)

e Reduction: Consider Q. P4 Q: and Q. XIQ:.

o If Data Generation Problem assigns tuples to the relation in Q1 and Q2 such that the results of

above two trees differ than Qzis not contained in Q1.
o Ifthere is no such assignment, Qzis contained in Q1.

Killing Join Mutants : Example 1

Example 1: Without foreign key constraints

N(F-A=S-B) M(r.A=s.B)

Schema: r(A), s(B) /\ /\

r S r S
e To kill this mutant: ensure that for some r tuple there is no matching s tuple
e Generated test case: r(A)={(1)}; s(B)={}
e Basic idea, version 1 [ICDE 2010]

o run query on given database
o from result extract matching tuples forr and s
o delete s tuple to ensure no matching tuple for r

e Limitation: foreign keys, repeated relations

Killing Join Mutants : Example 2

Example 2: Extra join above mutated node

Schema: r(A,B), s(C,D), t(E) > ;
>
(rA=s.C
I S

e To kill this mutant we must ensure that for an r tuple there is no matching s
tuple, but there is a matching t tuple
e Generated test case: r(A,B)={(1,2)}; s(C,D)={}; t(E)={(2)}

Killing Join Mutants : Example 3

Example 3: Equivalent mutation due to join

Schema: r(A,B), s(C,D), t(E) > (rB=t.E) D>Xl(rB=tE)
X X
(rA=s.C e B (rA=s.C
t t
r S r S

e Note: right outer join this time
e Any result with a r.B being null will be removed by join with ¢
e Similarly equivalence can result due to selections

Killing Join Mutants : Example 4

e teachesX instructor is equivalent to teaches P instructor if there is a
foreign key from teaches.ID to instructor.ID
e The two expressions are no longer equivalent if instructor is replaced with

Oinstructor.dept=CS (@?’IStT’ELCtOT‘)

e Key idea: have a teaches tuple with an instructor not from CS
e Selections and joins can be used to kill mutations

Killing Join Mutants: Equivalent Trees

Nez Nez Nel+92
PROGRAM DEPARTMENT STUDENT
STUDENT DEPARTMENT STUDENT PROGRAM PROGRAM DEPARTMENT

e Space of join-type mutants: includes mutations of join operator of a single
node for all trees equivalent to given query tree
e Datasets should kill mutants across all such trees

Killing Join Mutants: Equivalent Trees

Whether a query is written in the form A.x = B.x AND B.x = C.x, or A.x=B.x
AND A.x = C.x should not affect set of mutants generated

Solution: Equivalence classes of attributes

:DQA.X=B.X

D<Ue x-c.x D<A x-cx D} x-8.x
A NN

Ax C.x

DAases © Dt x D xecx
VA VAN VA AN

B
a. Given Query b. Equivalent Query ¢. Join Reordering on (b) d. Intended Query

Assumptions

A1, A2: Only primary and foreign key constraints; foreign key columns not
nullable

A3: Single block SQL queries; no nested subqueries

A4: Expr/functions: Only arithmetic expressions

AS5: Join/selection predicates : conjunctions of {expr relop expr}

A6: Queries do not explicitly check for null values using IS NULL

A7: In the presence of full outer join, at least one attribute from each of its
inputs present in the select clause (and A8 for natural join: see paper)

Generating Constraints to kill Join Mutations

S Pores
£ T N

B

There exists a tuple in A for which there does not exist any matching tuple in B.

D - DL et.x
N N

B

There exists a tuple in B for which there does not exist any matching tuple in A.

Problems

Translate high level requirements into constraints on individual tuples
Ensure the difference exposed at an internal node is propagated to root
Exponential number of join trees

Repeated relation occurences

Data Generation in 2 Steps

e Step 1: Generation of constraints
o Constraints due to the schema
o Constraints due to the query
o Constraints to kill a specific mutant

e Step 2: Generation of data from constraints Using solver, currently CVC3

Data Generation Algorithm : Overview

Algorithm 1 : Main Algorithm
I: Hashtable currentIndex; /* Maps distinct relation names
to offsets in the CVC3 array created for the corresponding
database relation */
2: procedure generateDataSet(query q)
3 preprocess query tree
4: initializeIndices() /* Initializes currentIndex
and other related structures */
5 generateDataSetForOriginalQuery()
6: killEquivalenceClasses()
7
8

killOtherPredicates()
: killComparisonOperators()
0: killAggregates()
10: end procedure

Preprocess Query Tree

e Build Equivalence Classes from join conditions
o Ax=B.yandBy=C.z
o Equivalence class: A.x, B.yand C.z

e Foreign Key Closure —
o Ax->BwyandB.y->C.zthenAx->C.z

e Retain all join/selection predicates other than equijoin predicates

Helper Functions

e CvcMap(rel.attr)
o Takes a rel and attr and returns r[i].pos where
m ris base relation of re/
m pos is the position of attribute afttr
m J/is anindexin the tuple array *

e GenerateEqConds(P)

o Generates equality constraints amongst all elements of an equivalence class P

Killing Equi Join Condition Mutations

Algorithm 2 : killEquivalenceClasses()

1: for each equivalence class ec do

2: Let all Relations := Set of all (rel, attr) pairs in ec

3: for each element e in allRelations do

4: conds = empty set

5: Let e := R.a

6 S := (set of elements in ec which are foreign keys
referencing RR.a directly or indirectly) UNION R.a

7: Pi=e- 8

8: if P.isEmpty() then

9: continue

10: end if

11: conds.add(generateEqConds(P))
12: conds.add(

“NOT EXISTS i: R[i].a =7 + cveMap(P[0]))

Killing Equi Join Condition Mutations (contd.)

13:; for all other equivalence classes oec do
14: conds.add(generateEqConds(oe))
15: end for

16: for each other predicate p do

17: conds.add(cvcMap(p))

18: end for

19: conds.add(genDBConstraints())

20: callSolver(conds)

21; if solution exists then

22 create a dataset from solver output
23: end if

24: end for
25: end for

Killing Other Predicates

e C(reate separate dataset for each attribute in predicate

e e.g. For Join condition B.x=C.x + 10
o Dataset 1 (nullifying B:x):
ASSERT NOT EXISTS (i : B_INT) : (B[i].x = C[1].x + 10);

o Dataset 2 (nullifying C:x):
ASSERT NOT EXISTS (i : C_INT) : (B[1].x = C[i].x + 10);

Killing Comparison Operator Mutations

e Example of comparison operation mutations:
o A<5vs.A<=5vs.A>5vsA>=5vs. A=5,vsA<>5

e Idea: generate separate dataset for three cases (leaving rest of query

unchanged):
o A<5
o A=5
0 A>5
e This set will kill all above mutations

Killing Unconstrained Aggregation Mutations

e Aggregation operations
o count(A) vs. count(distinct A)
o sum(A) vs sum(distinct A)
o avg(A) vs avg(distinct A)
o min(A) vs max(A)
o and mutations amongst all above operations

e Idea: given relation r(G, O, A) and query select aggop(A) from r group by G
Tuples (g1, o1, a1), (g1, 02, a1), (g1, 03, a2) , with a1 <> 0 will kill above
pairs of mutations

e Additional constraints to ensure killing mutations across pairs

Aggregation Operation Mutation

® |ssues:

o Database/query constraints forcing A to be unique for a given G
o Database/query constraints forcing A to be a key
o Database/query constraints forcing G to be a key

e Carefully crafted set of constraints, which are relaxed to handle such
cases

Completeness Results

Theorem: For the class of queries, with the space of join-type and selection
mutations defined in the paper, the suite of datasets generated by our algorithm is
complete. That is, the datasets kill all non-equivalent mutations of a given query

e Completeness results for restricted classes of aggregation mutations
o aggregation as top operation of tree, under some restrictions on joins in input

Experimental Results

e x86 machines, 1.86 GHz processor, 2 GB main memory

e Schema: University database from Database System COncepts (6" ed.)
e Queries with joins with varying number of foreign keys imposed

e Queries with comparison, aggregation and inner joins

Inner Join Queries

RESULTS FOR INNER JOIN QUERIES

Qu- #Joins | #FK #Datasets | #Mut- Total Time(s)
ery (#Rela- Gene- ants without ‘ with
tions) rated Killed Unfolding
1 1 (2) 0 2 2 0.430 0.040
| 1 (2) 1 1 l 0.370 0.030
2 2(3) 0 + 6 1.680 0.140
2 243) 1 3 4 1.000 0.100
2 2 (3) 2 2 3 0.990 0.060
3 34) 0 6 18 3.990 0.229
3 3(4) 1 5 13 1.729 0.190
3 3(4) 4 3 6 1.230 0.179
4 4 (5) 0 7 122 7.190 0.279
4 4 (5) 4 4 62 2.310 0.190
5 5 (6) 0 9 450 26.800 | 0.570
5 5 (6) - 6 245 2.960 0.380
6 6 (7) 0 11 1499 68.450 | 0.790
6 6 (7) 6 6 507 3.809 0.520
TABLE 1

Selection/Aggregation Queries

RESULTS FOR QUERIES WITH SELECTION/AGGREGATION

Qu- | #Joins | #Sel- | #Agg- | #Data | #Mut- Total Time(s)
ery ect- rega- sets ants without | with
ions tions Gen. killed Unfolding
7 0 I 0 3 5 0.12 0.12
8 0 0 1 I 7 0.08 0.08
9 1 0 l 2 9 41.40 0.65
10 2 1 0 6 9 5.69 1.23
11 2 2 0 9 18 6.54 1.67
12 2 1 1 5 14 53.95 1.05
TABLE II

Extensions

e Handling Nulls
e String Constraints
e Constrained Aggregation

Source :
Extending XData to kill SQL query mutants in the wild

Handling Nulls

e For text attributes, enumerate a few more values in the enumerated type and
designate them NULLSs.

o Example : for an attribute course_id, we enumerate values NULL _course_id 1, NULL course _id 2,
etc.

e For numeric values, we model NULLs as any integer in a range of negative values
that we define to be not part of the allowable domain of that numeric value.

e Add constraints forcing those attribute values to take on one of the above
mentioned special values representing NULL.

e Add constraints to force all other values to be non null

e Enables handling of nullable foreign keys, and explicit IS NULL checks

String Constraints

e String Constraints
o S1 likeop pattern
S1 relop constant

@)
o strlen(S) relop constant
o S1relop S2

where
e S1and S2 are string variables,
e Jikeop is one of LIKE, ILIKE (case insensitive like),NOT LIKE and NOT ILIKE
e relop operators are =, <, <, >, 2, <>, and case-insensitive equality denoted by =.

String Constraints

e String solver
e String constraint mutation: {=, <>, <, >, <, 2}
o S1=82
o S1>82
o S1<82
e LIKE predicate mutation: {LIKE, ILIKE,NOT LIKE, NOT ILIKE }
o Dataset 1 satisfying the condition S1 LIKE pattern.

o Dataset 2 satisfying condition S1 ILIKE pattern, but not S1 LIKE pattern
o Dataset 3 failing both the LIKE and ILIKE conditions

Constrained Aggregation Operation

e Aggregation Constraints: Example : SUM (r.a) > 20

e CVC3requires us to specify how many tuples r has.

e Hence, before generating CVC3 constraints we must
(a) estimate the number of tuples n, required to satisfy an aggregation
constraint
(b) translate this number n to appropriate number of tuples for each base
relation so that the input of the aggregation contains exactly n tuples.

XDa-TA System

e For each query in an assignment, a correct SQL query is given to the tool,
which generates datasets for killing mutants of that query.

e Modes:

o admin mode
o student mode.

e Assignment can be marked as :
o learning assignment
o graded assignment.

Source:
XDa-TA : Automating Grading of SQL Query Assignments

Sample Query Set

QIid

Query

Q5

SELECT DISTINCT course.dept.name FROM
course NATURAL JOIN section WHERE
section.semester="Spring’ AND section.year="2010’

QT

SELECT course_id, COUNT(DISTINCT id) FROM
course NATURAL LEFT OUTER JOIN takes
GROUP BY course_id

Q8

11

SELECT DISTINCT course-id, title FROM course
NATURAL JOIN section WHERE semester =
'Spring’ and year = 2010 and course_id not in (SE-
LECT course_id FROM prereq)

Q10

SELECT DISTINCT dept_name FROM course
WHERE credits = (SELECT max(credits) FROM
course)

Q12

SELECT student.id, student.name FROM student
WHERE lower(student.name) like *%sr%’

Q14

SELECT DISTINCT * FROM takes T WHERE
(NOT EXISTS (SELECT id, course_id FROM takes
S WHERE grade # 'F° AND T.id = S.id AND
T.course_id = S.course_id) and T.grade IS NOT
NULL) or (grade # "F> AND T.grade IS NOT NULL)

Results

QId Que- | XData | Univ. sm. | Univ. lg. TA
ries VI X1V 3 Vv b o T X%
Q1 29 23 | 2 | 53 2 53 2 o3 | 2
Q2 57 56 | 1 | 56 1 56 1 56 | 1
Q3 il | 58 | 13 | 59 12 59 12 0] 1
Q4 78 52 | 26 | 52 26 75 3 X
Q5 T2 49 | 23 | 61 11 56 16 59 | 13
Q6 61 55 | 6 | 55 6 55 6 59 | 2
Q7 77 52 | 25 | 54 23 75 3 53 | 24
Q8 79 46 | 33 | 67 12 65 14 63 | 16
Q9 30 37 | 43 | 56 24 10 70 bt | 23
Q10 74 31 1]73 1 73 1] 0
Q11 69 53 | 16 | 53 16 53 16 53 | 16
Q12 70 62 | 8 | 67 3 63 7 63 | 7
Q13 72 64 1 8 | 63 9 63 9 65 | 7
Q14 67 58 | 9 | 53 14 57 10 32 | 35
Q15 T2 2] 0] 72 0 72 0 o IR

Future Work

e Integration with course management systems such as Moodle or Blackboard
using the Learning Tools Interoperability (LTI) standard (complete)
e Partial Marking Scheme implementation (ongoing)

e Future work:
o Handling SQL features not supported currently
o Multiple queries
o Form parameters

Thank Youl!

Questions?

42

